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Numerical models for forecasting and decisions

Given prior distribution N (µ,CX ) on model parameters x ∈ RNx

and observations do ∈ RNd with forward map g : RNx → RNd for
unknown x∗ and unknown measurement errors η ∼ N(0,CD), i.e.

do = g(x∗) + η

we wish to generate samples from the posterior distribution

πX (x |do) =
πXD(x , do)

πD(do)
=

exp(−L(x))

πD(do)

with

L(x) =
1

2
(x − µ)T C−1

X (x − µ)+
1

2
(g(x)− do)T C−1

D (g(x)− do) .
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• Parameters (Nx ≈ 105–107) are coefficients of PDEs
describing flow and transport.

• Parameters generally modeled as correlated Gaussian

• Observations of the state (e.g. pressure or saturation) spatially
sparse or low resolution (Nd ≈ 104 − 106)

• Likelihood function evaluation is expensive (0.1–10 hour)

Figure from SINTEF
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Simple three-layer flow problem1
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• Three parameters (k1, k2, and k3) to be estimated.

• Water injected at constant pressure into all three layers.

• Fluids are produced at constant pressure from all three layers.

• No vertical communication between layers.

1Oliver et al. (2011)
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Observations at the outlet face
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The total flow rate exhibits a steady decline, but the water cut
(fraction of the produced fluid that is water) increases in discrete
steps followed by periods of slow continuous increase.
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Posteriori distribution for k1 and k2
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Characterize uncertainty in reservoir predictions, conditional on
observations

• Approaches based on ‘best solution’ and Hessian for
uncertainty have not been useful

• Realistic problems are too big for MCMC

• Approximate sampling via ‘randomized maximum likelihood’
(Oliver et al., 1996; Oliver, 2014) or
‘randomize-then-optimize’ (Bardsley et al., 2014).
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Generate proposals

The RML method draws samples (x ′i , δ
′
i ), i = 1, . . . ,M, from the

Gaussian distribution

qX ′∆′(x ′, δ′) = cq exp

(
−1

2

(
x ′ − µ

)T
C−1
X

(
x ′ − µ

)
−1

2

(
δ′ − do

)T
C−1
D

(
δ′ − do

))
for given µ and do and then minimizes the cost functional

Ji (x) =
1

2

(
x − x ′i

)T
C−1
X

(
x − x ′i

)
+

1

2

(
g(x)− δ′i

)T
C−1
D

(
g(x)− δ′i

)
to determine

xi = arg min Ji (x).
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Proposal density for RML

Minimisation leads to a map from (x ′, δ′) to (x , δ) defined
implicitly by

x ′ = x + CXG
TC−1

D (g(x)− δ)

and
δ′ = δ.

with transformed distribution pX∆ given by

pX∆(x , δ) := qX ′∆′(x ′, δ′) J(x , δ)

= qX ′

(
x + CXG

TC−1
D (g(x)− δ)

)
qD′ (δ) J(x , δ)

Here J(x , δ) denotes the determinant of the Jacobian matrix for
the inverse map (x , δ)→ (x ′, δ′) and G := Dg(x).
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Proposal density for RML

The Jacobian matrix is provided by(
I + Db(x , δ) −CXG

TC−1
D

0 I

)
with b(x , δ) = CXG

TC−1
D (g(x)− δ).

To simplify we will use

V (x) = C−1
D + C−1

D GCXG
TC−1

D

and

η(x) = −C−1
D (g(x)− do) + C−1

D G (x − µ)

= C−1
D [G (x − µ)− (g(x)− do)]
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Proposal density for RML

After some algebra, we obtain

pX∆(x , δ) =

πX (x)︷ ︸︸ ︷
A0 exp

[
−1

2
(x − µ)T C−1

X (x − µ)− 1

2
(g(x)− do)T C−1

D (g(x)− do)

]
× A1 |V |1/2 exp

[
−1

2

(
δ − g(x)− V−1η(x)

)T
V
(
δ − g(x)− V−1η(x)

)]
× A2 |V |−1/2 exp

[
1

2
η(x)TV−1η(x)

]
J(x , δ)
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Extend the target distribution (Oliver, 2017)
Target distribution

πX (x) ∝ exp
[
−1

2
(x − µ)TC−1

X (x − µ)

− 1

2
(g(x)− do)TC−1

D (g(x)− do)
]
.

Introduce an extended target distribution

πX∆(x , δ) ∝ exp
[
−1

2
(x − µ)TC−1

X (x − µ)

− 1

2
(g(x)− do)TC−1

D (g(x)− do)
]

exp
[
− 1

2γ(1− γ)
(δ − g(x) + γ(g(x)− do))T

× C−1
D (δ − g(x) + γ(g(x)− do))

]
.

without changing target marginal density for model variable x .
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Importance weighting

wi =
πX∆(x , δ)

pX∆(x , δ)

• Could have chosen an extended target to cancel in the case of
linear g . Then wi = 1 for linear.

• Potential problem when the map from (x ′, δ′) to (x , δ)
obtained from the condition ∆Ji = 0 is not one-to-one.
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Example with many modes
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Target distribution for x1, x2. Target distribution for x1|x2 = 0.

Two model variables and two nonlinear observations.

g [x1, x2] =

[
sin[2πx1]
sin[2πx2]

]
σD = 0.2, µ = (0.0, 0.0) and σX = 1., do = (0., 0.)
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Proposed transitions
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Sample independently from the prior distribution.
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Proposed transitions
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Solve a minimization problem which maps samples from the prior
to samples from a proposal distribution.
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Distribution of proposed transitions
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Apply Metropolis-Hastings test for samples xi , δi .
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MCMC samples
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Samples from MH independence sampler with 40,000 elements.
Acceptance rate = 0.875.

