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One way to think about vision: inverse optics

Laws of physics “generate” 2D images on
our retinae from 3D scenes
(forward optics / rendering)

Starting point to think about visual
perception: we want to infer the 3D scen

e light source
from the 2D retinal images: %J (e.g. sun light)
inverse optics! M

But: Inverse optics is mathematically
impossible. amount of light

;  entering the eye
. | isaproduct of
g light source intensity
. | ~and object reflectance
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Why do things look as they do?

Kurt Koffka, Principles of Gestalt Psychology, 1935
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Why do things look as they do?

- Iwm'f N
World (“physics”)






“At a functional level, visual object recognition is at the center of
understanding how we think about what we see. Object identification is a

primary end state of visual processing and a critical precursor to interacting
with and reasoning about the world.”

(Peissig & Tarr, 2007, p. 76)
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Face A

Face B

Cox (2014)
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Mounting evidence suggests that ‘core object recognition,’ the ability to rapidly recognize objects despite
substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward
computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However,
the algorithm that produces this solution remains poorly understood. Here we review evidence ranging
from individual neurons and neuronal populations to behavior and computational models. We propose
that understanding this algorithm will require using neuronal and psychophysical data to sift through many
computational models, each based on building blocks of small, canonical subnetworks with a common
functional goal.
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Fundamentals of Neural Networks

Interest in shallow, 2-layer artificial neural networks (ANN)—so-called

—began in the late 1950s and early 60s (FRANK ROSENBLATT),
based on WARREN McCuLLocH and WALTER PiTTs’s as well DONALD HEBB'S ideas
of computation by neurons from the 1940s.

Second wave of ANN research and interest in psychology—often termed
—after the publication of the parallel distributed processing

(PDP) books by DAvID RUMELHART and JAMES McCLELLAND (1986), using the

backpropagation algorithm as a learning rule for multi-layer networks.

Three-layer network with (potentially infinitely many) hidden units in the
intermediate layer is a universal function approximator (KURT HORNIK, 1991).

Non-convex optimization problems during backpropagation training, and lack
of data and computing power limited the usefulness of the ANNSs:

Universal function approximator in theory, but in practice three-layer ANNs
could often not successfully solve complex problems.



Fundamentals of Neural Networks (cont’'d)

Breakthrough again with so-called or s, widely
known since the 2012 NIPS-paper by ALEX KRIZHEVSKY ET AL.

DNN: loose terminology to refer to networks with at least two hidden or
intermediate layers, typically at least five to ten (or up to dozens):

1. Massive increase in labelled training data (““the internet”),

2. computing power (GPUs),

3. simple non-linearities (ReLU) instead of sigmoids,

4. convolutional rather than fully connected layers,

and

5. weight sharing across deep layers

appear to be the critical ingredients for the current success of DNNs, and
makes them the current method of choice in ML, particular in application.

At least superficially DNNs appear to be similar to the human object
recognition system: convolutions (“filters”, “receptive fields"”) followed by
non-linearities and pooling is thought to be the canonical computation of
cortex, at least within sensory areas.



Example: VGG-16
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VGG16 by Simonyan & Zisserman (2014); 92.7% top-5 test accuracy on ImageNet

https://www.cs.toronto.edu/~frossard/post/vgg16/#architecture



What changed vision research in 2012?

ImageNet challenge: 1000 categories, 1.2 million training images.

AlexNet by Krizhevsky, Sutskever & Hinton (2012) appears on the stage, and
basically reduces the prediction error by nearly 50%:

ILSVRC top-5 error on ImageNet
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Recent studies suggest that state-of-the-art convolutional deep’
neural networks (DNNs) capture important aspects of human
object perception. We hypothesized that these successes might be
partially related to a human-like representation of object shape.

Kubilius et al. (2016), PLoS Comp. Biol., p. 1



.. deep neural networks can match or even exceed human-level performance
in pattern recognition ... , and they develop representations that are
remarkably similar to those found in the mammalian neocortex. These
observations suggest that something akin to deep learning may, in fact, be
occurring in the real brain.

Cosyne, 2017, Workshop on “Deep learning” and the brain (Day 2)



It is a capital mistake to theorize
before one has data.

(SHERLOCK HOLMES)

ARTHUR CONAN DoyLE (1891). A Scandal in Bohemia.
The Strand Magazine, July issue.



Adversarial attacks?

