P. Vanetti, A. Bouchard-Côté, G. Deligiannidis & A. Doucet

Potsdam - 07/12/2018

ullet Consider a probability distribution on \mathbb{R}^d of density

$$\pi(x) = \frac{\exp(-U(x))}{Z},$$

where the potential U can be evaluated pointwise but $Z = \int_{\mathbb{R}^d} \exp(-U(x)) dx$ cannot.

ullet Consider a probability distribution on \mathbb{R}^d of density

$$\pi(x) = \frac{\exp(-U(x))}{Z},$$

where the potential U can be evaluated pointwise but $Z = \int_{\mathbb{R}^d} \exp(-U(x)) dx$ cannot.

• We are interested in computing expectations w.r.t. π .

ullet Consider a probability distribution on \mathbb{R}^d of density

$$\pi(x) = \frac{\exp(-U(x))}{Z},$$

where the potential U can be evaluated pointwise but $Z = \int_{\mathbb{R}^d} \exp(-U(x)) dx$ cannot.

- We are interested in computing expectations w.r.t. π .
- MCMC are the tools of choice in statistics/physics/chemistry/CS.

Examples

• Bayesian inference for high-dimensional graphical models

$$\pi(\mathbf{x}) \propto \exp\left\{-\sum_{i \sim j} \psi(\mathbf{x}_i, \mathbf{x}_j) - \sum_i \varphi(\mathbf{x}_i, \mathbf{y}_i)\right\}$$

Examples

• Bayesian inference for high-dimensional graphical models

$$\pi(\mathbf{x}) \propto \exp\left\{-\sum_{i \sim j} \psi(\mathbf{x}_i, \mathbf{x}_j) - \sum_i \varphi(\mathbf{x}_i, \mathbf{y}_i)\right\}$$

• Bayesian inference for big data

$$\pi(x) \propto p(x) \prod_{i=1}^{n} p(y_i|x)$$

• Bayesian inference for high-dimensional graphical models

$$\pi(\mathbf{x}) \propto \exp\left\{-\sum_{i \sim j} \psi(\mathbf{x}_i, \mathbf{x}_j) - \sum_i \varphi(\mathbf{x}_i, \mathbf{y}_i)\right\}$$

• Bayesian inference for big data

$$\pi(x) \propto p(x) \prod_{i=1}^{n} p(y_i|x)$$

• Bayesian inference for intractable likelihood

$$\pi\left(x
ight)\propto\exp\left(-\int \mathit{U}_{\omega}\left(x
ight)\mu\left(\mathit{d}\omega
ight)
ight)$$

• Non-reversible MCMC schemes based on piecewise-deterministic Markov processes have emerged recently.

- Non-reversible MCMC schemes based on piecewise-deterministic Markov processes have emerged recently.
- First appeared in physics (Peters & De With, 2012; Krauth et al., 2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).

- Non-reversible MCMC schemes based on piecewise-deterministic Markov processes have emerged recently.
- First appeared in physics (Peters & De With, 2012; Krauth et al., 2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).
- Provide state-of-the-art performance for a wide range of large scale physical models.

- Non-reversible MCMC schemes based on piecewise-deterministic Markov processes have emerged recently.
- First appeared in physics (Peters & De With, 2012; Krauth et al., 2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).
- Provide state-of-the-art performance for a wide range of large scale physical models.
- Exhibit some appealing features:

- Non-reversible MCMC schemes based on piecewise-deterministic Markov processes have emerged recently.
- First appeared in physics (Peters & De With, 2012; Krauth et al., 2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).
- Provide state-of-the-art performance for a wide range of large scale physical models.
- Exhibit some appealing features:
 - Local updates in graphical models without blocking (Peters & De With 2012, Bouchard-Côté et al. 2015).

- Non-reversible MCMC schemes based on piecewise-deterministic Markov processes have emerged recently.
- First appeared in physics (Peters & De With, 2012; Krauth et al., 2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).
- Provide state-of-the-art performance for a wide range of large scale physical models.
- Exhibit some appealing features:
 - Local updates in graphical models without blocking (Peters & De With 2012, Bouchard-Côté et al. 2015).
 - Exactness under subsampling (Bierkens et al. 2016, Bouchard-Côté et al. 2016; Kapfer & Krauth, 2016).

- Non-reversible MCMC schemes based on piecewise-deterministic Markov processes have emerged recently.
- First appeared in physics (Peters & De With, 2012; Krauth et al., 2009, 2015, 2016) and control (Hespanha & Mesquita, 2012).
- Provide state-of-the-art performance for a wide range of large scale physical models.
- Exhibit some appealing features:
 - Local updates in graphical models without blocking (Peters & De With 2012, Bouchard-Côté et al. 2015).
 - Exactness under subsampling (Bierkens et al. 2016, Bouchard-Côté et al. 2016; Kapfer & Krauth, 2016).
 - Ability to deal with intractable potential $U(x) = \int U_{\omega}(x) \mu(d\omega)$ (Pakman et al. 2016).

• All MCMC schemes presented here target an extended distribution on $\mathcal{Z} = \mathbb{R}^d \times \mathbb{R}^d$

$$\rho(z) = \pi(x)\psi(v) = \exp(-H(z))$$

where z = (x, v) is the extended state and $\psi(v)$ is the multivariate standard normal.

 All MCMC schemes presented here target an extended distribution on Z = R^d × R^d

$$\rho(z) = \pi(x)\psi(v) = \exp(-H(z))$$

where z = (x, v) is the extended state and $\psi(v)$ is the multivariate standard normal.

• Think of *v* as velocity or momentum variables allowing us to define a deterministic dynamics on \mathbb{R}^d .

• All MCMC schemes presented here target an extended distribution on $\mathcal{Z} = \mathbb{R}^d \times \mathbb{R}^d$

$$\rho(z) = \pi(x)\psi(v) = \exp(-H(z))$$

where z = (x, v) is the extended state and $\psi(v)$ is the multivariate standard normal.

- Think of v as velocity or momentum variables allowing us to define a deterministic dynamics on R^d.
- Sampling from ρ provides samples from π .

Continuous-time PDMP

• Deterministic dynamics: An ordinary differential of drift ϕ

$$\frac{dz_t}{dt} = \phi\left(z_t\right),\,$$

inducing a flow

$$z_t = \Phi_t(z_0).$$

• Deterministic dynamics: An ordinary differential of drift ϕ

$$\frac{dz_t}{dt} = \phi\left(z_t\right),$$

inducing a flow

$$z_t = \Phi_t(z_0).$$

• Event rate $\lambda : \mathbb{Z} \to \mathbb{R}^+$, with $\lambda(z_t) \epsilon + o(\epsilon)$ being the probability of having an event in the time interval $[t, t + \epsilon]$.

