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Infrared spectroscopy

Figure: Table of the location of peaks and their
corresponding bonds for the polychloroprene
samples ([Tchalla, 2017]).

y(t) =
s∑

k=1

β?k φ(θ?k, t) + wT (t), (φ(θ, ·), θ ∈ Θ) continuous dictionary.
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1.1 Model

We observe y a random element of the Hilbert space (HT , < ·, · >T ), for T ∈ N∗.

Continuous dictionary {ϕT (θ), θ ∈ Θ} of non-degenerate elements of HT and the
normalized functions

φT (θ) = ϕT (θ)
‖ϕT (θ)‖T

.

If HT is a space of functions, we denote ϕT (θ) = ϕT (θ, ·).

We assume

y =
K∑
k=1

β∗k · φT (θ∗k) + wT ,

where
wT is a centered Gaussian element of HT ,
β∗ in RK , s−sparse,
{θ∗k}Kk=1 included in Θ.
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Examples

Model
y = β∗ · ΦT (θ∗) + wT , β∗ ∈ RK ,

where β∗ - row vector and ΦT = (φT (θ∗1), ..., φT (θ∗K))>.

a) Discrete model Let t1 < ... < tT in [0,1] be the design points, and G1, ..., GT i.i.d.
N(0, σ2), s.t.

y(tj) = β?ΦT (θ?, tj) +Gj , j = 1, ..., T.

We let HT = L2(λT ), where λT (dt) = 1
T

∑T

j=1 δtj (dt). The noise process can be
written:

wT (t) =
T∑
j=1

Gj · I(t = tj).

Then, for any f in HT ,

V ar(< f,wT >T ) = V ar

(
1
T

T∑
j=1

f(tj)Gj

)
= σ2

T
‖f‖2T .
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Examples

b) Continuous model with truncated or coloured noise: Let

wT =
∑
k:pk>0

√
ξkGkψk, {Gk}k i.i.d, N(0, σ2),

where {ψk, k ∈ N} o.n.b. of continuous functions of (L2[0, 1], Leb);
and we choose {pk}k∈N and {ξk}k∈N sequences of positive real numbers such that∑

k

pkξk <∞.

We define the weighted Hilbert space:

HT = < {ψk, k : pk > 0} >,

with < f, g >T=
∑

k
pk· < f, ψk > · < g, ψk >. Typically, pk = 1

T
I(1 ≤ k ≤ T ).

Then, for all f in HT ,

V ar(< f,wT >T ) = V ar(
∑
k

pk· < f, ψk > ·
√
ξkGk)

=
∑
k

p2
k < f, ψk >

2 ξkσ
2 ≤ σ2 sup

k

(pkξk) · ‖f‖2T
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1.2 Off-the-grid methods - BLasso

They can be stated and applied to:
-learning mixtures, compressed sensing, two-layer neural networks, low-rank tensor
product of matrices, super-resolution in signal processing.

Beurling-Lasso (BLasso) de Castro and Gamboa, 2012; Bredies and Pikkarainen, 2013;
- convex optimization problem over a set of Radon measuresM(Θ) on the space Θ:

P(κ) : arg min
µ∈M(Θ)

1
2‖y − Φµ‖2T + κ|µ|(Θ),

where Φ :M(Θ)→ HT is the acquisition operator and |µ| denotes the total variation of
the measure µ.

Remark that Φµ =
∫
φ(w, ·)dµ(w) is equal to

∑
k
β∗kφ(θ∗k, ·) for

dµ(w) =
∑
k∈S?

β∗kδθ∗
k
(dw).

Note that |µ|(Θ) =
∑

k∈S? |β?k |.
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The dual problem

D(κ) : arg max
p:‖Φ?p‖∞≤1

< y, p >T −
κ

2 ‖p‖
2
T

The measure µκ solution to the problem P(κ) and pκ the unique solution of D(κ) are
related through: {

Φ?pκ ∈ ∂|µκ|
−pκ = 1

κ
(Φµκ − y)

where the subdifferential ∂|µ| is the set of continuous functions g, vanishing at infinity,
bounded by 1: ‖g‖∞ ≤ 1, such that

∫
Θ gdµ = |µ|.

