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Setting: linear regression in Hilbert space

We consider the observation model

Yi = ⟨f◦,Xi⟩+ ξi,

where
▶ Xi takes its values in a Hilbert space H, with ∥Xi∥ ≤ 1 a.s.;

▶ ξi is a random variable with E[ξi|Xi] = 0, E
[
ξ2|Xi

]
≤ σ2, |ξ| ≤ M a.s.;

▶ (Xi, ξi)1≤i≤n are i.i.d. (the distribution of X is not known.)
The goal is to estimate f◦ (in a sense to be specified) from the data.
Note that if dim(H) = ∞, this is essentially a non-parametric model.
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Why this model?

▶ Hilbert-space valued variables appear in standard models of Functional Data
Analysis, where the observed data are modeled (idealized) as function-valued.

▶ Such models also appear in reproducing kernel Hilbert space (RKHS) methods in
machine learning:
▶ assume observations Xi take valued in some space X

▶ let Φ : X → H be a “feature mapping” in a Hilbert space H, and X̃ = Φ(X), then
one considers the model

Yi =
〈
f◦, X̃i

〉
+ ξi = f̃◦(Xi) + ξi,

where f̃ ∈ H̃ := {x 7→ ⟨f,Φ(x)⟩; f ∈ H} is a nonparametric model of functions
(nonlinear in x!).

▶ Usually all computations don’t require explicit knowledge of Φ but only access to the
kernel k(x, x′) = ⟨Φ(x),Φ(x′)⟩.
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Why this model (II) - inverse learning

Of interest is also the inverse learning problem:
▶ Xi takes value in X ;

▶ if A is a (known) linear operator from a Hilbert G to a real function space on X ;

▶ inverse regression learning model:

Yi = (Ag∗)(Xi) + ξi,

▶ where A is a Carleman operator
(i.e. evaluation functionals f 7→ (Af)(x) are continuous for all x),

▶ In this case the goal is to recover g∗ ∈ G .
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Why this model (III) - inverse learning, continued

▶ inverse regression learning model: Yi = (Ag∗)︸ ︷︷ ︸
f◦

(Xi) + ξi.

▶ If A is a Carleman operator G → Fmes.(X ,R), then of evaluation functionals

For all f ∈ G, x ∈ X : (Af)(x) = ⟨Fx, f⟩G for some Fx ∈ G

▶ Then H := Im(A) can be equipped with a RKHS structure with kernel

k(x, x′) := ⟨Fx, Fx′ ⟩G .
▶ Furthermore, A is then a partial isometry H → G .

▶ Therefore, if f̂ ∈ H is an estimate of f◦ = Ag∗ and if we assume g∗ ∈ Ker(A)⊥ :

Put ĝ := A−1̂f, then ∥ĝ− g∗∥G =
∥∥∥A−1 (̂f − f◦)

∥∥∥
G
=
∥∥∥̂f − f◦

∥∥∥
H

▶ Here the RKHS H is entirely determined by A. Mathematically speaking, we are
back in the RKHS learning scenario, but the convergence in H-norm is of major
importance.
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Inverse regression vs inverse “learning”

▶ Bissantz, Hohage, Munk and Ruymgaart (2007) propose a very general analysis of
general regularization methods for statistical inverse problems.

▶ Their model includes applications to the inverse regression model where the design
distribution (X-marginal) is assumed to be known (the exact integral operator is
used to construct the estimator).

▶ A proper characteristic of inverse “learning” is the absence of information a priori
on the X-marginal – it has to be “learned” as well.
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Two notions of risk

We will consider two notions of error (risk) for a candidate estimate f̂ of f◦ :
▶ Squared prediction error:

E (̂f) := E

[(〈̂
f,X
〉
− Y

)2]
.

▶ The associated (excess error) risk is

E (̂f)− E(f◦) = E

[(〈
f̂ − f◦,X

〉)2]
=
∥∥∥̂f − f◦

∥∥∥2
2,X

,

▶ Reconstruction error risk (especially relevant for inverse learning):∥∥̂f − f◦
∥∥2
H.

The goal is to find a suitable estimator f̂ of f◦ from the data having “optimal”
convergence properties with respect to these two risks.
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Finite-dimensional case

▶ The final dimensional case: X = Rp, f◦ now denoted β◦

▶ In usual matrix form:
Y = Xβ◦ + ξ.

