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Sequential Bayesian inference

I State estimation (e.g., filtering and smoothing) or joint state and
parameter estimation, in a Bayesian setting
I Need recursive algorithms for characterizing the posterior
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Deterministic couplings of distributions

Key task: sample a non-Gaussian distribution π

⇡(✓) p(r)

⇡̃(r)

T (✓)

T̃ (✓)

Figure 2-1: Illustration of exact and inexact transformations coming from T and T̃
respectively. The exact map pushes the target measure ⇡ to the standard Gaussian
reference p while the approximate map only captures some of the structure in ⇡,
producing an approximation p̃ to the reference Gaussian.

µr does not contain any point masses and the cost function c(✓, T (✓)) is quadratic.
Details of the existence and uniqueness proofs can also be found in [102].

Being a form of regularization, the cost function in (2.2) defines the form and
structure of the optimal transport map. For illustration, consider the case when
✓ ⇠ N(0, I) and r ⇠ N(0,⌃) for some covariance matrix ⌃. In this Gaussian example,

the transport map will be linear: r
i.d.
= ⌃1/2✓, where ⌃1/2 is any one of the many

square roots of ⌃. Two possible matrix square roots are the Cholesky factor, and the
eigenvalue square root. Interestingly, when the cost is given by

cEig(✓, T (✓)) = k✓ � T (✓)k2, (2.3)

the optimal square root, ⌃1/2, will be defined by the eigenvalue decomposition of ⌃,
but when the cost is given by the limit of a a weighted quadratic defined by

cRos(✓, T (✓)) = lim
t!0

DX

k=1

tk�1|✓k � Tk(✓)|, (2.4)

the optimal square root, ⌃1/2, will be defined by the Cholesky decomposition of ⌃.
In the more general nonlinear and non-Gaussian setting, this latter cost is shown by
[22] and [15] to yield the well-known Rosenblatt transformation from [91].

The Cholesky factor is a special case of the Rosenblatt transformation, which it-
self is just a multivariate generalization of using cumulative distribution functions to
transform between univariate random variables (i.e., the “CDF trick”). Importantly,
the lower triangular structure present in the Cholesky factor, which makes inverting
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 T

 η  π

Idea

I Choose a reference distribution η (e.g., standard Gaussian)
I Seek a map T : Rn → Rn such that T]η = π

I Equivalently, find S = T−1 such that S]π = η
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   S =T−1

 η  π

Idea

I Choose a reference distribution η (e.g., standard Gaussian)
I Seek a map T : Rn → Rn such that T]η = π

I Equivalently, find S = T−1 such that S]π = η
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Various types of transport...

I Optimal transport:

Topt = arg min
T

∫

Rn
c (x , T (x)) dη(x)

s.t. T] η = π

I Monge (1781) problem; many nice properties, but numerically
challenging in general continuous cases

I Knothe-Rosenblatt rearrangement:

T (x) =




T 1(x1)

T 2(x1, x2)
...
T n(x1, x2, . . . , xn)




I Exists and is unique (up to ordering) under mild conditions
I Inverse map S = T−1 also lower triangular
I “Exposes” marginals, will enable conditional sampling. . .
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Computation of triangular maps from densities

min
T
DKL(T]η ||π )

I Numerical approximations can employ a monotone parameterization,
guaranteeing ∂xkT

k > 0 for arbitrary functions ak , bk

T k(x1, . . . , xk) = ak(x1, . . . , xk−1)+

∫ xk

0

exp (bk(x1, . . . , xk−1, w)) dw

I Sample average approximation + (BFGS or Newton) for

min
(ak ,bk)k

EX∼η[− logπ(T (X)) −
∑

k

log ∂xkT
k(X) ]

I Many alternatives, e.g.,
1. fully nonparametric approaches (stein variational gradient) [Liu, ’16]
2. deep neural networks (normalizing flows) [Rezende, ’15]