Definition: ηκ := Φ?pκ is a dual certificate of µκ.

Remark: -the solution to the problem P(κ) is not necessarily a discrete measure; if
N := dim(Im(Φ)) is finite then a solution which is a discrete measure with at most N
atoms can be found.
Therefore, we proceed with a slightly different optimization problem so that we recover a
discrete mixture as solution.
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1.3 Estimator

Let
(β̂, θ̂) := arg min

β∈RK ,θ∈(ΘT )K

1
2‖y − βΦT (θ)‖2T + κ‖β‖1

where ΘT ⊂ Θ is a compact set.

The algorithms used to solve numerically (also the BLasso):
1 Sliding Franck-Wolfe algorithm (Denoyel et al. 2019)
2 conic particle gradient descent (Chizat, 2021)

We will give high-probability bounds for the prediction risk

‖β̂Φ(θ̂)− β∗Φ(θ∗)‖2T

and some estimation results.

Bibliography:
-For known θ∗, linear regression model! Bühlmann and van de Geer 2011, Giraud 2015.
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Bibliography

Self-modeling non-linear regression: Golub, Pereyra, 1973; Kneip, Gasser, 1988
(consistency results for finite dimensional model);
BLasso : de Castro and Gamboa, 2012;
Super-resolution and compressed sensing: Candès and Fernandez-Granda, 2013, 2014;
Tang, 2015; ...
Overcomplete dictionary techniques, sparse coding: Donoho, Elad, Temlyakov 2006;
Tang, Baskhar, Recht, 2013; ...

Off-the-grid methods for the regression model -
-Fourier basis features: Tang, Baskhar, Recht 2015; Boyer, de Castro, Salmon, 2017;
-Location families: "Fixed-grid + Lasso" produces clusters of spikes around true location
parameters - Duval, Peyré, 2017;
Off-the-grid method produces perturbations in the location and amplitude estimation -
Duval, Peyré, 2015;

for the density model - de Castro, Gadat, Marteau, Maugis-Rabusseau, 2021 - solve the
BLasso for a different risk measure, find rates for the prediction risk under minimal
separation conditions.

-Non translation invariant models: Poon, Keriven, Peyré, 2021 describe the natural
geometric framework of the BLasso, show that the resulting measure recovers the true
one in Wasserstein metric.
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2.1 Dictionnary of features

Smoothness of the dictionary: Assume ϕT : Θ→ HT is of class C3 and that
‖ϕT (θ)‖T > 0 on Θ. Moreover, we assume that

gT (θ) := ‖∂θφT (θ)‖2T > 0, on Θ.

Examples:
a) Locations families, i.e.

ϕT (θ, t) = v
(
t− θ
σ0

)
for some known spread parameter σ0:
- Gaussian family: v(t) = exp(− 1

2 t
2)

- Cauchy family: v(t) = (1 + t2)−1

-sinc-kernel: v(t) = sin(πt)
πt

but not the Laplace kernel v(t) = exp(− 1
2 |t|).

b) Scaling families, i.e.
ϕT (θ, t) = v(θ · t).

-Laplace transform for v(t) = exp(−t).
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2.2 Kernel and Riemannian metric

We define the kernel KT on Θ2 by:

KT (θ, θ′) = 〈φT (θ), φT (θ′)〉T = 〈ϕT (θ), ϕT (θ′)〉T
‖ϕT (θ)‖T ‖ϕT (θ′)‖T

.

We have
gT (θ) = ∂2

xyKT (θ, θ),

defining an intrinsic Riemannian metric on Θ2:

dT (θ, θ′) = |GT (θ)−GT (θ′)|,

where GT is a primitive of √gT .

