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Introduction

Examples of subsidence

3. Groningen:

seismic effects
(NAM)

2. Venice: mixed effect of
1. Louisiana wetlands: fault activation groundwater and gas
(L365) extraction



Subsidence, induced seismicity
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0 Subsidence to first order
related to pressure drop in
reservoir (e.g. Geertsma,
1963)

0 Relation with induced and
natural seismicity poorly
understood, for example in
Groningen, San Jacinto,
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Geodetic monitoring

0 Subsidence can be observed with
satellites (INSAR, GPS) as well as in situ
techniques (levelling)

Subsidence and uplift at Egehlpfuhl (N of Potsdam) as observed by
Sentinal-1 InSAR
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Modelling subsidence due to reservoir compaction

0 Time-independent deformation
model: represent reservoir
compaction with a point source,
following Mogi (1958).

O Finite element geomechanical Mogi

_ _ _ ogi source, after
model with single fluid flow (e.g. Dzurisin, 2007
Plaxis)

a0 Apply compaction model to S

reservoir pressure field:
Geertsma’s analytical solution v
(1963), in combination with a time- h
dependent pressure distribution from
a multi-layer reservoir model.

c

Bau (2014), after Geertsma (1963) Groningen reservoir

. model
0 Fully coupled flow-geomechanics: Mmax workshop March 2016,

FEM geomechanical model coupled gfﬁ;_/,{{e"te”e”c"ffe“-”"’”"”‘“
to finite difference model reservoir

flow, e.g. ADGPRS (Garipov et al,
2016, Voskov and Tchelepi, 2012)

Integrated model that includes
geomechanics and multi-fluid, multi-
phase flow
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Data assimilation for parameter estimation

O Geomechanics:
— Young's
modulus

Ps-InSAR

— Poisson’s ratio Geodetic surface

monitoring network

Geomechanical model ~

_e e o o U T

Data assimilation

Well logs Groundwater

monitoring wells

Seismic

Reservoir model
a Fluid flow:

— Permeability

— Porosity
— Pressure

— Saturation O Subsurface and surface data reduce

uncertainties in geometry, parameters and
state variables

O Geometry and geology
— Layering
— Faults and structure



State and parameter estimation

Bayes' rule:

Fapld) = fdl ) f@)
f(d)
Where ¢ is the model state, and d are the observations. Assume state
evolution can be described by Markov process:
dy = g;y)dt + dp,
With y the model parameters. Then the minimum variance estimate
becomes:

P = jw Fpld)dy

In subsurface flow estimation, several methods are being commonly used:
Ensemble Smoother (Van Leeuwen and Evensen, 1996)

Ensemble Kalman Filter (Evensen, 1994)

Ensemble Kalman Smoother (Evensen and Van Leeuwen, 2000)
Ensemble Square Root Filter (e.g., Zhang et al, 2010)

Randomized Maximum Likelihood (Oliver et al, 1996)

Particle Filters (review: Van Leeuwen, 2009)

Markov-Chain Monte Carlo (e.g., Oliver et al, 1996) 3
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State and parameter estimation

Ensemble (Kalman) methods for state and parameter estimation can be
seen as a summation of representer functions involving error covariances
with coefficients:

N*
S AP B UCTADERWRICTAD
n=1

Where the coefficients b,, effectively weight a set of model realizations
with their difference from the observations .

This can also be written as:

-1
YUy, t) = 0y, t) + CpyHT (HC) H + Cag)  (d = HY/ (x,7,17)

With covariances Cy,, and C,4 representing uncertainty in model and data.
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with their difference from theatlons
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With covariances Cy,, and C,4 representing uncertainty in model and data.

State and parameter estimation

Ensemble (Kalman) methods for state and parameter estir%ion can be
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Particle methods

Q Start from Bayes:

_ pa(d| V)pm @)
pm(@ | d) = o ()

O Approximate model probability density with ensemble of model
realisations

& SRRCECCCTAREERTIT
Pm() =~ ) 8@ — ) -
i=1

O Minimum variance estimator is:

[ Wpa(dl $)pm @)D ¥, Yipa(dlp) M |
A I,

= i = T ™ il

0 In essence: weigh each particle with difference observation-model |||||||]|]

O Can be used as a smoother or as a filter
11



Parameters and sensitivities in subsidence

parameter estimation

* In these applications, the following (state) variables
are observed:

— Surface deformation
— Reservoir pressure
— Oil or gas rate

* While the following parameters are assumed to be
unknown:

— compaction coefficient/Young’'s modulus

— (in case of Mogi) source strength
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Particle Filter for Mogi point source of subsidence

Mogi source, after Dzurisin, 2007 Particle filter with resampling
(from Van Leeuwen, 2009)

weighting resampling weighting

QO Modeling
subsidence with
so-called Mogi
sources, spherical
sources of strain

O Computationally

A source -~
(0,0,-d)

inexpensive: 0 c0 o 20
possible to create

Iarge ensembles in Represent compaction of reservoir
partic'e filter InSAR data of 2009-2010 subsidence (mm) by Mogi sources at well locations

QO System set-up for
assimilation of
INSAR surface
deformation
measurements in
the Groningen area
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Reconstructed subsidence Groningen 2009-2010

1
™~

g £
o
D 533 g su3
= =, u
[}
‘g 53.25 -
£ s =| G
= = 2
53.2
4
53,15
6
53.1
a a : ; : M, : . ; B
64 65 6.6 6.7 6.8 6.9 7 7. 7.2 64 65 6.6 6.7 6.8 6.9 7 7 7.2
Longitude [degrees] Longitude [degrees]

mm

>

53.45

53.35

o
4
w

Latitude [degrees]