18/38



Introduction Metropolized RML Examples Summary/Challenges

Compare sampling to exact distribution
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Red is true model density. Black is density estimated by kernel
smoothing (bandwidth 0.01) of 4200 samples in the regions of
three central peaks.
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Computational effort

• Each proposal required 15 function evaluations using a
modified Levenberg-Marquardt and x ′ to initialize the
minimization.

• Computation of the Jacobian of the mapping for MH required
an additional 5 function evaluations.

• The acceptance rate for MH is 0.873 so the cost is
approximately 23 functions evaluations per independent
sample from the target distribution.
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‘Curse of dimensionality’

-3 -2 -1 1 2 3

1

2

3

4

5

6

-3 -2 -1 1 2 3

20

40

60

80

100

0.00001 0.00002 0.00003 0.00004
0

1000

2000

3000

4000

5000

6000

7000

0.00001 0.000015 0.00002 0.000025 0.00003 0.000035 0.00004
0

2000

4000

6000

8000

σD = 0.20 σD = 0.05

Distribution of particle weights after updating (Ne = 40, 000)

21/38



Introduction Metropolized RML Examples Summary/Challenges

‘Curse of dimensionality’
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As the distance between the prior and the posterior increases (as
σD gets smaller), the acceptance rate (or effective sample size) for
RML is nearly constant.
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Simple flow problem with multi-modal pdf2
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• Three parameters (k1, k2, and k3) to be estimated.

• Water injected at constant pressure into all three layers.

• Fluids are produced at constant pressure from all three layers.

• No vertical communication between layers.

2Oliver et al. (2011)
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Observations at the outlet face
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The total flow rate exhibits a steady decline, but the water cut
increases in discrete steps followed by periods of slow continuous
increase.
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Objective function
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The objective function along the steepest descent direction for a
random starting point.
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Paths from prior samples to posterior samples

���������

Yellow regions have significant posterior probability. Red dots are
samples from prior distribution. Black curve shows minimization
path. Approximately 65% got stuck at local minima.
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Rejecting poorly calibrated samples

Objective function:

Ji (x) =
1

2
(x − x ′i )

TC−1
X (x − x ′i ) +

1

2
(g(x)− δ′i )TC−1

D (g(x)− δ′i )

and xi = argmin Ji (x).

Model diagnostics3:
Ĵi = Ji (xi )

Ĵd =
1

2
(g(xi )− δ′)TC−1

D (g(xi )− δ′)

Ĵod =
1

2
(g(xi )− do)TC−1

D (g(xi )− do)

3Tarantola (1987); Bennett (1992); Talagrand (1999); Desroziers and
Ivanov (2001)
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Rejecting poorly calibrated samples
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Rejecting poorly calibrated samples
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o
d

E
[
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Estimated marginal pdf from minimization-based sampling
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Samples from RML are shown by black dots. True marginal
distribution for permeabilities of layers 1 and 2 are shown by
contours. Used Levenberg-Marquardt with accurate derivatives for
minimization. The joint distribution has six peaks, which were all
identified. True model had permeabilities (0.10, 0.15, 0.25.)
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Iterative method for sampling via minimization

Solving ∇Ji (x) = 0,

δx`i = −(x`i − x ′i )− CxG
T
`

(
CD + G`CXG

T
`

)−1

(
g(x`i )− δi − G`(x

`
i − x ′i )

)
.

where G` = ∇g(x`i ).

At the first iteration (` = 1), when x`i = x ′i

δx1
i = −CXG

T
1

(
CD + G1CXG

T
1

)−1(
g(x ′i )− δi

)
.
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Regularized ensemble-based iterative updating4

RML required computation of the Jacobian G or the gradient of
the objective function. Not easy to get derivatives for reservoir
simulators.

Ensemble-based Levenberg-Marquardt iterative updates (iterative
ES):

δx`i = −
[
(1 + λ`)P

−1
` + GT

` C−1
D G`

]−1
C−1
X (x`i − x ′i )

−∆x`∆dT
`

[
(1 + λ`)(Ne − 1)CD + ∆d`∆dT

`

]−1
(g(x`i )− δi )

where x ′i is the ithe sample from the prior distribution and ∆x` is
the matrix of mean removed model variables at the `th iteration.

4Chen and Oliver (2013)
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Regularized ensemble-based iterative updating

• First iteration is exactly the same as would be obtained with
the ensemble smoother (except that CD → (1 + λ)CD).

• The initial value for λ is typically quite large in reservoir flow
problems (λ1 ∼ 104).

• The gradient of the objective function is not modified — only
the approximation to the Hessian.

• For sampling the posterior, a different objective function is
used for each realization.
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Simple 1-variable nonlinear problem
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Validation: 1 variable problem (var d = 1)
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Minimization for sampling

• Quite robust to nonlinearity (e.g. multimodal posterior
distributions)

• Not as robust with respect to prior distribution

• When prior is nongaussian, can sometimes introduce latent
Gaussian variables

• The use of ensemble-based methods can increase limitations
on uncertainty quantification

• Assumed that the cost function to be minimized was “correct”
— will almost certainly be invalidated with sufficient data.
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Minimization for sampling
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distributions)

• Not as robust with respect to prior distribution

• When prior is nongaussian, can sometimes introduce latent
Gaussian variables

• The use of ensemble-based methods can increase limitations
on uncertainty quantification
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