In particular, we use Taylor expansion in θ wrt the metric dT and covariant derivatives.
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Approximating limit kernel

The kernel has the properties

KT (θ, θ) = 1, K[1,0]
T (θ, θ) = 0, K[2,0]

T (θ, θ) = −1,

K[2,1]
T (θ, θ) = 0 and sup

Θ2
|K[0,0]
T | ≤ 1.

Denote by hT (θ) = K[3,3]
T (θ, θ).

We assume there exists an approximating limit kernel K∞ on Θ∞ which are free of T ,
satisfying smoothness conditions and boundedness conditions:

inf
Θ∞

g∞ > 0, sup
Θ∞

h∞ < +∞, and sup
Θ2
∞

|K[i,j]
∞ | < +∞ for all i, j ∈ {0, 1, 2}.

Proximity to the limit kernel. There exist a constant L > 0:

max{ max
i,j∈{0,1,2}

sup
Θ2

T

|K[i,j]
T −K[i,j]

∞ |, sup
ΘT

|hT − h∞|} ≤ L.
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Example: mixture of Gaussian features, discrete regression model

We observe y on a regular grid on ΘT = [−aT , aT ] with step

∆T = 2aT
T

.

The Gaussian features have spread σ0.

The limit space: if aT →∞ and ∆T → 0, then λ∞ = Leb on Θ∞ = R.
We calculate

φ∞(θ) = 1
π

1
4
√
σ0
ϕ(θ), K∞(θ, θ′) = v

(
θ − θ′√

2σ0

)
and g∞(θ) = 1

2σ2
0

and
d∞(θ, θ′) = |θ − θ

′|√
2σ0

.
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Existence of Interpolating Certificate

Let Q? be a set of s elements in ΘT . Suppose that

dT (θ, θ′) > 2r for all θ, θ′ ∈ Q?,

and that there exist positive constants CN , C′N , CF , CB , with CF < 1, depending on r
and K∞ such that

for any application v : Q? → {−1, 1} there exists an element p ∈ HT satisfying:

1 For all θ? ∈ Q? and θ ∈ BT (θ?, r), we have |〈φT (θ), p〉T | ≤ 1− CN dT (θ?, θ)2.
2 For all θ? ∈ Q? and θ ∈ BT (θ?, r), we have |〈φT (θ), p〉T − v(θ?)| ≤ C′N dT (θ?, θ)2.
3 For all θ in ΘT and θ /∈

⋃
θ?∈Q?

BT (θ?, r) (far region), we have

|〈φT (θ), p〉T | ≤ 1− CF .

4 We have ‖p‖T ≤ CB
√
s.

The interpolating certificate is

η : θ 7→ 〈φT (θ), p〉T .
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Existence of Interpolating Derivative Certificate

Assume that
dT (θ, θ′) > 2r for all θ, θ′ ∈ Q?

and that there exist positive constants cN , cF , cB depending on r and K∞, such that
for any application v : Q? → {−1, 1} there exists an element q ∈ HT satisfying:

1 For all θ? ∈ Q? and θ ∈ BT (θ?, r), we have:

|〈φT (θ), q〉T − v(θ?) sign(θ − θ?)dT (θ, θ?)| ≤ cN dT (θ?, θ)2.

2 For all θ in ΘT and θ /∈
⋃

θ?∈Q?

BT (θ?, r) (far region), we have |〈φT (θ), q〉T | ≤ cF .

3 ||q||T ≤ cB
√
s.

The interpolating derivative certificate is

θ 7→ 〈φT (θ), q〉T .
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3.1 Results - Assumptions

Assume we observe the random element y of HT under the regression model β? and
ϑ? = (θ?1 , · · · , θ?K) a vector with entries in ΘT , a compact interval of R, such that:

1 Admissible noise: For any f in HT , for a noise level σ > 0 and a decay rate for the
noise variance ∆T > 0:

V ar(< f,wT >T ) ≤ σ2∆T ‖f‖2T .