I Challenge: represent a high-dimensional nonlinear function
4 / 34



Markov properties and low-dimensional couplings

Main idea
There exists a link between the Markov properties of (η, π) and the
existence of couplings that admit low-dimensional structure in terms of

1. Sparsity

2. Decomposability

I Additional structure not discussed here: low rank

A BS

1

(i , j) /∈ E iff Zi ⊥⊥ Zj |ZV\{i ,j}
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Sparse transport maps

I Given a reference η and a target π, focus on the sparsity of the
inverse Knothe-Rosenblatt (KR) rearrangement, i.e., S#π = η

S(x) =




S1(x1)

S2(x1, x2)

S3(x1, x2, x3)
...
Sn(x1, x2, . . . , xn)




=⇒




S1(x1)

S2(x1, x2)

S3(x1,x2, x3)
...
Sn(x1, x2, . . . ,xn−1, xn)




I Theorem:1 The KR rearrangement (a nonlinear function) inherits
the same sparsity pattern as the Cholesky factor of the incidence
matrix (properly scaled) of a graphical model for π, provided that

η(x) =
∏

i

η(xi)

1Spantini et al. (2017)
6 / 34



Compute the inverse transport!

I Direct transports T#η = π, however, tend to be dense
I Sparsity in T is linked to marginal (not conditional) independence

Inverse Direct

1

Key message

Compute the inverse transport S and evaluate T (x) = S−1(x) point-wise

I Trivial to invert a triangular function (sequence of 1D root findings)
I Same spirit as GMRF, but for general non-Gaussian densities
I The direct transport is usually dense, but low-dimensional structure

might lie elsewhere...
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Decomposable transport maps

I Definition: a decomposable transport is a map T = T1 ◦ · · · ◦ Tk that
factorizes as the composition of finitely many maps of low effective
dimension and that are triangular (up to a permutation), e.g.,

T (x) =




A1(x1, x2)

B1(x2)

x3

x4

x5
...
xn




︸ ︷︷ ︸
T1

◦




x1

A2(x2, x3, x5)

B2(x3, x5)

x4

C2(x5)
...
xn




︸ ︷︷ ︸
T2

◦ · · · ◦




x1

x2

x3

Ak(x4)

x5
...
Bk(x4, xn)




︸ ︷︷ ︸
Tk

I Theorem:2 Decomposable graphical models for π lead to
decomposable direct maps T , provided that η(x) =

∏
i η(xi)

2Spantini et al. (2017)
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Applications to Bayesian filtering/smoothing

I Sparsity/decomposability apply to general Markov structures
I Special case: nonlinear non-Gaussian state-space models

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

1

I Ideally, interested in recursively updating the full Bayesian solution:

πZ0:k |Y0:k
→ πZ0:k+1 |Y0:k+1

I Let X0,X1, . . . be an independent process with marginals (ηXk )k
I Coupling between X0, . . . ,XN and Z0, . . . ,ZN |Y0, . . . ,YN

Seek a decomposable transport for πZ0,...,Zk |Y0,...,Yk (just a chain!)
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First step: compute a 2-D map

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

1

I Compute M0 : R2n → R2n s.t.

M0(x0, x1) =

[
A0(x0, x1)

B0(x1)

]

I Reference: ηX0
ηX1

I Target: πZ0
πZ1|Z0

πY0|Z0
πY1|Z1

B0())

I dim(M0) ' 2× dim(Z0)

T0(x) =




A0(x0, x1)

B0(x1)

x2

x3

x4

x5
...
xN



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Second step: compute a 2-D map

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

1

I Compute M1 : R2n → R2n s.t.

M1(x1, x2) =

[
A1(x1, x2)

B1(x2)

]

I Reference: ηX1
ηX2

I Target: ηX1
πY2|Z2

πZ2|Z1
(·|B0 (·) )

I Uses only one component of M0 ()

T1(x) =




x0

A1(x1, x2)

B1(x2)

x3

x4

x5
...
xN



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Proceed recursively forward in time

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

1

I Compute M2 : R2n → R2n s.t.