▶ XTi form the lines of the (n, p) design matrix X
▶ Y = (Y1, . . . , Yn)T
▶ ξ = (ξ1, . . . , ξn)T

▶ “Reconstruction” risk corresponds to
∥∥β◦ − β̂

∥∥2 .

▶ Prediction risk corresponds to

E
[〈

β◦ − β̂,X
〉2]

=
∥∥Σ1/2(β◦ − β̂)

∥∥2 ,
where Σ := E

[
XXT

]
.

▶ In Hilbert space, same relation with Σ := E[X ⊗ X∗].
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Convergence of OLS in finite dimension

▶ The “ordinary” least squares (OLS) solution:

β̂OLS = (XTX)−1XTY.
▶ We want to understand the behavior of β̂OLS, when the data size n grows large.

Will we be close to the truth β◦?
▶ Recall

β̂OLS =
(
XTX

)−1
XTY =

( 1
nX

TX︸ ︷︷ ︸
:=Σ̂

)−1( 1
nX

TY︸ ︷︷ ︸
:=γ̂

)
= Σ̂−1γ̂,

▶ Observe by a vectorial LLN, as n → ∞:

Σ̂ :=
1
nX

TX =
1
n

n
∑
i=1

XiXTi︸︷︷︸
=:Z ′i

−→ E
[
X1XT1

]
=: Σ;

γ̂ :=
1
nX

TY =
1
n

n
∑
i=1

XiYi︸︷︷︸
=:Zi

−→ E[X1Y1] = Σβ◦ =: γ;

▶ Hence β̂ = Σ̂−1γ̂ → Σ−1γ = β◦ . (Assuming Σ invertible.)
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From OLS to Hilbert-space regression

▶ For ordinary linear regression with X = Rp (fixed p, n → ∞):
▶ LLN implies β̂OLS(= Σ̂−1γ̂) → β◦(= Σ−1γ);
▶ CLT+Delta Method imply asymptotic normality and convergence in O(n− 1

2 ).

▶ How to generalize to X = H?

▶ Main issue: Σ = E[X ⊗ X∗] does not have a continuous inverse.
(→ ill-posed problem)

▶ Need to consider a suitable approximation ζ(Σ̂) of Σ−1 (regularization), where

Σ̂ :=
1
n

m
∑
i=1

Xi ⊗ X∗i

is the empirical second moment operator.
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Regularization methods

▶ Main idea: replace Σ̂−1 by an approximate inverse, such as
▶ Ridge regression/Tikhonov:

f̂Ridge(λ) = (Σ̂ + λIp)−1γ̂

▶ PCA projection/spectral cut-off: restrict Σ̂ on its k first eigenvectors

f̂PCA(k) = (Σ̂)−1|k γ̂

▶ Gradient descent/Landweber Iteration/L2 boosting:

f̂LW(k) = f̂LW(k−1) + (γ̂ − Σ̂f̂LW(k−1))

=
k

∑
i=0

(I− Σ̂)kγ̂ ,

(assuming
∥∥Σ̂
∥∥
op ≤ 1).
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General form spectral linearization
Bauer, Rosasco, Pereverzev 2007

▶ General form regularization method:

f̂λ = ζλ(Σ̂)γ̂

for some well-chosen function ζλ : R+ → R+ acting on the spectrum and
“approximating” the function x 7→ x−1.

▶ λ > 0: regularization parameter; λ → 0 ⇔ less regularization

▶ Notation of (autoadjoint) functional calculus, i.e.

Σ̂ = QTdiag(µ1, µ2, . . .)Q ⇒ ζ(Σ̂) := QTdiag(ζ(µ1), ζ(µ2), . . .)Q

▶ Examples (revisited):
▶ Tikhonov: ζλ(t) = (t+ λ)−1

▶ Spectral cut-off: ζλ(t) = t−11{t ≥ λ}
▶ Landweber iteration: ζk(t) = ∑k

i=0(1− t)i .
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Assumptions on regularization function

Standard assumptions on the regularization family ζλ : [0, 1] → R are:
(i) There exists a constantD < ∞ such that

sup
0<λ≤1

sup
0<t≤1

|tζλ(t)| ≤ D ,

(ii) There exists a constant E < ∞ such that

sup
0<λ≤1

sup
0<t≤1

λ|ζλ(t)| ≤ E ,

(iii) Qualification: for residual rλ(t) := 1− tζλ(t),

∀λ ≤ 1 : sup
0<t≤1

|rλ(t)|tν ≤ γνλν,

holds for ν = 0 and ν = q > 0.
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Structural Assumptions (I)

▶ Denote (µi)i≥1 the sequence of positive eigenvalues of Σ in nonincreasing order.