2 Regularity of the dictionary ϕT : The dictionary function ϕT satisfies the
smoothness conditions and gT the positivity conditions .

3 Regularity of the limit kernel: The kernel K∞ and the functions g∞ and h∞,
defined on an interval Θ∞ ⊂ Θ satisfy the smoothness conditions .

4 Proximity to the limit kernel: The kernel KT is sufficiently close to the limit kernel
K∞ .

5 Existence of certificates: The set of unknown parameters Q? = {θ?k, k ∈ S?}, with
S? = Supp(β?), satisfies Assumptions for existence of certificates with the same
r > 0.
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Results - Prediction and estimation 1/2

Then, there exist finite positive constants C0, C1, C2, C3 depending on the kernel K∞
defined on Θ∞ and on r such that for any τ > 0 and a tuning parameter:

κ ≥ C1σ
√

∆T log τ ,

we have the prediction error bound :∥∥β̂ΦT (ϑ̂)− β?ΦT (ϑ?)
∥∥2

T
≤ C0 s κ2,

with probability larger than 1− C2
(
|ΘT |dT

τ
√

log τ
∨ 1
τ

)
.

Moreover, with the same probability, the difference of the `1-norms of β̂ and β? is
bounded by: ∣∣‖ β̂‖`1 − ‖ β

?‖`1

∣∣ ≤ C3 κ s.
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Results - Prediction and estimation 2/2

There can be no clusters of large values β̂` in the neighborhood of one β∗k which can
compensate to estimate β∗k :∑

k∈S?

∣∣∣|β?k | − ∑
`∈S̃k(r)

|β̂`|
∣∣∣ ≤ C3 κ s, ∑

k∈S?

∣∣∣β?k − ∑
`∈S̃k(r)

β̂`

∣∣∣ ≤ C4 κ s

and the estimator β̂` drops to 0 when θ̂` is outside the r−neighbourhood of the true set
of non-linear parameters: ∥∥β̂S̃(r)c

∥∥
`1
≤ C5 κ s,

with the same probability.

Quality of estimation of the non-linear parameters:∑
k∈S?

∑
`∈S̃k(r)

∣∣β̂`∣∣ dT (θ̂`, θ?k)2 ≤ C6 κ s,

with the same probability.
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Discussion

We consider a very general framework including discrete and continuous models with
Gaussian, possibly correlated, noise and various dictionaries of smooth functions
(deconvolution, Laplace transform, ...)

The upper bound on the prediction risk is
- nearly the same as for the linear regression in the discrete model, whp,
- free of K
- involves controls of tails of sup of linear functionals of a Gaussian process (Azaïs and
Wschebor, 2009)

We assumed existence of certificates! Next we construct such certificates under
separation conditions of the non-linear parameters (of order s in theory, can be reduced
to constant for location models)!

For the location models (deconvolution):
-the spread of the features can help to reduce the euclidean distance between the
location parameters!
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Starting the proof:

By definition:

1
2‖y − β̂ΦT (θ̂)‖2T + κ‖β̂‖1 ≤

1
2‖y − β

?ΦT (θ?)‖2T + κ‖β?‖1

gives

1
2‖β

?ΦT (θ?)− β̂ΦT (θ̂)‖2T ≤ 〈β̂ΦT (θ̂)− β?ΦT (θ?), wT 〉T + κ(‖β?‖1 − ‖β̂‖1).

Decompose

β̂ΦT (θ̂)− β?ΦT (θ?) =
∑
k∈S?

 ∑
`∈S̃k(r)

β̂`ΦT (θ̂`)− β?kΦT (θ?k)

+
∑

`∈S̃c(r)

β̂`ΦT (θ̂`)

and use Taylor expansion for ΦT (θ̂`) at θ?k. The first term of the expansion writes

∑
k∈S?