M2(x2, x3) =

[
A2(x2, x3)

B2(x3)

]

I Reference: ηX2
ηX3

I Target: ηX2
πY3|Z3

πZ3|Z2
(·|B1 (·) )

I Uses only one component of M1 ()

T2(x) =




x0

x1

A2(x2, x3)

B2(x3)

x4

x5
...
xN



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A decomposition theorem for chains

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

X0 X1 X2 X3 XN

1

Theorem:a

1. (Bk)] ηXk+1
= πZk+1 |Y0:k+1

(filtering)

2. (Mk)] ηXk:k+1
' πZk ,Zk+1 |Y0:k+1

(lag-1 smoothing)

3. (T0 ◦ · · · ◦ Tk)] ηX0:k+1
= πZ0:k+1|Y0:k+1

(full Bayesian solution)

aSpantini et al. (2017)
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A nested decomposable map

I Tk = T0 ◦ T1 ◦ · · · ◦ Tk characterizes the full joint πZ0:k+1|Y0:k+1

Tk+1(x) =




A0(x0, x1)

B0(x1)

x2

x3

x4

x5
...
xN




︸ ︷︷ ︸
T0

◦




x0

A1(x1, x2)

B1(x2)

x3

x4

x5
...
xN




︸ ︷︷ ︸
T1

◦




x0

x1

A2(x2, x3)

B2(x3)

x4

x5
...
xN




︸ ︷︷ ︸
T2

◦ · · ·

I Trivial to go from Tk to Tk+1: just append a new map Tk+1

I No need to recompute T0, . . . , Tk (nested transports)
I Tk is dense and high-dimensional but decomposable



A nested decomposable map

I Tk = T0 ◦ T1 ◦ · · · ◦ Tk characterizes the full joint πZ0:k+1|Y0:k+1

Tk+1(x) =




A0(x0, x1)

B0(x1)

x2

x3

x4

x5
...
xN




︸ ︷︷ ︸
T0

◦




x0

A1(x1, x2)

B1(x2)

x3

x4

x5
...
xN




︸ ︷︷ ︸
T1

◦




x0

x1

A2(x2, x3)

B2(x3)

x4

x5
...
xN




︸ ︷︷ ︸
T2

◦ · · ·

I Trivial to go from Tk to Tk+1: just append a new map Tk+1

I No need to recompute T0, . . . , Tk (nested transports)
I Tk is dense and high-dimensional but decomposable



mit-logo.jpg

A single-pass algorithm on the model

I Meta-algorithm:

1. Compute the maps M0,M1, . . ., each of dimension 2× dim(Z0)

2. Embed each Mj into an identity function to form Tj

3. Evaluate T0 ◦ · · · ◦ Tk for the full Bayesian solution

I Remarks:
I A single pass on the state-space model
I Non-Gaussian generalization of the Rauch-Tung-Striebel smoother
I Bias is only due to the numerical approximation of each map Ti
I Can either accept the bias or reduce it by:

I Increasing the complexity of each map Ti , or
I Computing weights given by the proposal density

(T0 ◦ T1 ◦ · · · ◦ Tk)] ηX0:k+1

I The cost of evaluating weights grows linearly with time

15 / 34
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Joint parameter/state estimation

I Can be generalized to sequential joint parameter/state estimation

Z0 Z1 Z2 Z3 ZN

Y0 Y1 Y2 Y3 YN

Θ

1

I (T0 ◦ · · · ◦ Tk)] ηΘ ηX0:k+1
= πΘ ,Z0:k+1 |Y0:k+1

(full Bayesian solution)
I However, now dim(Mj) = 2× dim(Zj) + dim(Θ)

I Remarks:
I No artificial dynamic for the static parameters
I No a priori fixed-lag smoothing approximation