▶ Assumptions on spectrum decay: for s ∈ (0, 1); α > 0:

IP<(s, α) : µi ≤ αi− 1
s

▶ This implies quantitative estimates of the “effective dimension”

N (λ) := Tr( (Σ + λ)−1Σ ) ≲ λ−s.
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Structural Assumptions (II)

▶ Denote (µi)i≥1 the sequence of positive eigenvalues of Σ in nonincreasing order.

▶ Source condition for the signal: for r > 0, define

SC(r,R) : f◦ = Σrh◦ for some h◦ with ∥h◦∥ ≤ R,

or equivalently, as a Sobolev-type regularity

SC(r,R) : f◦ ∈
{
f ∈ H : ∑

i≥1
µ−2r
i f2i ≤ R2

}
,

where fi are the coefficients of h in the eigenbasis of Σ.

▶ Under (SC)(r,R) it is assumed that the qualification q of the regularization
method satisfies q ≥ r+ 1

2 .
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A general upper bound risk estimate

Theorem
Assume the source condition (SC)(r,R) holds.
If λ is such that λ ≳ (N (λ) ∨ log(η)2)/n, then with probability at least 1− η, it holds:

∥∥∥(Σ + λ)1/2
(
f◦ − f̂λ

)∥∥∥
H

≲ log(η)2
(
Rλr+

1
2 + σ

√
N (λ)

n +
1

n
√

λ
+O(n− 1

2 )

)
.

This gives rise to estimates in both norms of interest since∥∥∥f◦ − f̂λ
∥∥∥
H
≤ λ− 1

2
∥∥∥(Σ + λ)1/2

(
f◦ − f̂λ

)∥∥∥
H
,

and ∥∥∥f∗◦ − f̂∗λ
∥∥∥
L2(PX )

=
∥∥∥Σ

1
2 (f◦ − f̂λ)

∥∥∥
H
≤
∥∥∥(Σ + λ)1/2

(
f◦ − f̂λ

)∥∥∥
H
.
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Upper bound on rates

Optimizing the obtained bound over λ (i.e. balancing the main terms) one obtains

Theorem
Assume r,R, s, α are fixed positive constants and assumePXY satisfies (IP<)(s, α),
(SC)(r,R) and ∥X∥ ≤ 1, ∥Y∥ ≤ M,Var[Y|X]∞ ≤ σ2 a.s. Define

β̂n = ζλn(Σ̂)γ̂,

using a regularization family (ζλ) satisfying the standard assumptions with qualification
q ≥ r+ 1

2 , and the parameter choice rule

λn =
(
R2σ2/n

)− 1
2r+1+s .

Then it holds for any p ≥ 1:

lim sup
n→∞

E⊗n
(∥∥∥f◦ − f̂λn

∥∥∥p)1/p/R( σ2

R2n

) r
2r+1+s ≤ C▲;

lim sup
n→∞

E⊗n
(∥∥∥f∗◦ − f̂λn

∥∥∥p
2,X

)1/p/
R
( σ2

R2n

) r+1/2
2r+1+s ≤ C▲.
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Extensions to nonlinear operators

▶ Extensions possible to nonlinear inverse problems

▶ Need stronger assumptions (output space of A has RKHS structure, A is Lipschitz
continuous)

▶ For Tikhonov regularization: see Abishake R, Blanchard, Mathé 2020.
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Towards adaptivity: existing approaches

▶ Cross-validation (or hold-out) will yield a tuning of the parameter which is adaptive
in the prediction risk, it is based on a unbiased estimate of the risk (URE) principle.

▶ Standard Lepski’s principle parameter selection can be applied for any fixed norm
(provided a good estimate of the “variance” term σ

√
N (λ)/n is available)

▶ Despite the existence of a regularization parameter λ being optimal for both
norms, there is no guarantee that any (close to) optimal parameter for prediction
risk (eg. selected by cross-validation) will be close to optimal in reconstruction risk,
or vice-versa.

