The Epidemic Type Aftershock Sequence (ETAS) Model

or

“A curious tour of point process models for seismicity”

Max Werner
max.werner@bristol.ac.uk
Today: a curious tour

1. Point process introduction
2. Renewal point processes of seismicity
3. Data assimilation (illustration) for renewal models
4. The ETAS model
5. ETAS model forecast evaluations
6. What’s next for ETAS modelling?
Earthquakes as point patterns

Global seismicity 1904-2014
Earthquakes as point patterns

- Complex spatio-temporal aftershock patterns
- Omori law of aftershocks
- Gutenberg-Richter distribution of magnitudes
- Greater aftershock productivity of larger earthquakes
- Complex spatial patterns
CORSSA: the Community Online Resource for Statistical Seismicity Analysis

Statistical seismology is the application of rigorous statistical methods to earthquake science with the goal of improving our knowledge of how the earth works. Within statistical seismology there is a strong emphasis on the analysis of seismicity data in order to improve our scientific understanding of earthquakes and to improve the evaluation and testing of earthquake forecasts, earthquake early warning, and seismic hazards assessments. Given the societal importance of these applications, statistical seismology must be done well. Unfortunately, a lack of educational resources and available software tools make it difficult for students and new practitioners to learn about this discipline. The goal of the Community Online Resource for Statistical Seismicity Analysis (CORSSA) is to promote excellence in statistical seismology by providing the knowledge and resources necessary to understand and implement the best practices.

CORSSA covers a variety of themes:

1. Introductory Material
2. Introduction to Basic Features of Seismicity
3. Statistical Foundations
4. Understanding Seismicity Catalogs and Their Problems
5. Models and Techniques for Analyzing Seismicity
6. Earthquake Predictability and Related Hypothesis Testing
Part 1:
Point processes

- Definition
- Conditional intensity function
- Likelihood function
Purpose of point process modelling

• Class of statistical models well suited for analysing collections of discrete events (point patterns) irregularly arranged in space and time

• To understand structural features of the arrangement of events - without modelling the underlying (e.g. physical) mechanism

• To forecast future occurrences
Definition(s) of a Point Process

• “probabilistic rules for scattering points in space & time and assigning marks” (mine)

• A random measure N specifying the number of points, $N(A)$, in any compact set A in S, where S is the domain of the point process (e.g. $T \times \mathbb{R}^2$). The (counting) measure N is non-negative, integer-valued and finite on any finite subset of S. (e.g. Peng, 2003)

• Full measure theoretic definitions: Daley & Vere-Jones (2003)
Conditional Intensity Function (CIF)

• “instantaneous rate of occurrence of events at time t given the observed history \(H_t \)”
• “Probability of an event in a tiny interval”
• “instantaneous hazard rate”

\[
\lambda(t \mid H_t) = \lim_{dt \to 0} \frac{\Pr\{N(t, t + dt) > 0 \mid H_t\}}{dt}
\]

• Once specified, the CIF **completely** specifies the point process! It’s the single most important object of a point process.
• Generalises (pretty well) to higher dimensions.
Example: Homogeneous Poisson Process

- CIF: $\lambda(t \mid H_t) = \lambda$
- Independent of history and time
 - complete randomness and lack of memory
- Exponentially distributed waiting times $P(\tau > u) = \exp(-\lambda u)$
- An often-used benchmark
- Number of events in finite interval $(S,T]$ given by discrete Poisson distribution function with parameter $\lambda(T-S)$
- Generalises directly to space and space-time process
Example: Inhomogeneous Poisson Process

- CIF: $\lambda(t \mid H_t) = \lambda(t)$
- Independent of history but depends on time (or location)
 - Often used when there is an apparent trend, seasonality, concentrations
- Number in finite interval $[S,T]$ given by discrete Poisson distribution function with parameter:

$\Lambda(S,T) = \int_S^T \lambda(t) \, dt$
Likelihood Function

- Probability of the data under any point process model can be (heuristically) derived by multiplying the likelihood of observing events at each t_i and of observing no events elsewhere:

$$L_{(S,T)}(N; t_1, \ldots, t_N) = e^{-\int_S^T \lambda(t) \, dt} \prod_{i=1}^{N} \lambda(t_i \mid H_{t_i})$$

- Generalizes (fairly well) to higher dimensions
- Once the CIF is specified, the likelihood can be calculated, providing access to full machinery of likelihood-based inference!
Parameter estimation

• If the parameters of the point process are unknown, one can maximise the log-likelihood to estimate parameters:

\[\hat{\theta} = \arg_{\theta} \max \log L(N; S, T; \theta) \]
Part 2

Renewal point process models of seismicity
Poisson Process

- Memoryless, uniformly random hazard rate \(\lambda(t \mid H_t) = \lambda \)
- Exponential inter-event time distribution \(P(\tau > u) = \exp(-\lambda u) \)
- Basis of many seismic hazard maps, e.g. Germany 2016:

![Maps showing seismic hazard with different time periods](image)

Gruenthal et al. 2016
Renewal Processes

- Probability of next event depends on time since last event

 \[p(t_{k+1}|t_k) = p(t_{k+1} - t_k) \]

- Popular choices:
 - Lognormal
 - Brownian passage time
 - Weibull
 - ...