53.2

53.15

&

64 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2
Longitude [degrees]



Quality of reconstruction Mogi strength

QO Increasing number
of Mogi sources,
keeping ensemble
size constant

— Increasing
ambiguity
— Effectively

decreasing
search space

0O Influence of
observational error
probability density
function on
performance
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Coupled Flow-Geomechanical model ADGPRS

O Coupled reservoir-geomechanical model: AD-GPRS (Garipov et al, 2016,
Voskov and Tchelepi, 2012)

18



Coupled Flow-Geomechanical model ADGPRS

0 Governing equations:

A prd k
(a]; )—V~[pr(Vp—pfg)]—q=0

mass conversation and Darcy’s law

(b—¢o)(1-b)
b = do + T2 (p — po) + b(ey — €,0)

constitutive equation skeleton, assuming elasticity (Coussy, 2004)

O Simplified geometry with full coupling, fully implicit methods makes
model computationally efficient

19



Model set-up 1D ADGPRS

O Terzaghi's experiment:
consolidation process where axial
load is initially borne by fluid, and
then shifted to skeletal frame

t<0 t=0" t>0 [

Terzaghi’s uniaxially constrained soil consolidation,
Craig 1997

0 Single column (19 cells)

0 Deformation depends on bulk
modulus K, which depends on
Young’s modulus and Poisson
ratio

20



Intermediate results 1D ADGPRS

2 <10 Volume strain for 100 ensemble members
A
0

a 100 member ensemble for

g
E—g8 % sensitivity study

1<E<10

<® 0 Varying Young’s modulus (E) §
and/or Poisson’s ratio (v) in
three subsurface layers

60 60

E=5

1<E<10 0 Note: this 1D case is I

actually not as non-linear as
a 3D case could be
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Consolidation results
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Q Increasing number of unknowns, able to separate
between the different rock properties for two top
layers, for three layers this becomes challenging

0 Comparison with Ensemble Kalman Filter and ES-
MDA ongoing
a Investigating PF adjustments:
— Incremental adjustments with adaptive weights (next slide)

— Regularized particle filter
— Proposal density function
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a Further experiments ongoing...

O Resampling with fjitter’
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Fault reactivation in FEM (Plaxis)

0 Reservoir depletion on one
side of a fault leads to
differential pressure loading,
which may lead to fault slip
and induced seismicity

Initial pressure situation:

1MPa = 10 bar
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After 20 MPa depletion:

I =

Pressure [Mpa]

0 MPa




Vertical displacement fault reactivation

Vertical displacement [cm]
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Failure points analysis

0 At which pressure does fault failure occur?

Pressure: 35-30-25-20-15-10-5 MPa
Phase: 0- 2- 4- 6- 8-10-12

Failure: just before pore pressure is 20 MPa (Phase 6)
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Fault reactivation sensitivities

Reservoir radius [m] 500, 1000, 3000

Reservoir thickness [m] 50, 100, 200, 300

Fault angle [deg] 60, 79, 90, 101, (70, 120, 160, 20)

Fault throw [m] 0, +30, -30, +100, -100, + res. thickness, - res. thickness

E (Young’s modulus) [GPa] 15

v (Poisson’s ratio) 0,15 0,1 0,3 6

C (Cohesion) [MPa] 0 0 10 5

Phi (friction angle) [deg] 25 15 40 9
e.g. fault angle: 90° | |79° 60° 101°




Fault reactivation sensitivities

O Probability distributions

0.30

derived from sensitivity
studies for internal friction
angle, Young’'s modulus,
Poisson’s ratio and a tuning oz
factor for poro-elastic
loading

0.25

0.15

Probability

O Shape of distribution can be
used as a measure of
sensitivity for each of the 0.05
parameters

o
-
o

)
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Models Phi
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0.00

0 Use these distributions for 3 30
perturbations for data
assimilation with sequential
Monte Carlo methods

20 15
Yield Pore Pressure [MPa]
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Data assimilation for fault slip modelling

O Collaboration with Ylona
van Dinther and Marie
Bocher (ETH Zirich)

Q Understanding fault slip
will help monitor and
forecast earthquakes
and their consequences

Q Fault slip strongly
depends on initial fault

stresses and parameters 10 2° ® em © % %

e Se'smegenic zore Oceanic slab e

van Ointher et al., JGR, 20733

Z (cm)

0o Can we make use of
what we know from
observations? ...and
from laboratory
experiments?

3 subducting plate |
|




Data assimilation for fault slip -results so far

0 Ensemble Kalman filter as a
tool to estimate and forecast
synthetic slip of laboratory
earthquakes

0 Updating the stress and
strength fields using
observations of borehole
velocity, stress, and
pressure in a simplified
subduction zone
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Limited applicability of the Ensemble Kalman Filter to

strongly non-linear problems may be overcome by

using the Particle Filter for data assimilation.



Conclusions and outlook

a Conclusions
— A variety of models and data assimilation approaches are tested to
infer reservoir compaction from subsidence observations

— Non-linearities and coupled models ask for Sequential Monte-Carlo
methodologies

a Outlook

— Focus on more strongly nonlinear processes:
» 3D heterogeneities in subsidence

« fault slip and seismicity

— Investigate Hybrid Monte Carlo/EnKF assimilation methods
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