▶ We want to construct a simultaneously (for both norms) adaptive data-driven
parameter selection.
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Standard Lepskii’s principle

We consider the following “deterministic” assumption to highlight the construction.

Assumption
Let Λ ⊂ R+ be a finite set of candidate regularization parameters,

Λ :=
{

λj, λ0 > λ1 > . . . > λm = λmin > 0
}
,

The (known) family of elements of H, (fλ)λ∈Λ , satisfies for any λ ∈ Λ:

∥f◦ − fλ∥H ≤ C(A(λ) + S(λ)),

where
▶ the function λ ∈ Λ 7→ A(λ) ∈ R+ is non-decreasing with A(0) = 0 and

possibly unknown;
▶ the function λ ∈ Λ 7→

√
λS(λ) ∈ R+ is non-increasing and known.
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Standard Lepskii’s principle (II)

Set

λ̂ := max

{
λ ∈ Λ : ∥fλ − fλ′∥H ≤ 4CS(λ′), ∀λ′ ∈ Λ, s.t. λ′ ≤ λ

}
,

Theorem
Under the assumptions made previously, if

λ∗ := max{λ ∈ Λ : A(λ) ≤ S(λ)},

▶ then it holds: ∥∥f◦ − f
λ̂

∥∥
H ≲ S(λ∗);

▶ Assuming it holds S(λk) ≤ CSS(λk−1) for k = 1, . . . ,m, then:∥∥f◦ − f
λ̂

∥∥
H ≲ min

λ∈Λ
(A(λ) + S(λ)).
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Generalized Lepskii’s principle

We consider the following “deterministic” assumption to highlight the construction.

Assumption
Let Λ ⊂ R+ be a finite set of candidate regularization parameters,

Λ :=
{

λj, λ0 > λ1 > . . . > λm = λmin > 0
}
,

The (known) family of elements of H, (fλ)λ∈Λ , satisfies for any λ ∈ Λ:∥∥∥(Σ + λ)1/2(f◦ − fλ)
∥∥∥
H
≤ C

√
λ(A(λ) + S(λ)),

where
▶ the function λ ∈ Λ 7→ A(λ) ∈ R+ is non-decreasing with A(0) = 0 and

possibly unknown;
▶ the function λ ∈ Λ 7→

√
λS(λ) ∈ R+ is non-increasing and known.
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Generalized Lepskii’s principle (II)

▶ Set

M(Λ) :=
{

λ ∈ Λ :
∥∥∥(Σ + λ′)1/2(fλ − fλ′)

∥∥∥
H
≤ 4C

√
λ′S(λ′),

∀λ′ ∈ Λ, s.t. λ′ ≤ λ

}
.

▶ The balancing parameter is given as

λ̂ := max M(Λ) ;

(this quantity is always well-defined since λmin ∈ M(Λ).)
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Generalized Lepskii’s principle: bound

Theorem
Under the assumptions made previously, if

λ∗ := max{λ ∈ Λ : A(λ) ≤ S(λ)},

and λ̂ is the parameter choice defined previously, then:
▶ It holds ∥∥∥(Σ + λ∗)

1
2 (f◦ − f

λ̂
)
∥∥∥
H
≲
√

λ∗S(λ∗);

▶ Assuming it holds S(λk) ≤ CSS(λk−1) for k = 1, . . . ,m, then:∥∥f◦ − f
λ̂

∥∥
H ≲ min

λ∈Λ
(A(λ) + S(λ));∥∥∥Σ

1
2 (f◦ − f

λ̂
)
∥∥∥
H
≲ min

λ∈Λ

√
λ(A(λ) + S(λ)).
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Applying Lepskii’s principle

Looking at the main error bound obtained earlier, with high probability the assumption∥∥∥(Σ + λ)1/2(f◦ − fλ)
∥∥∥
H
≤ C

√
λ(A(λ) + S(λ))

is satisfied with

A(λ) :=
(
Rλr +O(n− 1

2 )
)
,

S(λ) :=
σ
√
N (λ) +O(1)√

λn
.

Remaining issues:
▶ Σ is not known;
▶ N (λ) = Tr( (Σ + λ)−1Σ) is not known;
▶ the noise variance σ2 might not be known (issue ignored for now).
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Replacing Σ,N (λ) by empirical quantities

Proposition
If λ is such that λ ≳ (N (λ) ∨ log(η)2)/n, then with probability at least 1− η, it holds:∥∥∥(Σ + λ)

1
2 (Σ̂ + λ)−

1
2
∥∥∥ ≲ 1+ log(η−1).

Proposition
If λ ≳ n−1, it holds with probability at least 1− η, for N̂ (λ) := Tr(Σ̂(Σ̂ + λ)−1):

max

(
N (λ) ∨ 1
N̂ (λ) ∨ 1

,
N̂ (λ) ∨ 1
N (λ) ∨ 1

)
≲ (1+ log η−1)2.
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Fully empirical procedure (σ,M known)

▶ Put L := 2 log(8 log n/(η log q)) and let

Λ̂ :=
{

λi = q−i, i ∈ N, s.t. λi ≥ 100(N̂ (λ) ∨ L2/n)
}
.

▶ Define the parameter choice

λ̂ = max

{
λ ∈ Λ̂ : ∀λ′ ∈ Λ̂, s.t. λ′ ≤ λ :∥∥∥(Σ̂ + λ′)

1
2 (̂fλ − f̂λ′)

∥∥∥ ≤ cL
√

λ′Ŝ(λ′)

}
,

where

Ŝ(λ) :=
σ

√
2(N̂ (λ) ∨ 1) +M/5

√
λn

.
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Result for the empirical selection procedure

Theorem
Assume the source condition (SC)(r,R) holds.
Then for the generalized-Lepski parameter choice λ̂, with probability at least 1− η:

∥∥∥(Σ + λ)
1
2 (̂f

λ̂
− f◦)

∥∥∥ ≲ L3 min
λ∈[λmin,1]

(
Rλr+

1
2 + σ

√
N (λ)

n +
1

n
√

λ
+O(n− 1

2 )

)
.

where
λmin = min

{
λ ∈ [0, 1] : λ ≳ (N (λ) ∨ L2/n)

}
.

Conclusion: as a direct byproduct we get the same rates (up to log log n factor) as the
optimal choice of λ in the original bound, for both norms of interest.
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Estimating the unknown noise variance σ2?

▶ Observe that in general, there is no identifiability in the model

yi = f(xi) + σξi,

if the function f can be “arbitrary”.

▶ There is a hope when we assumed that f has some regularity (here: linearity)

▶ Idea:
▶ Take λ small so that the “bias” A(λ) is expected to be much lower than the

“variance” S(λ) (e.g., close to λ̂min .
▶ Split the sample into two subsamples giving rise to f̂(1)λ , f̂(2)λ .
▶ The hope is that by considering

∥∥∥̂f(1)λ − f̂(2)λ

∥∥∥2 in a suitable norm, we cancel the bias
and observe twice the “variance”.

▶ Need somewhat precise concentration (upper and lower) for this quantity.
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Estimation of the variance σ2

▶ Assume we have two independent sample of the same size n, giving rise to
estimators f̂(1)λ , f̂(2)λ (using the same regularization parameter λ > 0).

▶ Consider the statistic

∆2 :=
∥∥∥∥ 12 (Σ̂(1) + Σ̂(2) + λ)

1
2 (̂f(1)λ − f̂(2)λ )

∥∥∥∥2
H

=
1
2n

2n
∑
i=1

(̂f(1)λ − f̂(2)λ )2(xi) + λ
∥∥∥̂f(1)λ − f̂(2)λ )

∥∥∥2
H
,

and
σ̂2 :=

∆2

∑2
i,j=1
∥∥Aij∥∥2HS ,

where Aij = (Σ̂(i) + λ)
1
2 ζλ(Σ̂(j))(Σ̂(j))

1
2 .
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Estimation of the variance σ2

Theorem
If λ ≥ λ̂min, where

λ̂min = min
{

λ > 0 : λ ≥ 100(N̂ (λ) ∨ log(η−1)/2)
}
,

then with probability at least 1− η, it holds

σ̂2 ∈
[
σ2 ±

(
λσ2 + F(λ) log(η−1)

)]
,

with F(λ) → 0 as λ → 0.

Conclusion: the estimator σ̂2 is consistent, and can be used as a proxy for σ2 in the
procedure, with the same conclusions (up to changes in numerical constants, and for n
big enough).
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