• Deterministic dynamics: An ordinary differential of drift ϕ

$$\frac{dz_t}{dt} = \phi\left(z_t\right),$$

inducing a flow

$$z_t = \Phi_t(z_0).$$

- Event rate $\lambda : \mathbb{Z} \to \mathbb{R}^+$, with $\lambda(z_t) \epsilon + o(\epsilon)$ being the probability of having an event in the time interval $[t, t + \epsilon]$.
- Markov kernel Q where the state at event time t is given by $z_t \sim Q(z_{t^-}, \cdot), z_{t^-}$ being the state of the process just before the event.

• Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.

- Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.
- For k = 1, 2, ... do

- Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.
- For $k = 1, 2, \dots$ do
 - Sample inter-event time τ_k , where τ_k is a non-negative random variable such that

$$\mathbb{P}\left(au_k \geq t
ight) = \exp\left[-\int_{r=0}^t \lambda\left\{\Phi_r(z_{t_{k-1}})\right\}dr
ight].$$

- Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.
- For $k = 1, 2, \dots$ do
 - Sample inter-event time $\tau_k,$ where τ_k is a non-negative random variable such that

$$\mathbb{P}\left(au_k \geq t
ight) = \exp\left[-\int_{r=0}^t \lambda\left\{\Phi_r(z_{t_{k-1}})\right\}dr
ight].$$

• For
$$r \in (0, au_k),$$
 set

 $z_{t_{k-1}+r} \leftarrow \Phi_r(z_{t_{k-1}}).$

- Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.
- For $k = 1, 2, \dots$ do
 - Sample inter-event time τ_k , where τ_k is a non-negative random variable such that

$$\mathbb{P}\left(au_k \geq t
ight) = \exp\left[-\int_{r=0}^t \lambda\left\{\Phi_r(z_{t_{k-1}})\right\}dr
ight].$$

• For
$$r \in (0, au_k),$$
 set

$$z_{t_{k-1}+r} \leftarrow \Phi_r(z_{t_{k-1}}).$$

• Set $t_k \leftarrow t_{k-1} + \tau_k$ and sample

$$z_{t_k} \sim Q(z_{t_k}^-, \cdot).$$

• Requires being able to compute exactly the flow $z_t = \Phi_t(z_0)$.

- Requires being able to compute exactly the flow $z_t = \Phi_t(z_0)$.
 - All existing algorithms use $\phi(z) = (v, 0_d)$ so that $\Phi_t(z_0) = (x_0 + v_0 t, v_0)$, except Hamiltonian BPS (Vanetti et al., 2017).

- Requires being able to compute exactly the flow $z_t = \Phi_t(z_0)$.
 - All existing algorithms use $\phi(z) = (v, 0_d)$ so that $\Phi_t(z_0) = (x_0 + v_0 t, v_0)$, except Hamiltonian BPS (Vanetti et al., 2017).
- Requires being able to simulate the event times.

- Requires being able to compute exactly the flow $z_t = \Phi_t(z_0)$.
 - All existing algorithms use $\phi(z) = (v, 0_d)$ so that $\Phi_t(z_0) = (x_0 + v_0 t, v_0)$, except Hamiltonian BPS (Vanetti et al., 2017).
- Requires being able to simulate the event times.
 - Inversion, thinning, superposition (Devroye, 1986).

- Requires being able to compute exactly the flow $z_t = \Phi_t(z_0)$.
 - All existing algorithms use $\phi(z) = (v, 0_d)$ so that $\Phi_t(z_0) = (x_0 + v_0 t, v_0)$, except Hamiltonian BPS (Vanetti et al., 2017).
- Requires being able to simulate the event times.
 - Inversion, thinning, superposition (Devroye, 1986).
- Requires being able to simulate from Q.

• The generator of a PDMP is given by

$$\mathcal{L}f(z) = \lim_{\epsilon \to 0} \frac{\mathbb{E}\left[f\left(z_{t+\epsilon}\right)|z_t = z\right] - f(z)}{\epsilon}$$
$$= \langle \phi(z), \nabla f(z) \rangle + \lambda(z) \int \left[f(z') - f(z)\right] Q(z, dz').$$

• The generator of a PDMP is given by

$$\mathcal{L}f(z) = \lim_{\epsilon \to 0} \frac{\mathbb{E}\left[f\left(z_{t+\epsilon}\right)|z_t = z\right] - f(z)}{\epsilon}$$
$$= \langle \phi(z), \nabla f(z) \rangle + \lambda(z) \int \left[f(z') - f(z)\right] Q(z, dz').$$

• For *ρ*-invariance, we need

$$\int \rho\left(dz\right) \mathcal{L}f\left(z\right) = 0.$$

• The generator of a PDMP is given by

$$\mathcal{L}f(z) = \lim_{\epsilon \to 0} \frac{\mathbb{E}\left[f\left(z_{t+\epsilon}\right) | z_t = z\right] - f(z)}{\epsilon}$$
$$= \langle \phi(z), \nabla f(z) \rangle + \lambda(z) \int \left[f(z') - f(z)\right] Q(z, dz').$$

For ρ-invariance, we need

$$\int \rho\left(dz\right)\mathcal{L}f\left(z\right)=0.$$

Sufficient conditions

• The generator of a PDMP is given by

$$\mathcal{L}f(z) = \lim_{\epsilon \to 0} \frac{\mathbb{E}\left[f(z_{t+\epsilon}) | z_t = z\right] - f(z)}{\epsilon}$$
$$= \langle \phi(z), \nabla f(z) \rangle + \lambda(z) \int \left[f(z') - f(z)\right] Q(z, dz').$$

For ρ-invariance, we need

$$\int \rho\left(dz\right)\mathcal{L}f\left(z\right)=0.$$

Sufficient conditions

• C1 - The event rate λ satisfies

$$\lambda\left(\mathcal{S}\left(z
ight)
ight)-\lambda\left(z
ight)=\sum_{i=1}^{n}\partial_{i}\phi_{i}\left(z
ight)-\left\langle
abla\mathcal{H}\left(z
ight),\phi\left(z
ight)
ight
angle.$$

• The generator of a PDMP is given by

$$\mathcal{L}f(z) = \lim_{\epsilon \to 0} \frac{\mathbb{E}\left[f(z_{t+\epsilon}) | z_t = z\right] - f(z)}{\epsilon}$$
$$= \langle \phi(z), \nabla f(z) \rangle + \lambda(z) \int \left[f(z') - f(z)\right] Q(z, dz').$$

For ρ-invariance, we need

$$\int \rho\left(dz\right)\mathcal{L}f\left(z\right)=0.$$

Sufficient conditions

• C1 - The event rate λ satisfies

$$\lambda\left(\mathcal{S}\left(z
ight)
ight)-\lambda\left(z
ight)=\sum_{i=1}^{n}\partial_{i}\phi_{i}\left(z
ight)-\left\langle
abla\mathcal{H}\left(z
ight),\phi\left(z
ight)
ight
angle.$$

• C2 - For the flip operator $\mathcal{S}(z)=(x,u),~Q$ satisfies

$$\int \rho(dz) \lambda(z) Q(z, dz') = \rho(\mathcal{S}(dz')) \lambda(\mathcal{S}(z')).$$

9/34

Bouncy Particle Sampler (Peters & De With, 2012)

•
$$\phi(z) = (v, 0_d)$$
: linear dynamics.
Bouncy Particle Sampler (Peters & De With, 2012)

•
$$\phi(z) = (v, 0_d)$$
: linear dynamics.