Szegedy et al. (2014)



Adversarial examples? (cont'd)

Reese Russel
Witherspoon Crowe

SHARIF ET AL. (2016)



Adversarial examples? (cont'd)

SHARIF ET AL. (2016)



Adversarial attacks, random perturbations and generalisation in DNNs

Adversarial attacks show generalisation errors of DNNs—however, only to
carefully designed stimuli, exploiting the knowledge of the weights and
gradients in the DNN.

Data augmentation (re-training) often leads to robustness against a specific
adversarial attack, but it does not guarantee robustness against adversarial
perturbations in general.

Strong argument against DNNs using similar computations as human vision?

The susceptibility of deep neural networks to adversarial examples exposes
one of the most striking differences in the sensory decision making of
humans and machines. (from )

Human vision suffers from so-called visual illusions, carefully designed
stimuli, leading the visual system astray—illusions as adversarial stimuli?

What about generalisation abilities—robustness— of DNNs and humans to
weak signals and to randomly degraded stimuli rather than carefully
engineered “freak” stimuli?


https://robust.vision/benchmark/about/




Images and categories

All images from the training set of
ImageNet 2012 database.

To compare human observers to DNNs, a
categorisation in 1000+ classes at
different psychological levels is not
optimal.

MS COCO database is structured according
to 91 basic or entry-level categories,
making it an excellent source for an object
recognition task using human observers.

We used MS COCO categories with images
from ImageNet, mapping, if possible, the
ImageNet label to a MS COCO entry-level
category.

We retained 16 non-ambigious categories
with 213,555 images.



DNNs and methods

Three well-known, successtul and architecturally different DNNSs:
AlexNet, VGG-16, GoogleLeNet.

Experimental protocol chosen to allow fair comparison between humans and
DNNs as models of the human visual system for core object recognition:

e short presentation time (200 ms)
e followed by a high contrast 1/f noise mask (200 ms)
e fast-paced responding (1500 ms, mouse to select one of 16 icons)
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Geirhos, Janssen, Schiitt, Rauber, Bethge and Wichmann. (2017). Comparing deep neural networks against humans: object
recognition when the signal gets weaker. arXiv, 1706.06969v1, 1-31.
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Contrast reduction

Contrast level in percent
1 3 5 10 15 30
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Additive uniform noise
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Simple fix through data augmentation?



Eidolon distortions (maximal coherence)

Reach level
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Comparison of DNNs against human observers:
object recognition when signals get weaker

For colour images AlexNet, GoogleLeNet and VGG-16 are better than human
observers at a 16-category core object recognition task under “feedforward-
only” psychophysical conditions (~96% versus 88% correct).

Human observers are, however, more robust to:

1. Contrast reduction

2. Visual noise (both additive uniform noise as well as random pixel flips)
3. Eidolon distortions (from maximal to zero coherence)

Furthermore, confusion difference matrices show that all tested DNNs and
human observers diverge in their recognition behaviour with weaker signals.



Comparison of DNNs against human observers:
object recognition when signals get weaker (cont’d)

True for additional experiments exploring image rotations, false colours,
power spectrum equalisation, phase noise, low- and high-pass filtering: most
often human observers more robust, always diverging response entropy, i.e.
differing error patterns when the task gets more difficult (low performance,
weak signals; Medina-Temme et al., in preparation).

Claims about strong behavioural—and implied algorithmic—similarities
between current DNNs and human observers appear somewhat overstated:
in vision science (current/standard) DNNs are perhaps powerful tools to
study—rather than models of—the human visual system.



We show that using non-linearities that include rectification
and local contrast normalization is the single most
important ingredient for good accuracy on object recognition
benchmarks.

Jarrett, K., Kavukcuogly, K., Ranzato, M. A, and LeCun, Y. (2009). What is the best
multi-stage architecture for object recognition? IEEE International Conference on
Computer Vision, p. 2146.



Thoughts and speculations

Local gain control: ubiquitous in all (?) biological sensory system:
(CARANDINI & HEEGER, 2012)

. "Hand-crafted” early vision model with only seven free parameters and divisive

contrast-gain control predicts a lot of vision data (Schiitt & WICHMANN, 2017).

Local normalization known to be useful in the context of DNNs (JARRET ET AL,
2009; c.f. REN, LIAO, URTASUN, SINZ, ZEMEL, 2016, arXiv):
necessary ingredient to achieve more similarity between DNNs and biology?

Our results show we must go beyond prediction performance when evaluating
computational models as models of human vision: e.g. response entropy and
confusion difference matrices.

Striking similar performance of AlexNet, VGG-16 and GooglLeNet when probed
with weaker signals, despite very large architectural differences: why?
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