- Fit renewal model to earthquake recurrence data from paleoseismology (e.g. digging trenches)

- Often motivated physically by time required to build up energy/stress for next big one (“elastic rebound”, Reid, 1910)

\[\lambda(t) = \frac{p(t - t_{k-1})}{1 - F(t - t_{k-1})} \]
Time-independent (TI) probabilities that certain locations in California will participate in one or more $M \geq 6.7$ earthquake ruptures during a 30 year interval.

Time-dependent (TD) participation probability gains relative to TI for $M \geq 6.7$ fault ruptures during the next 30 year interval.

Brownian passage time model!

Field et al. (2014, 2015)
Part 3

Sequential data assimilation for renewal processes
Forecasting based on data assimilation

- **Goal:**
 - Develop earthquake forecasting based on data assimilation
 - Taking into account uncertainties in measurements
 - To perform model inference (i.e. likelihood-based selection)

- **Challenges**
 - Statistical models, based on stochastic point-processes (few models based on partial differential equations)
 - (Strongly) non-Gaussian distributions
 - Long-term memory (spatio-temporal clustering)

- **Strategy**
 - ‘Start’ with a simple model of seismological relevance:
 - 1d temporal renewal point-process
 - Uncertainties in the observed occurrence times
 - Continue with more complex models (e.g. ETAS)…?

Sequential Data Assimilation

"True" state

Data

Best Estimate

State evolution:

Observation:

Posterior:

\[p(x_t|y_t) = \frac{p(y_t|x_t)p(x_t)}{p(y)} \]

\[p(x_t|x_{t-1}) \]

\[p(y_t) = \int p(x_t|y_t)p(x_{t-1})dx_{t-1} \]

\[p(y_t|x_t) \]

model random model error

random measurement error
Data Assimilation

• This is a conceptual solution only.

• Analytical solutions exist under restrictive assumptions
 • Kalman filter: Gaussian distributions, linear model
 • Kalman-Levy filter: Levy-stable distributions, linear model

• Approximations:
 • Local Gaussian: extended Kalman filter
 • Ensembles of local Gaussians: ensemble Kalman filter
 • various filters suited for different scenarios
 • Monte Carlo: non-linear model, arbitrary evolving distributions
 • Bayesian MCMC
 • Sequential MC based on sequential importance sampling

Prediction:

$$p(x_t|y_{1:t-1}) = \frac{\int p(x_t|x_{t-1})p(x_{t-1}|y_{1:t-1})dx_{t-1}}{p(y_t|x_{t})p(x_{t}|y_{1:t-1})dx_t}$$

Update:

$$p(x_t|y_{1:t}) = \frac{p(y_t|x_t)p(x_t|y_{1:t-1})}{\int p(y_t|x_{t})p(x_{t}|y_{1:t-1})dx_t}$$
Numerical Application

Transition kernel (model): temporal renewal process

\[p(t_{k+1}|t_k) = p(t_{k+1} - t_k) \]

e.g. log-normal distribution

Observational uncertainties in occurrence times

\[t_k^o = t_k^t + \epsilon_k \]

Uniform noise: \[p_\epsilon(\epsilon_k) = U\left(-\frac{\Delta}{2}, +\frac{\Delta}{2}\right) \]

Gaussian mixture noise: \[p_{GM}(\epsilon_k) = \omega N(\mu_1, \sigma_1) + (1 - \omega)N(\mu_2, \sigma_2) \]
Methods

- Benchmark: Ignore observational uncertainty
- DKF: Deterministic Kalman Filter
- EnSRF: a type of Ensemble Kalman Filter (Ensemble Square Root Filter, Tippett, 2003)
- SIR: Sequential Importance Resampling Particle Filter
Numerical experiment

Illustration of state evolution and observational error

- Uniform noise
 - Lognormal model kernel
 - Observational error distribution
 - Exact event time
 - Observed event time

- Gaussian mixture noise
Example forecasts and analyses

Uniform noise

Forecast

- Benchmark forecast
- SIR forecast
- EnSRF forecast
- DKF forecast
- Exact event time
- Observed event time
- Conditional Likelihood

Gaussian mixture noise

Forecast

- Benchmark forecast
- SIR forecast
- EnSRF forecast
- DKF forecast
- Exact event time
- Observed event time
- Conditional Likelihood

Analysis

- SIR analysis
- EnSRF analysis
- DKF analysis
- Exact event time
- Observed event time
Results: complete log-likelihood scores

Uniform noise:
Particle filter and ensemble Kalman filter perform best

Gaussian mixture noise:
Particle filter performs best
Particle filter produces least biased parameter estimates for complex observational noise.