•
$$\lambda(z) = \lambda_{ref} + \langle \nabla U(x), v \rangle_+$$
 where $[a]_+ := \max(0, a)$.

Bouncy Particle Sampler (Peters & De With, 2012)

•
$$\phi(z) = (v, 0_d)$$
: linear dynamics.

•
$$\lambda(z) = \lambda_{\text{ref}} + \langle \nabla U(x), v \rangle_+$$
 where $[a]_+ := \max(0, a)$.

• The kernel Q satisfies

$$Q(z, dz') = \frac{\lambda_{\text{ref}}}{\lambda(z)} \delta_x(dx') \psi(dv') + \frac{\langle \nabla U(x), v \rangle_+}{\lambda(z)} \delta_x(dx') \delta_{R_{\nabla U}(x)v}(dv'),$$

where

$$R_{\nabla U}(x)v := v - 2 \frac{\langle \nabla U(x), v \rangle}{|\nabla U(x)|^2} \nabla U(x)$$

corresponds to a reflection on the hyperplane tangential to ∇U .

Bouncy Particle Sampler Path

A trajectory of BPS on a 2d isotropic normal

Bouncy Particle Sampler Path in High Dimensions

In high-dimensions, BPS converges towards randomized HMC (Deligiannidis et al., 2018).

• Graphical models: $U(x) = \sum_{i=1}^{n} U_i(x)$ where $U_i(x) = U_i(x_{S_i})$ depends only subset x_{S_i} of components of $x = (x_1, ..., x_d)$.

- Graphical models: $U(x) = \sum_{i=1}^{n} U_i(x)$ where $U_i(x) = U_i(x_{S_i})$ depends only subset x_{S_i} of components of $x = (x_1, ..., x_d)$.
- Gibbs sampling samples iterately from $\pi(x_{S_i}|x_{-S_i})$: blocking.

- Graphical models: $U(x) = \sum_{i=1}^{n} U_i(x)$ where $U_i(x) = U_i(x_{S_i})$ depends only subset x_{S_i} of components of $x = (x_1, ..., x_d)$.
- Gibbs sampling samples iterately from $\pi(x_{S_i}|x_{-S_i})$: blocking.
- Local BPS uses

$$\lambda(z) = \sum_{i=1}^n \lambda_i(z) = \sum_{i=1}^n \langle \nabla U_i(x), v \rangle_+,$$

$$Q\left(z,dz'
ight)=\sum_{i=1}^{n}rac{\lambda_{i}(z)}{\lambda\left(z
ight)}\delta_{x}(dx')\delta_{R_{
abla U_{i}}(x)v}(dv').$$

- Graphical models: $U(x) = \sum_{i=1}^{n} U_i(x)$ where $U_i(x) = U_i(x_{S_i})$ depends only subset x_{S_i} of components of $x = (x_1, ..., x_d)$.
- Gibbs sampling samples iterately from $\pi(x_{S_i}|x_{-S_i})$: blocking.
- Local BPS uses

1

$$\lambda(z) = \sum_{i=1}^n \lambda_i(z) = \sum_{i=1}^n \langle \nabla U_i(x), v \rangle_+,$$

$$Q(z,dz') = \sum_{i=1}^n rac{\lambda_i(z)}{\lambda(z)} \delta_x(dx') \delta_{R_{
abla U_i}(x)
u}(dv').$$

• Superposition implementation: sample arrival times of PP for factor *i* of intensity $\lambda_i(z)$ and apply $v' \leftarrow R_{\nabla U_i}(x)v$.

- Graphical models: $U(x) = \sum_{i=1}^{n} U_i(x)$ where $U_i(x) = U_i(x_{S_i})$ depends only subset x_{S_i} of components of $x = (x_1, ..., x_d)$.
- Gibbs sampling samples iterately from $\pi(x_{S_i}|x_{-S_i})$: blocking.
- Local BPS uses

1

$$\lambda(z) = \sum_{i=1}^n \lambda_i(z) = \sum_{i=1}^n \langle \nabla U_i(x), v \rangle_+,$$

$$Q(z,dz') = \sum_{i=1}^n rac{\lambda_i(z)}{\lambda(z)} \delta_x(dx') \delta_{R_{
abla U_i}(x)
u}(dv').$$

- Superposition implementation: sample arrival times of PP for factor *i* of intensity $\lambda_i(z)$ and apply $v' \leftarrow R_{\nabla U_i}(x)v$.
- Reflection R_{∇U_i} only requires updating components x_{Si} and recomputing arrival times for factors {j : x_{Si} ∩ x_{Si} ≠ ∅}.

• Thinning implementation:

• Sample first arrival time of a PP of intensity $\bar{\lambda} = \sum_{i=1}^{n} \bar{\lambda}_i$ with $\bar{\lambda}_i \ge \lambda_i(z)$.

• Thinning implementation:

• Sample first arrival time of a PP of intensity $\bar{\lambda} = \sum_{i=1}^{n} \bar{\lambda}_i$ with $\bar{\lambda}_i \ge \lambda_i(z)$.

• Sample $I \in [n]$ with proba $\overline{\lambda}_I / \overline{\lambda}$.

- Sample first arrival time of a PP of intensity $\bar{\lambda} = \sum_{i=1}^{n} \bar{\lambda}_i$ with $\bar{\lambda}_i \ge \lambda_i(z)$.
- Sample $I \in [n]$ with proba $\overline{\lambda}_I / \overline{\lambda}$.
- With proba $\lambda_I(z)/ar{\lambda}_I$

- Sample first arrival time of a PP of intensity $\bar{\lambda} = \sum_{i=1}^{n} \bar{\lambda}_i$ with $\bar{\lambda}_i \ge \lambda_i(z)$.
- Sample $I \in [n]$ with proba $\overline{\lambda}_I / \overline{\lambda}$.
- With proba $\lambda_I(z)/\bar{\lambda}_I$
 - Reflection R_{∇U_i} only requires updating components x_{S_i} and recomputing arrival times for factors {j : x_{S_i} ∩ x_{S_i} ≠ ∅}.

- Sample first arrival time of a PP of intensity $\bar{\lambda} = \sum_{i=1}^{n} \bar{\lambda}_i$ with $\bar{\lambda}_i \ge \lambda_i(z)$.
- Sample $I \in [n]$ with proba $\overline{\lambda}_I / \overline{\lambda}$.
- With proba $\lambda_I(z)/ar{\lambda}_I$
 - Reflection $R_{\nabla U_i}$ only requires updating components x_{S_i} and recomputing arrival times for factors $\{j : x_{S_i} \cap x_{S_i} \neq \emptyset\}$.
- Efficient implementation via alias method (Bouchard-Côté et al. 2016; Kapfer & Krauth, 2016).