16 / 34



Another decomposable map

Tk+1(x) =




P0(xθ)

A0(xθ, x0, x1)

B0(xθ, x1)

x2

x3

x4
...
xN




︸ ︷︷ ︸
T0

◦




P1(xθ)

x0

A1(xθ, x1, x2)

B1(xθ, x2)

x3

x4
...
xN




︸ ︷︷ ︸
T1

◦




P2(xθ)

x0

x1

A2(xθ, x2, x3)

B2(xθ, x3)

x4
...
xN




︸ ︷︷ ︸
T2

◦· · ·

I (P0 ◦ · · · ◦ Pk)] ηΘ = πΘ |Y0:k+1
(parameter estimation)

I If Pk = P0 ◦ · · · ◦ Pk , then Pk can be computed recursively as

Pk = Pk−1 ◦ Pk

via regression =⇒ cost of evaluating Pk does not grow with k
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Numerical example: stochastic volatility model

I Latent log-volatilities taking the form of an AR(1) process for
t = 0, . . . , N. We take N = 944.

Zt+1 = µ+ φ (Zt −µ) + ηt , ηt ∼ N (0, 1), Z0 ∼ N (0, 1/1− φ2)

I Observe the mean return for holding the asset at time t

Yt = εt exp( 0.5Zt ), εt ∼ N (0, 1), t = 0, . . . , N

I The Markov structure for π ∼ µ, φ,Z0:N |Y0:N is given by:

A BS
Z0 Z1 Z2 Z3 ZN

µ φ

1

Joint state/parameter estimation problem

18 / 34
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Filtering distributions

I Computed online via 4-d maps
I Can use Gauss quadratures for each map!

0 200 400 600 800
time

3

2

1

0

1

2

Z t
|Y

0:
t
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Smoothing marginals

I Just re-evaluate the 4-d maps backwards in time
I Comparison with a “reference” MCMC solution with 105 ESS (in red)

0 200 400 600 800
time

3

2

1

0

1

2

Z t
|Y

0:
N
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Static parameter φ

I Sequential parameter inference
I Comparison with a “reference” MCMC solution (batch algorithm)

time
0 200 400 600 800

0.4
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Static parameter µ

I Slow accumulation of error over time (sequential algorithm)
I Acceptance rate 75% for MCMC with transport-map proposal
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Long-time smoothing (25 years)

9/11

Lehman Brothers bankrupcy

Brexit referendum

I Python code available at http://transportmaps.mit.edu

http://transportmaps.mit.edu


Filtering high-dimensional systems

I Now we consider the filtering of state-space models with:
1. High-dimensional states
2. Intractable transition kernel, i.e., can only obtain forecast samples
3. Limited model evaluations, e.g., small ensemble size
4. Sparse and local observations in space/time

I State-of-the-art results (in terms of tracking) are currently obtained
with localized versions of the EnKF

I The EnKF is not consistent, but robust

Some open questions:
I For a given ensemble size N, are we doing the best we can?
I EnKF is not guaranteed to perform better as N increases, and in

some situations performs worse! Can this be mitigated?
I Can we get closer to the Bayesian solution, while preserving

robustness of EnKF approaches?



mit-logo.jpg

Nonlinear filters induced by local couplings

Main idea

1. Propagation: apply the dynamics to obtain the next forecast ensemble

2. Assimilation: transform the forecast ensemble into approx. samples
from the filtering distribution via local, nonlinear couplings

Key steps of the assimilation algorithm:
1 Approximate the forecast distribution on a manifold of sparse
non-Gaussian Markov random fields

2a Local assimilation of the observations

2b Propagation of information across the state

Abstraction of the assimilation problem:
I We have samples from the prior & can evaluate the likelihood
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Projection onto a manifold of sparse MRFs

M' S4

S−1] η

π

1

I Approach: learn an inverse map S : Rn → Rn from samples

min
S∈S4

DKL(π ||S−1
] η ) = max

S∈S4
Eπ[log η(S(Z)) + log |∇S(Z)|]

I Choose the approximation space S4 (finite space of sparse lower
triangular maps) to enforce a desired Markov structure

I Compute each component Sk : Ω→ R via convex optimization
I Choose any parameterization of Sk that departs (if desired) from
linearity by adding local nonlinear terms (e.g., polynomials, RBFs)
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Assimilation and propagation

1

1I For simplicity, consider assimilating one observation at a time . . .

π(z |y) = π(z1|y)π(z∼1|z1)

I Local assimilation: simulate from π(z1|y)
I First map component S1 pushes forward the prior πZ1 to η1; yields an
approximation (S1)−1

] η1 of the forecast marginal
I Seek a direct map T 1 with target density

π(z1|y) ∝ π(y |z1)η1

(
S1(z1)

)
∂z1S

1(z1)

I Then T 1 ◦ S1 transforms forecast samples of z1 to analysis/posterior
samples of z1
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Assimilation and propagation

1

I Propagation: sample from the conditional π(z∼1|z1) given samples
from the marginal π(z1|y)

I Given the inverse map S, notice that Sξ : Rn−1 → Rn−1,

z2, . . . , zn 7→



S2(ξ, z2)
...
Sn(ξ, z2, . . . , zn)


 ,

pushes forward πZ2:n|z1=ξ to η2:n =⇒ just invert Sξ
I Sparse Markov structure yields further simplifications in S, e.g.,

1. Sparse S
2. Parallel inversion of Sξ
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Assimilation and propagation

1

Local assimilation + propagation:
I Then the combined map (for a single observation),

T (z) =

[
T 1(z1)

S−1
T 1(z1)

(z2, . . . , zn)

]
◦ S(z),

transforms the forecast ensemble to the analysis ensemble!

I Can iterate this construction to assimilate each additional
observation, or generalize to multiple/batch observations
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Lorenz 96 (40-dimensional state)

I A hard test-case configuration:3

dZj
dt

=
(
Zj+1 − Zj−2

)
Zj−1 − Zj + F, j = 1, . . . , 40

Yj = Zj + εj , j = 1, 3, 5 . . . , 39

I F = 8 (chaotic regime) and εj ∼ N (0, 0.5)
I Time between observations: ∆obs = 0.4 (large!)
I Results averaged over 2000 assimilation cycles

#particles: 400 #particles: 200
EnKF6 LocNLF ≈EnKF LocNLF

med RMSE 0.88 0.64 0.91 0.66
avg RMSE 0.97 0.74 1.02 0.79
var RMSE 0.12 0.06 0.1 0.09

I The nonlinear filter is ∼ 25% more accurate in RMSE than EnKF

3Bengtsson et al. (2003)



Lorenz 96: details on the filtering approximation

1 1 1

I Observations were assimilated one at a time
I Approximate Markov structure: 5-way interactions
I Each conditional π(xk |xj1 , . . . , xjp) was learnt via a separable map

Sk(xj1 , . . . , xjp , xk) = ψ(xj1 ) + . . .+ ψ(xjp) + ψ(xk),

where ψ(x) = a0 + a1 · x +
∑
i>1 ai exp(−(x − ci)2/σ).

I Much more general parameterizations are of course possible!
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Lorenz 96: tracking performance of the filter

I Introducing simple, localized nonlinearities can make a difference!
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Conclusions

Summary

I Role of continuous transport in problems of sequential inference
1. Filtering and smoothing (generalization of the RTS smoother)
2. Sequential parameter-state estimation
3. High dimensional filtering (using local couplings)

Ongoing and future work

I Approximately sparse Markov structures (e.g., graph sparsification)
I Learn Markov structure from samples

Thank You
Supported by the DOE Office of Advanced Scientific Computing Research
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