 ∑
`∈S̃k(r)

β̂` − β?k

 〈ΦT (θ?k), wT 〉T ≤
∑
k∈S?

∣∣∣∣∣∣
∑

`∈S̃k(r)

β̂` − β?k

∣∣∣∣∣∣ · sup
θ

〈ΦT (θ), wT 〉T ,

then use a certificate and probabilistic bounds, etc.

C. Butucea (ENSAE) Off-the-grid learning
Symposium on Inverse Problems, September 19-21, 2022
21 / 26



Starting the proof:

By definition:

1
2‖y − β̂ΦT (θ̂)‖2T + κ‖β̂‖1 ≤

1
2‖y − β

?ΦT (θ?)‖2T + κ‖β?‖1

gives

1
2‖β

?ΦT (θ?)− β̂ΦT (θ̂)‖2T ≤ 〈β̂ΦT (θ̂)− β?ΦT (θ?), wT 〉T + κ(‖β?‖1 − ‖β̂‖1).

Decompose

β̂ΦT (θ̂)− β?ΦT (θ?) =
∑
k∈S?

 ∑
`∈S̃k(r)

β̂`ΦT (θ̂`)− β?kΦT (θ?k)

+
∑

`∈S̃c(r)

β̂`ΦT (θ̂`)

and use Taylor expansion for ΦT (θ̂`) at θ?k.

The first term of the expansion writes

∑
k∈S?

 ∑
`∈S̃k(r)

β̂` − β?k

 〈ΦT (θ?k), wT 〉T ≤
∑
k∈S?

∣∣∣∣∣∣
∑

`∈S̃k(r)

β̂` − β?k

∣∣∣∣∣∣ · sup
θ

〈ΦT (θ), wT 〉T ,

then use a certificate and probabilistic bounds, etc.

C. Butucea (ENSAE) Off-the-grid learning
Symposium on Inverse Problems, September 19-21, 2022
21 / 26



Starting the proof:

By definition:

1
2‖y − β̂ΦT (θ̂)‖2T + κ‖β̂‖1 ≤

1
2‖y − β

?ΦT (θ?)‖2T + κ‖β?‖1

gives

1
2‖β

?ΦT (θ?)− β̂ΦT (θ̂)‖2T ≤ 〈β̂ΦT (θ̂)− β?ΦT (θ?), wT 〉T + κ(‖β?‖1 − ‖β̂‖1).

Decompose

β̂ΦT (θ̂)− β?ΦT (θ?) =
∑
k∈S?

 ∑
`∈S̃k(r)

β̂`ΦT (θ̂`)− β?kΦT (θ?k)

+
∑

`∈S̃c(r)

β̂`ΦT (θ̂`)

and use Taylor expansion for ΦT (θ̂`) at θ?k. The first term of the expansion writes

∑
k∈S?

 ∑
`∈S̃k(r)

β̂` − β?k

 〈ΦT (θ?k), wT 〉T ≤
∑
k∈S?

∣∣∣∣∣∣
∑

`∈S̃k(r)

β̂` − β?k

∣∣∣∣∣∣ · sup
θ

〈ΦT (θ), wT 〉T ,

then use a certificate and probabilistic bounds, etc.

C. Butucea (ENSAE) Off-the-grid learning
Symposium on Inverse Problems, September 19-21, 2022
21 / 26



3.2 Sufficient conditions for constructing the certificates

For α, ξ in Rs, we construct the family

pα,ξ =
s∑

k=1

αkφT (θ?k) +
s∑

k=1

ξk φ
[1]
T (θ?k)

and certificates will be obtained by finding α, ξ to check the constraints. We get:

ηα,ξ(θ) := 〈φT (θ), pα,ξ〉T =
s∑

k=1

αk KT (θ, θ?k) +
s∑

k=1

ξk K[0,1]
T (θ, θ?k).

Local curvature of the kernels around the diagonal is controled:

εT (r) = 1− sup
{
|KT (θ, θ′)|; θ, θ′ ∈ ΘT such that dT (θ′, θ) ≥ r

}
,

νT (r) = − sup
{
K[0,2]
T (θ, θ′); θ, θ′ ∈ ΘT such that dT (θ′, θ) ≤ r

}
.

In the example ’mixture of Gaussian features’:

ε∞(r) = 1− exp(−1
2r

2), ν∞(r) = (1− r2) exp(−1
2r

2).
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3.2 Sufficient conditions for constructing the certificates

For α, ξ in Rs, we construct the family

pα,ξ =
s∑

k=1

αkφT (θ?k) +
s∑

k=1

ξk φ
[1]
T (θ?k)

and certificates will be obtained by finding α, ξ to check the constraints. We get:

ηα,ξ(θ) := 〈φT (θ), pα,ξ〉T =
s∑

k=1

αk KT (θ, θ?k) +
s∑

k=1

ξk K[0,1]
T (θ, θ?k).

Local curvature of the kernels around the diagonal is controled:
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Separation conditions

We define the set Θs
T,δ ⊂ Θs

T of vector of parameters of dimension s ∈ N∗ and
separation δ > 0 as:

Θs
T,δ =

{
(θ1, · · · , θs) ∈ Θs

T : dT (θ`, θk) > δ for all distinct k, ` ∈ {1, . . . , s}
}
.

and, for u > 0, a measure of the decoherence of the features:

δT (u, s) = inf
{
δ > 0 : max

1≤`≤s

s∑
k=1,k 6=`

|K[i,j]
T (θ`, θk)| ≤ u

for all (i, j) ∈ {0, 1} × {0, 1, 2} and (θ1, · · · , θs) ∈ Θs
T,δ

}
.
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Existence of the interpolating certificate

Let T ∈ N, s ∈ N∗ and r > 0. We assume that:
1 Regularity of the dictionary ϕT ;
2 Regularity of the limit kernel K∞ and we have r ∈

(
0, 1/

√
2L2,0

)
, and also

ε∞(r/ρ) > 0 and ν∞(ρr) > 0.

3 Decoherence of the features: There exists u∞ ∈
(

0, H(2)
∞ (r, ρ)

)
such that:

δ∞(u∞, s) < +∞.

4 Closeness of the metrics dT and d∞ controled by some ρT
5 Proximity of the kernels KT and K∞.

Then, with the positive constants CN , C′N , CB = 2 and CF ≤ 1
there exist an interpolating certificate (with the same r) for any subset
Q? = {θ?i , 1 ≤ i ≤ s} such that for all θ 6= θ′ ∈ Q?:

dT (θ, θ′) > 2 max(r, ρT δ∞(u∞, s)).
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Existence of the interpolating derivative certificate

Let T ∈ N and s ∈ N∗. We assume that:
1 Regularity of the dictionary ϕT ;
2 Regularity of the limit kernel K∞:
3 Decoherence of the features: There exists u′∞ ∈ (0, 1/6), such that:

δ∞(u′∞, s) < +∞.

4 Proximity of the kernels KT and K∞

Then, with the positive constants cN , cB = 2 and cF
there exists an interpolating derivative certificate for any r > 0 and any subset
Q? = {θ?i , 1 ≤ i ≤ s} such that for all θ 6= θ′ ∈ Q?:

dT (θ, θ′) > 2 max(r, ρT δ∞(u′∞, s)).
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Next

Location families (spike deconvolution) - more explicit separation bounds free of s and
decreasing when the spread of the feature decreases!

Group-BLasso: given a collection of signals y1, ..., yn, off-the-grid prediction by penalizing
with a global matrix norm:∑

k∈S?

‖βk,·‖2 or
∑
k∈S?

‖βk(·)‖p, p ∈ [1, 2]

Inference on the signals: clustering, outliers, etc.

Testing the goodness-of-fit of such a signal,
or that a new signal contains only components in the prescribed list!
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