Relative error for BPS vs HMC for d = 10 (left), d = 100 (middle) and d = 1000 (right) at fixed computational budget

• Technical machinery non-standard to most MCMC practitioners.

• Technical machinery non-standard to most MCMC practitioners.

• Is it possible to derive more flexible discrete-time schemes?

• Technical machinery non-standard to most MCMC practitioners.

• Is it possible to derive more flexible discrete-time schemes?

• Is it possible to obtain discrete-time schemes enjoying similar features as continuous-time schemes?

• Deterministic dynamics: a diffeomorphism $\Phi : \mathbb{Z} \to \mathbb{Z}$ and define $\Phi^0(z) = z$ and $\Phi^{r+1}(z) = \Phi^r \circ \Phi(z)$ for $r \in \mathbb{N}$.

- Deterministic dynamics: a diffeomorphism $\Phi : \mathbb{Z} \to \mathbb{Z}$ and define $\Phi^0(z) = z$ and $\Phi^{r+1}(z) = \Phi^r \circ \Phi(z)$ for $r \in \mathbb{N}$.
- Acceptance probability $\alpha : \mathbb{Z} \to [0,1]$ with $1 \alpha(z)$ being the proba of having an event at the next time step when the current state is z.

- Deterministic dynamics: a diffeomorphism $\Phi : \mathbb{Z} \to \mathbb{Z}$ and define $\Phi^0(z) = z$ and $\Phi^{r+1}(z) = \Phi^r \circ \Phi(z)$ for $r \in \mathbb{N}$.
- Acceptance probability $\alpha : \mathbb{Z} \to [0,1]$ with $1 \alpha(z)$ being the proba of having an event at the next time step when the current state is z.
- Markov kernel Q used to sample state at event time t is given is given by $z_t \sim Q(z_{t-1}, \cdot)$.

- Deterministic dynamics: a diffeomorphism $\Phi : \mathcal{Z} \to \mathcal{Z}$ and define $\Phi^0(z) = z$ and $\Phi^{r+1}(z) = \Phi^r \circ \Phi(z)$ for $r \in \mathbb{N}$.
- Acceptance probability $\alpha : \mathbb{Z} \to [0,1]$ with $1 \alpha(z)$ being the proba of having an event at the next time step when the current state is z.
- Markov kernel Q used to sample state at event time t is given is given by $z_t \sim Q(z_{t-1}, \cdot)$.
- (Φ, α, Q) defines a Markov transition kernel

$$K(z, dz') = \alpha(z) \,\delta_{\Phi(z)}(dz') + (1 - \alpha(z)) \,Q(z, dz') \,.$$

• Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.

- Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.
- For $k = 1, 2, \dots$ do

- Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.
- For k = 1, 2, ... do
 - Sample inter-event time $\tau_k,$ where τ_k is a non-negative integer-valued random variable such that

$$\mathbb{P}(\tau_{k}=j) = \left\{1 - \alpha\left(\Phi^{j}\left(z_{t_{k-1}}\right)\right)\right\} \prod_{i=0}^{j-1} \alpha\left(\Phi^{i}\left(z_{t_{k-1}}\right)\right).$$

- Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.
- For k = 1, 2, ... do
 - Sample inter-event time τ_k , where τ_k is a non-negative integer-valued random variable such that

$$\mathbb{P}\left(\tau_{k}=j\right)=\left\{1-\alpha\left(\Phi^{j}\left(z_{t_{k-1}}\right)\right)\right\}\prod_{i=0}^{j-1}\alpha\left(\Phi^{i}\left(z_{t_{k-1}}\right)\right).$$

• If
$$au_k \geq 1$$
 then for $r \in \{1, ..., au_k\}$, set

$$z_{t_{k-1}+r} \leftarrow \Phi^r(z_{t_{k-1}}).$$

- Initialize z_0 arbitrarily on \mathcal{Z} and set $t_0 \leftarrow 0$.
- For k = 1, 2, ... do
 - Sample inter-event time τ_k , where τ_k is a non-negative integer-valued random variable such that

$$\mathbb{P}\left(\tau_{k}=j\right)=\left\{1-\alpha\left(\Phi^{j}\left(z_{t_{k-1}}\right)\right)\right\}\prod_{i=0}^{j-1}\alpha\left(\Phi^{i}\left(z_{t_{k-1}}\right)\right).$$

• If
$$au_k \geq 1$$
 then for $r \in \{1, ..., au_k\}$, set

$$z_{t_{k-1}+r} \leftarrow \Phi^r(z_{t_{k-1}}).$$

• Set $t_k \leftarrow t_{k-1} + \tau_k + 1$ and sample

$$z_{t_k} \sim Q(z_{t_k-1}, \cdot).$$

We want

 $\int \rho(dz) K(z, dz') = \rho(dz').$

We want

$$\int \rho(dz) K(z, dz') = \rho(dz').$$

• C1 - The acceptance probability lpha satisfies

$$\{-\log \alpha \left(\mathcal{S} \circ \Phi \left(z\right)\right)\} - \{-\log \alpha \left(z\right)\} = \log |\nabla \Phi \left(z\right)| - \{H \left(\Phi \left(z\right)\right) - H \left(z\right)\}.$$

We want

$$\int \rho(dz) K(z, dz') = \rho(dz').$$

• C1 - The acceptance probability lpha satisfies

$$\{-\log \alpha \left(\mathcal{S} \circ \Phi \left(z\right)\right)\} - \{-\log \alpha \left(z\right)\} = \log |\nabla \Phi \left(z\right)| - \{H \left(\Phi \left(z\right)\right) - H \left(z\right)\}.$$

• C2 - The kernel Q satisfies

$$\int \rho(dz) (1 - \alpha(z)) Q(z, dz') = \rho(\mathcal{S}(dz')) (1 - \alpha(\mathcal{S}(z'))).$$

• Consider the target distribution $\nu(dz) \propto \rho(dz)(1 - \alpha(z))$ and proposal M(z, dz').

- Consider the target distribution $\nu(dz) \propto \rho(dz)(1 \alpha(z))$ and proposal M(z, dz').
- Let Q be defined as

$$Q(z, dz') = \beta(z, z') M(z, dz') + \left\{1 - \int \beta(z, w) M(z, dw)\right\} \delta_{\mathcal{S}(z)}(dz')$$

where

$$\beta(z, z') = \min\left(1, \frac{\nu(\mathcal{S}(dz')) M(\mathcal{S}(z'), \mathcal{S}(dz))}{\nu(dz) M(z, dz')}\right)$$

- Consider the target distribution $\nu(dz) \propto \rho(dz)(1 \alpha(z))$ and proposal M(z, dz').
- Let Q be defined as

$$Q(z, dz') = \beta(z, z') M(z, dz') + \left\{1 - \int \beta(z, w) M(z, dw)\right\} \delta_{\mathcal{S}(z)}(dz')$$

where

$$\beta(z, z') = \min\left(1, \frac{\nu\left(\mathcal{S}(dz')\right) M\left(\mathcal{S}(z'), \mathcal{S}(dz)\right)}{\nu\left(dz\right) M\left(z, dz'\right)}\right)$$

• This satisfes the skewed detailed balance

$$\nu(dz) Q(z, dz') = \nu(\mathcal{S}(dz')) Q(\mathcal{S}(z'), \mathcal{S}(dz))$$

thus condition C2.

- Consider the target distribution $\nu(dz) \propto \rho(dz)(1 \alpha(z))$ and proposal M(z, dz').
- Let Q be defined as

$$Q(z, dz') = \beta(z, z') M(z, dz') + \left\{1 - \int \beta(z, w) M(z, dw)\right\} \delta_{\mathcal{S}(z)}(dz')$$

where

$$\beta(z, z') = \min\left(1, \frac{\nu\left(\mathcal{S}(dz')\right) M\left(\mathcal{S}(z'), \mathcal{S}(dz)\right)}{\nu\left(dz\right) M\left(z, dz'\right)}\right)$$

• This satisfes the skewed detailed balance

$$\nu\left(dz\right)Q\left(z,dz'\right)=\nu\left(\mathcal{S}\left(dz'\right)\right)Q\left(\mathcal{S}\left(z'\right),\mathcal{S}\left(dz\right)\right)$$

thus condition C2.

• For $M(z, dz') = \delta_{\Psi(z)}(dz')$, this kernel is well-defined if Ψ admits an inverse $\Psi^{-1} = S \circ \Psi \circ S$ and $\beta(z, z') = \beta(z) = \min\left(1, \frac{\nu(S \circ \Psi(dz))}{\nu(dz)}\right)$.
• Guided random walk (Gustfason 1998): $\Phi(z) = (x + \epsilon v, v)$, $\alpha(z) = \min\{1, \rho(\Phi(z)) / \rho(z)\} = \min\{1, \pi(x + v\epsilon) / \pi(x)\},$ $Q(z, dz') = \delta_{\mathcal{S}(z)}(dz').$

- Guided random walk (Gustfason 1998): $\Phi(z) = (x + \epsilon v, v)$, $\alpha(z) = \min\{1, \rho(\Phi(z)) / \rho(z)\} = \min\{1, \pi(x + v\epsilon) / \pi(x)\},$ $Q(z, dz') = \delta_{\mathcal{S}(z)}(dz').$
- Hamiltonian Monte Carlo (Duane et al. 1987): $\Phi(z)$ leapfrog integrator, $\alpha(z) = \min\{1, \rho(\Phi(z)) / \rho(z)\}, Q(z, dz') = \delta_{S(z)}(dz').$

- Guided random walk (Gustfason 1998): $\Phi(z) = (x + \epsilon v, v)$, $\alpha(z) = \min\{1, \rho(\Phi(z)) / \rho(z)\} = \min\{1, \pi(x + v\epsilon) / \pi(x)\},$ $Q(z, dz') = \delta_{\mathcal{S}(z)}(dz').$
- Hamiltonian Monte Carlo (Duane et al. 1987): $\Phi(z)$ leapfrog integrator, $\alpha(z) = \min\{1, \rho(\Phi(z)) / \rho(z)\}, Q(z, dz') = \delta_{S(z)}(dz').$
- Reflective Slice Sampling (Neal 2003): $\Phi(z) = (x + \epsilon v, v)$ and

$$Q(z, dz') = \beta(z) \,\delta_{(x, R_{\nabla U}(x)v)}(dz') + \{1 - \beta(z)\} \,\delta_{\mathcal{S}(z)}(dz')$$

where

$$\beta(z) = \min\left\{1, \frac{\left[\pi(x) - \pi(x - \epsilon R_{\nabla U}(x)v)\right]_{+}}{\left[\pi(x) - \pi(x + \epsilon v)\right]}\right\}.$$

As $\epsilon
ightarrow$ 0, we have $eta\left(z
ight)
ightarrow$ 1 and the algorithm converges to BPS.

- Guided random walk (Gustfason 1998): $\Phi(z) = (x + \epsilon v, v)$, $\alpha(z) = \min\{1, \rho(\Phi(z)) / \rho(z)\} = \min\{1, \pi(x + v\epsilon) / \pi(x)\},$ $Q(z, dz') = \delta_{\mathcal{S}(z)}(dz').$
- Hamiltonian Monte Carlo (Duane et al. 1987): $\Phi(z)$ leapfrog integrator, $\alpha(z) = \min\{1, \rho(\Phi(z)) / \rho(z)\}, Q(z, dz') = \delta_{\mathcal{S}(z)}(dz').$
- Reflective Slice Sampling (Neal 2003): $\Phi(z) = (x + \epsilon v, v)$ and

$$Q(z, dz') = \beta(z) \,\delta_{(x, R_{\nabla U}(x)v)}(dz') + \{1 - \beta(z)\} \,\delta_{\mathcal{S}(z)}(dz')$$

where

$$\beta(z) = \min\left\{1, \frac{\left[\pi(x) - \pi(x - \epsilon R_{\nabla U}(x)v)\right]_{+}}{\left[\pi(x) - \pi(x + \epsilon v)\right]}\right\}.$$

As $\epsilon
ightarrow$ 0, we have $eta\left(z
ight)
ightarrow$ 1 and the algorithm converges to BPS.

 Randomized bounces & gradient-free algorithms can be derived (Sherlock & Thiery, 2017, Vanetti et al., 2017). • Almost all implementations of discrete-time schemes consist of sampling a Bernoulli of parameter $1 - \alpha(z)$ when in state z.

- Almost all implementations of discrete-time schemes consist of sampling a Bernoulli of parameter $1 \alpha(z)$ when in state z.
- Exact sampling of event time for convex U is feasible.

- Almost all implementations of discrete-time schemes consist of sampling a Bernoulli of parameter $1 \alpha(z)$ when in state z.
- Exact sampling of event time for convex U is feasible.
- Equivalent of thinning and superpositions for Poisson processes can be used:

- Almost all implementations of discrete-time schemes consist of sampling a Bernoulli of parameter $1 \alpha(z)$ when in state z.
- Exact sampling of event time for convex U is feasible.
- Equivalent of thinning and superpositions for Poisson processes can be used:

• "Thinning": If $\exists \ \bar{\alpha} : \mathcal{Z} \to (0,1]$ s.t. $\alpha \left(\Phi^k \left(z \right) \right) \geq \bar{\alpha} \left(z,k \right) \geq \bar{\alpha}(z)$ then sample a candidate event time from $\overline{\mathbb{P}} \left(\tau = j \right) = \{1 - \bar{\alpha} \left(z \right)\} \ \bar{\alpha}^{j-1}$ and accept/reject.

- Almost all implementations of discrete-time schemes consist of sampling a Bernoulli of parameter $1 \alpha(z)$ when in state z.
- Exact sampling of event time for convex U is feasible.
- Equivalent of thinning and superpositions for Poisson processes can be used:
 - "Thinning": If $\exists \ \bar{\alpha} : \mathcal{Z} \to (0,1]$ s.t. $\alpha \left(\Phi^k \left(z \right) \right) \geq \bar{\alpha} \left(z,k \right) \geq \bar{\alpha}(z)$ then sample a candidate event time from $\overline{\mathbb{P}} \left(\tau = j \right) = \{1 - \bar{\alpha} \left(z \right)\} \ \bar{\alpha}^{j-1}$ and accept/reject.
 - "Superposition then thinning": If $\alpha(z) = \min\{1, \rho(\Phi(z)) / \rho(z)\}$ for $\rho(z) = \prod_{i=1}^{n} \rho_i(z)$ then $\bar{\alpha}(z, k) = \prod_{i=1}^{n} \min\{1, \rho_i(\Phi^{k+1}(z)) / \rho_i(\Phi^k(z))\}$ is a lower bound.

• **Motivation**: exploit $H(z) = \sum_{i=1}^{n} H_i(z)$, where $H_i(z)$ might only depend on a subset of components of z.

- **Motivation**: exploit $H(z) = \sum_{i=1}^{n} H_i(z)$, where $H_i(z)$ might only depend on a subset of components of z.
- Deterministic dynamics: a diffeomorphism $\Phi : \mathcal{Z} \to \mathcal{Z}$.

- **Motivation**: exploit $H(z) = \sum_{i=1}^{n} H_i(z)$, where $H_i(z)$ might only depend on a subset of components of z.
- Deterministic dynamics: a diffeomorphism $\Phi : \mathcal{Z} \to \mathcal{Z}$.
- Acceptance probability $\alpha : \mathcal{Z} \rightarrow [0,1]$ where

$$\alpha(z) = \prod_{i=1}^{n} \alpha_i(z)$$

with $\alpha_i : \mathcal{Z} \to [0, 1]$ and define $B_i \stackrel{ind}{\sim} \operatorname{Ber}(1 - \alpha_i(z))$. For $B := (B_1, \ldots, B_n)$ and $|B| := \sum_{i=1}^n B_i$, $\mathbb{P}(|B| \ge 1) = 1 - \alpha(z)$.

- **Motivation**: exploit $H(z) = \sum_{i=1}^{n} H_i(z)$, where $H_i(z)$ might only depend on a subset of components of z.
- Deterministic dynamics: a diffeomorphism $\Phi : \mathcal{Z} \to \mathcal{Z}$.
- Acceptance probability $\alpha : \mathcal{Z} \rightarrow [0,1]$ where

$$\alpha(z) = \prod_{i=1}^{n} \alpha_i(z)$$

with $\alpha_i : \mathbb{Z} \to [0,1]$ and define $B_i \stackrel{ind}{\sim} \operatorname{Ber}(1-\alpha_i(z))$. For $B := (B_1, \ldots, B_n)$ and $|B| := \sum_{i=1}^n B_i$, $\mathbb{P}(|B| \ge 1) = 1 - \alpha(z)$. • Markov kernel: conditional upon B, where $|B| \ge 1$, sample $Z' \sim Q_B(Z, \cdot)$ so

$$Z' \sim Q_B(Z, \cdot)$$
 s

$$Q(z,dz') = \sum_{b\in\mathcal{B}} \mathbb{P}(B=b|z,|B|\geq 1)Q_b(z,dz'),$$

where

$$\mathbb{P}(B=b|z,|B|\geq 1)=rac{\prod_{i=1}^{n} ext{Ber}(b_i;1-lpha_i(z))}{1-lpha(z)}\mathbb{I}\left(\sum_{i=1}^{n}b_i\geq 1
ight).$$

• Sampling using Bernoulli trials

• Sampling using Bernoulli trials

• For $i \in [n]$, sample $B_i \sim Ber \{1 - \alpha_i(z)\}$.

• Sampling using Bernoulli trials

• For $i \in [n]$, sample $B_i \sim Ber \{1 - \alpha_i(z)\}$.

• If
$$|B| = 0$$
 then set $z' \leftarrow \Phi(z)$.

• Sampling using Bernoulli trials

• For $i \in [n]$, sample $B_i \sim Ber \{1 - \alpha_i(z)\}$.

• If
$$|B| = 0$$
 then set $z' \leftarrow \Phi(z)$.

• If
$$|B| \geq 1$$
 then sample $z' \sim Q_B(z, \cdot)$.

• Sampling using Bernoulli trials

• For $i \in [n]$, sample $B_i \sim Ber \{1 - \alpha_i(z)\}$.

• If
$$|B| = 0$$
 then set $z' \leftarrow \Phi(z)$.

• If
$$|B| \geq 1$$
 then sample $z' \sim Q_B\left(z, \cdot
ight)$.

• Sampling using Bernoulli processes

• Sampling using Bernoulli trials

• For $i \in [n]$, sample $B_i \sim Ber \{1 - \alpha_i(z)\}$.

• If
$$|B| = 0$$
 then set $z' \leftarrow \Phi(z)$.

• If $|B| \geq 1$ then sample $z' \sim Q_B(z, \cdot)$.

• Sampling using Bernoulli processes

• For
$$i \in [n]$$
, sample τ_i s.t.

$$\mathbb{P}(\tau_i = j) = \left\{1 - \alpha_i \left(\Phi^j \left(z_{t_{k-1}}\right)\right)\right\} \prod_{i=0}^{j-1} \alpha_i \left(\Phi^i \left(z_{t_{k-1}}\right)\right).$$

• Sampling using Bernoulli trials

• For $i \in [n]$, sample $B_i \sim Ber \{1 - \alpha_i(z)\}$.

• If
$$|B| = 0$$
 then set $z' \leftarrow \Phi(z)$.

• If $|B|\geq 1$ then sample $z'\sim Q_{B}\left(z,\cdot
ight).$

• Sampling using Bernoulli processes

• For
$$i \in [n]$$
, sample τ_i s.t.

$$\mathbb{P}(\tau_i = j) = \left\{ 1 - \alpha_i \left(\Phi^j \left(z_{t_{k-1}} \right) \right) \right\} \prod_{i=0}^{j-1} \alpha_i \left(\Phi^i \left(z_{t_{k-1}} \right) \right).$$

• If $\tau := \min \tau_i \ge 1$ then set $z_{t_{k-1}+r} \leftarrow \Phi^r(z_{t_{k-1}})$ for $r \in \{1, ..., \tau\}$.

• Sampling using Bernoulli trials

• For $i \in [n]$, sample $B_i \sim Ber \{1 - \alpha_i(z)\}$.

• If
$$|B| = 0$$
 then set $z' \leftarrow \Phi(z)$.

• If $|B|\geq 1$ then sample $z'\sim Q_{B}\left(z,\cdot
ight).$

• Sampling using Bernoulli processes

• For
$$i \in [n]$$
, sample τ_i s.t.

$$\mathbb{P}(\tau_i = j) = \left\{ 1 - \alpha_i \left(\Phi^j \left(z_{t_{k-1}} \right) \right) \right\} \prod_{i=0}^{j-1} \alpha_i \left(\Phi^i \left(z_{t_{k-1}} \right) \right).$$

• If
$$\tau := \min \tau_i \ge 1$$
 then set $z_{t_{k-1}+r} \leftarrow \Phi'(z_{t_{k-1}})$ for $r \in \{1, ..., \tau\}$.

• Set
$$t_k \leftarrow t_{k-1} + au + 1$$
 and sample $z_{t_k} \sim Q_B(z_{t_k-1}, \cdot).$

• **C1** - For mappings such that $|\nabla \Phi| = 1$, the acceptance probabilities α_i satisfy for all $i \in [n]$

 $\left\{-\log \alpha_{i}\left(\mathcal{S}\circ\Phi\left(z\right)\right)\right\}-\left\{-\log \alpha_{i}\left(z\right)\right\}=-\left\{H_{i}\left(\Phi\left(z\right)\right)-H_{i}\left(z\right)\right\}.$

• **C1** - For mappings such that $|\nabla \Phi| = 1$, the acceptance probabilities α_i satisfy for all $i \in [n]$

$$\left\{-\log \alpha_{i}\left(\mathcal{S}\circ\Phi\left(z\right)\right)\right\}-\left\{-\log \alpha_{i}\left(z\right)\right\}=-\left\{H_{i}\left(\Phi\left(z\right)\right)-H_{i}\left(z\right)\right\}.$$

• **C2** - For all $b \in \mathcal{B}$, the transition kernel Q_b satisfies

$$\int \rho\left(dz\right)\left(1-\alpha\left(z\right)\right)\mathbb{P}(B=b|z,|B|\geq 1)Q_{b}\left(z,dz'\right) \\ = \rho(\mathcal{S}\left(dz'\right))\left(1-\alpha\left(\mathcal{S}\left(z'\right)\right)\right)\mathbb{P}(B=b|\mathcal{S}\left(z'\right),|B|\geq 1).$$

• **C1** - For mappings such that $|\nabla \Phi| = 1$, the acceptance probabilities α_i satisfy for all $i \in [n]$

$$\left\{-\log \alpha_{i}\left(\mathcal{S}\circ\Phi\left(z\right)\right)\right\}-\left\{-\log \alpha_{i}\left(z\right)\right\}=-\left\{H_{i}\left(\Phi\left(z\right)\right)-H_{i}\left(z\right)\right\}.$$

• **C2** - For all $b \in \mathcal{B}$, the transition kernel Q_b satisfies

$$\int \rho \left(dz \right) \left(1 - \alpha \left(z \right) \right) \mathbb{P}(B = b|z, |B| \ge 1) Q_b \left(z, dz' \right)$$
$$= \rho(\mathcal{S} \left(dz' \right)) \left(1 - \alpha \left(\mathcal{S} \left(z' \right) \right) \right) \mathbb{P}(B = b|\mathcal{S} \left(z' \right), |B| \ge 1).$$

• Condition **C2** is satisfied if Q_b satisfies a skewed detailed balance w.r.t. $\rho(dz)(1 - \alpha(z)) \mathbb{Q}_{|B| \ge 1}(b|z)$.

Discrete-time version of local BPS using Φ(z) = (x + εv, v) (Peters & De With, 2012; Bouchard-Côté et al., 2015).

- Discrete-time version of local BPS using Φ(z) = (x + εv, v) (Peters & De With, 2012; Bouchard-Côté et al., 2015).
- Consider $U(x) = \sum_{i=1}^{n} U_i(x)$ and no refreshment for simplicity.

- Discrete-time version of local BPS using Φ(z) = (x + εv, v) (Peters & De With, 2012; Bouchard-Côté et al., 2015).
- Consider $U(x) = \sum_{i=1}^{n} U_i(x)$ and no refreshment for simplicity.
- Set $H_i(z) = U_i(x)$ for $i \in [n]$ and $H_{n+1}(z) = \frac{1}{2}v^t v$.

- Discrete-time version of local BPS using Φ(z) = (x + εv, v) (Peters & De With, 2012; Bouchard-Côté et al., 2015).
- Consider $U(x) = \sum_{i=1}^{n} U_i(x)$ and no refreshment for simplicity.
- Set $H_i(z) = U_i(x)$ for $i \in [n]$ and $H_{n+1}(z) = \frac{1}{2}v^t v$.
- Set $\alpha_i(z) = \min \{1, \pi_i(x + v\epsilon)/\pi_i(x)\}$ for $\pi_i(x) \propto \exp(-U_i(x))$.

- Discrete-time version of local BPS using Φ(z) = (x + εν, ν) (Peters & De With, 2012; Bouchard-Côté et al., 2015).
- Consider $U(x) = \sum_{i=1}^{n} U_i(x)$ and no refreshment for simplicity.
- Set $H_i(z) = U_i(x)$ for $i \in [n]$ and $H_{n+1}(z) = \frac{1}{2}v^t v$.
- Set $\alpha_i(z) = \min \{1, \pi_i(x + v\epsilon)/\pi_i(x)\}$ for $\pi_i(x) \propto \exp(-U_i(x))$.
- For all $b \in \mathcal{B}$, Q_b uses deterministic reflection w.r.t.

$$abla \overline{U}\left(x
ight):=\sum_{i:b_{i}=1}
abla U_{i}\left(x
ight).$$

- Discrete-time version of local BPS using Φ(z) = (x + εv, v) (Peters & De With, 2012; Bouchard-Côté et al., 2015).
- Consider $U(x) = \sum_{i=1}^{n} U_i(x)$ and no refreshment for simplicity.
- Set $H_i(z) = U_i(x)$ for $i \in [n]$ and $H_{n+1}(z) = \frac{1}{2}v^t v$.
- Set $\alpha_i(z) = \min \{1, \pi_i(x + v\epsilon)/\pi_i(x)\}$ for $\pi_i(x) \propto \exp(-U_i(x))$.
- For all $b \in \mathcal{B}$, Q_b uses deterministic reflection w.r.t.

$$abla \overline{U}(x) := \sum_{i:b_i=1}
abla U_i(x)$$

• Same idea provides a discrete-time version of multidimensional Zig-Zag (Bierkens et al. 2016).

• For $i \in [n]$, sample $B_i \sim \text{Ber} \{ [\pi_i(x) - \pi_i(x + \epsilon v)]_+ / \pi_i(x) \}$.

• For $i \in [n]$, sample $B_i \sim \text{Ber} \{ [\pi_i(x) - \pi_i(x + \epsilon v)]_+ / \pi_i(x) \}$.

• If
$$|B| = 0$$
 then set $z' \leftarrow (x + \epsilon v, v)$.

• For $i \in [n]$, sample $B_i \sim \text{Ber} \{ [\pi_i(x) - \pi_i(x + \epsilon v)]_+ / \pi_i(x) \}$.

• If
$$|B| = 0$$
 then set $z' \leftarrow (x + \epsilon v, v)$.

• If $|B| \ge 0$, then

• For $i \in [n]$, sample $B_i \sim \text{Ber} \{ [\pi_i(x) - \pi_i(x + \epsilon v)]_+ / \pi_i(x) \}$.

• If
$$|B|=0$$
 then set $z' \leftarrow (x+\epsilon v,v)$.

- If $|B| \ge 0$, then
 - Compute

$$\nabla \overline{U}(x) := \sum_{i:B_i=1} \nabla U_i(x)$$

and set $z^* = (x,v^*)$ where $v^* = R_{
abla \overline{U}}(x)v$.

• For $i \in [n]$, sample $B_i \sim \text{Ber} \left\{ \left[\pi_i(x) - \pi_i(x + \epsilon v) \right]_+ / \pi_i(x) \right\}$.

• If
$$|B|=0$$
 then set $z' \leftarrow (x+\epsilon v,v)$.

- If $|B| \ge 0$, then
 - Compute

$$\nabla \overline{U}(x) := \sum_{i:B_i=1} \nabla U_i(x)$$

and set $z^* = (x, v^*)$ where $v^* = R_{
abla \overline{U}}(x) v$.

With proba

$$\prod_{i:B_i=0}\min\left\{1,\frac{\min\left(\pi_i(x),\pi_i(x-\epsilon v^*)\right)}{\min\left(\pi_i(x),\pi_i(x+\epsilon v)\right)}\right\}\prod_{i:B_i=1}\min\left\{1,\frac{[\pi_i(x)-\pi_i(x-\epsilon v^*)]_+}{[\pi_i(x)-\pi_i(x+\epsilon v)]}\right\},$$

output
$$z' = (x, v^*)$$
, otherwise output $z' = (x, v^*)$.

• For $i \in [n]$, sample $B_i \sim \text{Ber} \left\{ \left[\pi_i(x) - \pi_i(x + v\epsilon) \right]_+ / \pi_i(x) \right\}$.
- For $i \in [n]$, sample $B_i \sim \text{Ber} \{ [\pi_i(x) \pi_i(x + v\epsilon)]_+ / \pi_i(x) \}$.
- If |B| = 0 then set $z' \leftarrow (x + v\epsilon, v)$.

- For $i \in [n]$, sample $B_i \sim \text{Ber} \{ [\pi_i(x) \pi_i(x + v\epsilon)]_+ / \pi_i(x) \}$.
- If |B| = 0 then set $z' \leftarrow (x + v\epsilon, v)$.
- If $|B| \ge 0$, then

- For $i \in [n]$, sample $B_i \sim \operatorname{Ber} \left\{ \left[\pi_i(x) \pi_i(x + v\epsilon) \right]_+ / \pi_i(x) \right\}$.
- If |B| = 0 then set $z' \leftarrow (x + v\epsilon, v)$.
- If $|B| \ge 0$, then
 - Compute

$$abla \overline{U}\left(x
ight):=\sum_{i:B_{i}=1}
abla U_{i}\left(x
ight)$$

and set $z^* = (x, v^*)$ where $v^* = R_{
abla \overline{U}}(x) v$.

- For $i \in [n]$, sample $B_i \sim \text{Ber} \left\{ \left[\pi_i \left(x \right) \pi_i \left(x + v \epsilon \right) \right]_+ / \pi_i \left(x \right) \right\}$.
- If |B| = 0 then set $z' \leftarrow (x + v\epsilon, v)$.
- If $|B| \ge 0$, then
 - Compute

$$abla \overline{U}(x) := \sum_{i:B_i=1}
abla U_i(x)$$

and set $z^* = (x, v^*)$ where $v^* = R_{
abla \overline{U}}(x) v$.

• For
$$i \in V$$
, sample $B'_i \sim \operatorname{Ber}\left(1 - \min\left\{1, \frac{[\pi_i(x) - \pi_i(x - v^*\epsilon)]_+}{[\pi_i(x) - \pi_i(x + v\epsilon)]}\right\}\right)$.

- For $i \in [n]$, sample $B_i \sim \text{Ber}\left\{\left[\pi_i\left(x\right) \pi_i\left(x + v\epsilon\right)\right]_+ / \pi_i\left(x\right)\right\}$.
- If |B| = 0 then set $z' \leftarrow (x + v\epsilon, v)$.
- If $|B| \ge 0$, then
 - Compute

$$abla \overline{U}(x) := \sum_{i:B_i=1}
abla U_i(x)$$

and set $z^* = (x,v^*)$ where $v^* = {\sf R}_{
abla \overline{U}}(x) v$.

• For $i \in V$, sample $B'_i \sim \operatorname{Ber}\left(1 - \min\left\{1, \frac{[\pi_i(x) - \pi_i(x - v^* \epsilon)]_+}{[\pi_i(x) - \pi_i(x + v \epsilon)]}\right\}\right)$.

• For
$$i \in [m] \setminus V$$
, sample
 $B'_i \sim \operatorname{Ber}\left(1 - \min\left\{1, \frac{\min(\pi_i(x), \pi_i(x-v^*\epsilon))}{\min(\pi_i(x), \pi_i(x+v\epsilon))}\right\}\right).$

- For $i \in [n]$, sample $B_i \sim \operatorname{Ber} \left\{ \left[\pi_i(x) \pi_i(x + v\epsilon) \right]_+ / \pi_i(x) \right\}$.
- If |B| = 0 then set $z' \leftarrow (x + v\epsilon, v)$.
- If $|B| \ge 0$, then
 - Compute

$$abla \overline{U}(x) := \sum_{i:B_i=1}
abla U_i(x)$$

and set $z^* = (x,v^*)$ where $v^* = {\sf R}_{
abla \overline{U}}(x) v$.

• For $i \in V$, sample $B'_i \sim \operatorname{Ber}\left(1 - \min\left\{1, \frac{[\pi_i(x) - \pi_i(x - v^*\epsilon)]_+}{[\pi_i(x) - \pi_i(x + v\epsilon)]}\right\}\right)$.

• For
$$i \in [m] \setminus V$$
, sample
 $B'_i \sim \operatorname{Ber}\left(1 - \min\left\{1, \frac{\min(\pi_i(x), \pi_i(x-v^*\epsilon))}{\min(\pi_i(x), \pi_i(x+v\epsilon))}\right\}\right).$

• If $B'_i = 1$ for any $i \in [n]$ then output z' = (x, -v), otherwise output $z' = (x, v^*)$.

• Let $X_i \sim \text{Ber}(p_i)$ for all $i \in I$ with $p_i \leq \bar{p} < 1$ for $i \in [n]$.

- