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Sequential Bayesian inference
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» State estimation (e.q., filtering and smoothing) or joint state and
parameter estimation, in a Bayesian setting

» Need recursive algorithms for characterizing the posterior
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Deterministic couplings of distributions

Key task: sample a non-Gaussian distribution w

Idea

» Choose a reference distribution m (e.g., standard Gaussian)
» Seek a map T : R” — R" such that Tyn =7
» Equivalently, find S = T~! such that Sym = n
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Various types of transport...

» Optimal transport:

Topt = arg mTin/ c(x, T(x)) dn(x)
st. Tyn=m
» Monge (1781) problem; many nice properties, but numerically
challenging in general continuous cases

» Knothe-Rosenblatt rearrangement:

Tt(x1)

2X X
T(x) = T4(x1, x2)

T(x1, %2, ..., Xn)

» Exists and is unique (up to ordering) under mild conditions
» Inverse map S = T! also lower triangular
» “Exposes” marginals, will enable conditional sampling. ..
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Computation of triangular maps from densities

mTin D (Tym || )

v

Numerical approximations can employ a monotone parameterization,
guaranteeing GXka > 0 for arbitrary functions ay, by

Xk
T, . oxi) = ak(xa, - .. ,Xk_1)+/ exp (bg(x1, ..., xxk—1, w)) dw
0

v

Sample average approximation + (BFGS or Newton) for

min Ex.y[—logm(T(X)) = log, T*(X)]
k

(ak. b )k

v

Many alternatives, e.g.,
1. fully nonparametric approaches (stein variational gradient)  [Liu, '16]
2. deep neural networks (normalizing flows) [Rezende, '15]

v

Challenge: represent a high-dimensional nonlinear function
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Markov properties and low-dimensional couplings

Main idea

There exists a link between the Markov properties of (1, ) and the
existence of couplings that admit low-dimensional structure in terms of

1. Sparsity
2. Decomposability

» Additional structure not discussed here: low rank

() ¢& it Zp L Zi| Zy (i jy



Sparse transport maps

» Given a reference 1 and a target 7, focus on the sparsity of the
inverse Knothe-Rosenblatt (KR) rearrangement, i.e., Sym =1

[ St(x1) 1 [ St(x1) 1
S2(x1, x2) S2%(x1, x0)
S(x) = | S xe,x3) — | S x2.x3)
| S"(x1, xo, ., Xn) | | S"( Xp—1,%n) |

» Theorem:! The KR rearrangement (a nonlinear function) inherits
the same sparsity pattern as the Cholesky factor of the incidence
matrix (properly scaled) of a graphical model for 7, provided that

n(x) = [[nx)

!Spantini et al. (2017)
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Compute the inverse transport!

» Direct transports Txn = 7, however, tend to be dense
» Sparsity in T is linked to marginal (not conditional) independence

Direct

Key message

Compute the inverse transport S and evaluate T(x) = S~1(x) point-wise

» Trivial to invert a triangular function (sequence of 1D root findings)
» Same spirit as GMRF, but for general non-Gaussian densities

» The direct transport is usually dense, but low-dimensional structure
might lie elsewhere...



Decomposable transport maps

» Definition: a decomposable transportisa map 7 = Ty 0---0 T, that
factorizes as the composition of finitely many maps of low effective
dimension and that are triangular (up to a permutation), e.g.,

[ Ai(xi.x2) T [ x1 1 [ x1 i
Bi(x2) Ao (X2, X3, Xs5) X2
X3 B>(x3, x5) X3
T(x)=| X4 o | X4 0o | Ax(xa)
Xs5 Co(xs) X5
| Xp ] | Xp ] | Br(xa,X%p) |
~~ —
7 To T,

» Theorem:? Decomposable graphical models for 7 lead to
decomposable direct maps T, provided that n(x) = [[; n(x)

2Spantini et al. (2017)
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Applications to Bayesian filtering/smoothing

» Sparsity/decomposability apply to general Markov structures
» Special case: nonlinear non-Gaussian state-space models

®» ® 0 0 O

? ? ? ?---?
Y, Y, Y3 Yy

Yo

» |deally, interested in recursively updating the full Bayesian solution:

TZow | Yo " TZoki1 | Yorkr
> Let Xg, X1, ... be an independent process with marginals (7x, )«
» Coupling between Xo, ..., Xy and Zg, ..., Zn|Yo,.... Yn

Seek a decomposable transport for w7, 7, |v,.. v, (ust a chain!)
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First step: compute a 2-D map

®» ® 6 0 ©

=TT

Y, Y; Y, Y Y
» Compute My : R?" — R?" s t. [ Ao(x0.x1) T
Bo(x1)
Ao(xg, x X
Mo(Xo, X1) = 0%, x1) 2
Bo(x1) X3
TO(X) = X4
» Reference: mx,mx, Xs
> Target: Tz, 77,1z, To|Zo V1|21
> dim(9Mg) ~ 2 x dim(Zp) Xy
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Second step: compute a 2-D map

®» ® 6 0 ©

O 0—60 60 ©
T

Y, v Y, Y, Yy
» Compute My : R?" — R?" s t. IRC |
A1(x1,x2)
A B
My (0, 0) = | 060 %2) 16¢)
Bi(x2) X3
Tl(x) | x4
» Reference: mx, Mx, X5
> Target: mx, Ty,|z, Tz,1z, (-| Bo (+))
» Uses only one component of 91 XN
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Proceed recursively forward in time

®» ® 6 0 ©

TITEEY

Y, v Y, Y, Yy
» Compute My : R2" — R?" s t. [ %o |
X1
A2(X2, X3) A2(X2, X3)
Mo (X0, X3) =
2(x2, x3) [ Ba(x3) Ba(x3)
T2(x) | x4
» Reference: mx,mMx, X5
> Target: mx, Ty,)z, Tz402, (| B1 (+))
» Uses only one component of 91y XN
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A decomposition theorem for chains

& ® ® ® ©®
@@
T

Y 4 Y, Y; Yy
Theorem:?
L (Br)g M = TZyir | Yoo (filtering)
2. (fmk)ﬁ MXpkrr = TZiZior | Yorat (lag-1 smoothing)
3. (Too 0Tk Mowss = TZosrn| Yorss (full Bayesian solution)

ISpantini et al. (2017)
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A nested decomposable map

> T, =TgoTy0---0T, characterizes the full joint TZo ko1 Yorot

[ Ao(xo.x1) T [ %o i
Bo(x1) A1(x1,x2)
X2 Bi(x2)
X3 X3

‘Ik (X) = X4 © X4 ©

X5 X5

L XN I Y i

To ?—:

> Trivial to go from ¥y to Ty1: just append a new map Ty41
» No need to recompute Tg, ..., Tx (nested transports)

» T, is dense and high-dimensional but decomposable
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X5 X5 X5

[ XN 1 L xn 1L xn A

To ?—: E
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A single-pass algorithm on the model

» Meta-algorithm:

1. Compute the maps Mg, My, .. ., each of dimension 2 x dim(Zy)
2. Embed each 9, into an identity function to form T;
3. Evaluate Tgo---o Ty for the full Bayesian solution

» Remarks:

» A single pass on the state-space model
» Non-Gaussian generalization of the Rauch-Tung-Striebel smoother

» Bias is only due to the numerical approximation of each map T;
» Can either accept the bias or reduce it by:

> Increasing the complexity of each map T;, or
» Computing weights given by the proposal density

(TooTiox 0Tkt Mo
» The cost of evaluating weights grows linearly with time
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Joint parameter/state estimation

» Can be generalized to sequential joint parameter/state estimation

Y,

> (Too 0 Tk)y Mo Mxousr = O Zows |Youss (fUll Bayesian solution)
» However, now dim(9;) = 2 x dim(Z;) + dim(©)
» Remarks:

» No artificial dynamic for the static parameters

» No a priori fixed-lag smoothing approximation
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Another decomposable map

[ Po(xp) 1 [ Pi(xe) 1 T Pax) 1
Ao(xg, Xg, X1) Xo Xo
Bo(xg, x1) A1(xg, X1, X2) X1
X2 B1(xg,x2) Ao(Xg, X2, X3)
i1 (X) = | g °l x3 °| Ba(xs.x3) o
X4 X4 X4
L XN J L Xn 1 L XN J
% Ty }g
> (Poo--0P)iNe = To| Yo (parameter estimation)

> If Py = Fyo---0o Py, then P, can be computed recursively as

Pr = Pr-10 P«

via regression = cost of evaluating P, does not grow with k



Numerical example: stochastic volatility model

» Latent log-volatilities taking the form of an AR(1) process for
t=0,..., N. We take N = 944.

Ziy=pu+¢(Ze—p)+me, me~N(O 1), Zo~N(0,1/1—¢%)
» Observe the mean return for holding the asset at time t
Y:=¢crexp(0.5Z¢), e ~N(0,1), t=0,..., N

» The Markov structure for m ~ u, ¢, Zg.n|Yo:n is given by:

7

¢

af—E—m—a)-

[ Joint state/parameter estimation problem ]

18/34



Filtering distributions

» Computed online via 4-d maps
» Can use Gauss quadratures for each map!

200 400 600 800
time
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» Just re-evaluate the 4-d maps backwards in time

» Comparison with a “reference” MCMC solution with 10° ESS (in red)
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Static parameter ¢

» Sequential parameter inference
» Comparison with a “reference” MCMC solution (batch algorithm)

BT
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Static parameter u

» Slow accumulation of error over time (sequential algorithm)
» Acceptance rate 75% for MCMC with transport-map proposal

oAty
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Long-time smoothing (25 years)
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» Python code available at http://transportmaps.mit.edu


http://transportmaps.mit.edu

Filtering high-dimensional systems

» Now we consider the filtering of state-space models with:

1. High-dimensional states

2. Intractable transition kernel, i.e., can only obtain forecast samples
3. Limited model evaluations, e.g., small ensemble size

4. Sparse and local observations in space/time

» State-of-the-art results (in terms of tracking) are currently obtained
with localized versions of the EnKF

» The EnKF is not consistent, but robust

Some open questions:
» For a given ensemble size N, are we doing the best we can?

» EnKF is not guaranteed to perform better as N increases, and in
some situations performs worse! Can this be mitigated?

» Can we get closer to the Bayesian solution, while preserving
robustness of EnKF approaches?



Nonlinear filters induced by local couplings

Main idea

1. Propagation: apply the dynamics to obtain the next forecast ensemble

2. Assimilation: transform the forecast ensemble into approx. samples
from the filtering distribution via local, nonlinear couplings

Key steps of the assimilation algorithm:

1 Approximate the forecast distribution on a manifold of sparse
non-Gaussian Markov random fields

2a Local assimilation of the observations

2b Propagation of information across the state

Abstraction of the assimilation problem:

» We have samples from the prior & can evaluate the likelihood



Projection onto a manifold of sparse MRFs
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» Approach: learn an inverse map S : R" — R" from samples

Inin Dir(ml| Sy n) = SrggiEw[logn(S(Z)) +1og|VS5(2Z)|]

» Choose the approximation space Sa (finite space of sparse lower
triangular maps) to enforce a desired Markov structure
» Compute each component S : Q — R via convex optimization
» Choose any parameterization of S¥ that departs (if desired) from
linearity by adding local nonlinear terms (e.g., polynomials, RBFs)
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Assimilation and propagation
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» For simplicity, consider assimilating one observation at a time ...
m(zly) = m(z1ly) m(z~1l21)

» Local assimilation: simulate from 7(z1]y)
» First map component St pushes forward the prior Tz, to my; yields an

approximation (Sl)n’lm of the forecast marginal
» Seek a direct map T with target density

m(z1ly) o< m(y|z1)m (5'(21)) 82,5 (21)
» Then T! o S! transforms forecast samples of z; to analysis/posterior

samples of z;

N
~
w
>



Assimilation and propagation

» Propagation: sample from the conditional w(z~1]z1) given samples
from the marginal w(z1|y)

» Given the inverse map S, notice that S¢ : R"~1 — R 1,

S2(¢, z0)

Z2,...,2Zp ,

pushes forward Tz, nlz1=¢ tO M2:p = Just invert Se¢
» Sparse Markov structure yields further simplifications in S, e.g.,
1. Sparse S
2. Parallel inversion of S¢
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Assimilation and propagation

Local assimilation + propagation:

» Then the combined map (for a single observation),

T'(z1)

T(Z) - 5;11(21)(22: A ,Zn)

] 05(z),

transforms the forecast ensemble to the analysis ensemble!

» Can Jterate this construction to assimilate each additional
observation, or generalize to multiple/batch observations
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Lorenz 96 (40-dimensional state)

» A hard test-case configuration:3

dZ;
T; (ZJ'+1 — ZJ'_Q) Zj—l - Zj + F, ] = 1,..., 40
YJ' = Zj—l-Ej, Jj=1,3,5...,39

» F =8 (chaotic regime) and ¢; ~ N(0,0.5)
» Time between observations: Agps = 0.4 (large!)
» Results averaged over 2000 assimilation cycles

F#£particles: 400 F##particles: 200
EnKF® | LocNLF ~EnKF | LocNLF

med RMSE | 0.88 0.64 0.91 0.66

avg RMSE 0.97 0.74 1.02 0.79

var RMSE 0.12 0.06 0.1 0.09

» The nonlinear filter is ~ 25% more accurate in RMSE than EnKF

3Bengtsson et al. (2003)



Lorenz 96: details on the filtering approximation

» Observations were assimilated one at a time
» Approximate Markov structure: 5-way interactions

» Each conditional m(xk|xj,. ..., x;,) was learnt via a separable map

S (X Xy Xk) = Y0OG) + -+ P(x,) + (),

where ¥(x) = ao + a1 - x + Yo7 aexp(—(x = ¢)?/0).
» Much more general parameterizations are of course possible!



Lorenz 96: tracking performance of the filter

Truth Mean filter
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» Introducing simple, localized nonlinearities can make a difference!
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Conclusions

Summary
» Role of continuous transport in problems of sequential inference
1. Filtering and smoothing (generalization of the RTS smoother)

2. Sequential parameter-state estimation
3. High dimensional filtering (using local couplings)

Ongoing and future work

» Approximately sparse Markov structures (e.g., graph sparsification)
» Learn Markov structure from samples

Thank You

Supported by the DOE Office of Advanced Scientific Computing Research
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