Results: parameter estimates

- Particle filter produces least biased parameter estimates for complex observational noise.

![Graphs showing parameter estimates for different noises and methods.]

- Uniform noise:
 - MLE True
 - SIR MLE
 - ESRF MLE
 - DKF MLE
 - Benchmark

- Gaussian mixture noise:
 - MLE True
 - SIR MLE
 - ESRF MLE
 - DKF MLE
 - Benchmark
Part 4

The Epidemic Type Aftershock Sequence (ETAS) model
Epidemic Type Aftershock Sequence (ETAS) model

- **Omori law**

 \[n(t) = \frac{\kappa}{(t + c)^p} \]

- **Productivity law**

 \[\kappa(m) = ke^{\alpha m} \]

- **Gutenberg-Richter law**

 \[p(m) = \beta e^{\beta m} \]

\[\lambda(t|H_t) = \mu + \sum_{i|t_i < t} \frac{ke^{\alpha m_i}}{(t - t_i + c)^p} \]
Marked spatio-temporal ETAS model

\[
\lambda(t, m, \vec{r}|H_t) = p(m) \left[\mu(\vec{r}) + \sum_{i|t_i < t} \kappa(m_i) g(t - t_i) S (|\vec{r} - \vec{r}_i|; m_i) \right]
\]

where

- \(p(m) \sim 10^{-bm} \) Gutenberg-Richter law
- \(\mu(\vec{r}) \) time-independent background rate
- \(\kappa(m_i) \sim 10^{\alpha m_i} \) expected number of offspring
- \(g(t) \sim (t + c)^{-p} \) Omori law
- \(S (|\vec{r} - \vec{r}_i|; m_i) \) Spatial distribution of direct offspring
Epidemic-Type Aftershock Sequences (ETAS) Model

branching process model of seismicity cascades:

- spontaneous earthquakes
- Gutenberg-Richter law
- Omori law
- productivity law
- spatial triggering kernel

marked spatio-temporal point process

Epidemic Type Aftershock Sequence (ETAS) model

1) Estimate the number of triggered aftershocks

2) Sample time

3) Assign locations

4) Draw magnitudes

5) 2nd, 3rd … generations of aftershocks

Spontaneous earthquake

Earthquake

Magnitude distribution

Temporal distribution
tracking earthquake cascades in time ...

Werner et al. (2011)
tracking cascades in time and space

1992 M7.3 Landers, California, earthquake

Werner et al. (2011)
Part 5

Evaluations of ETAS forecasts
The great paradox of science is that passionate practitioners must carefully produce dispassionate facts [J. Ravetz, *Scientific Knowledge and its Social Problems*]. Meticulous technical and normative judgement, as well as morals are necessary to navigate the forking paths of the statistical garden.

- Saltelli and Stark [Nature, 2018]
Collaboratory for the Study of Earthquake Predictability

Global platform for blind, prospective and retrospective assessment of forecasting models in a variety of tectonic environments

CSEP Testing Regions & Testing Centers
436 models under test in January, 2018
The Canterbury, NZ, sequence

Complex:
- M7.1 Darfield
- M6.2 Christchurch
- M6.0 Christchurch
- M5.9 Christchurch

Devastating:
- Over 180 deaths
- $10-15 billion USD

Raised hazard:
- Gerstenberger et al. (2014), Earthquake Spectra
Cattania et al. (2018)
Cattania et al. (2018)
Model ranking of 1-day forecasts

- Probability gains per earthquake up to 3,000 over time-independent models
- Substantial improvements of physics-based models over the past
- Hybrids (statistical/physical) are even more informative
- But: ETAS-fault performance about equal
Part 6

What’s new for ETAS modelling?

1. Bayesian forecasting (parameter uncertainty)
2. Spatially variable parameters
3. Spatio-temporal clustering in fault systems
Bayesian forecasting

(a) Southern Hyogo Pref. aftershock sequence
(b) Southwest-Off Hokkaido aftershock sequence

Spatial parameter variability

Nandam et al. 2017
Clustering in fault systems

UCERF3-ETAS

Field et al (2017)
Time-independent (TI) probabilities that certain locations in greater California will participate in one or more \(M \geq 6.7 \) earthquake ruptures during a 30 year interval.

Time-dependent (TD) participation probability gains relative to TI for \(M \geq 6.7 \) fault ruptures during the next 30 year interval.

Spatio-temporal clustering in fault networks:
7-day probability gain over TI after M7 scenario earthquake

Field et al. (2017)
How data assimilation could help:

• Include observational (and parameter) uncertainty in ETAS estimation and forecasting
• Incorporate additional information into ETAS models, e.g. self-consistent coupling of renewal models (faults) and ETAS (clustering)
• Provide real-time updating algorithms for public operational earthquake forecasting by government agencies
• Relate ETAS model to physical models of faults...
End of the curious tour

Thank you!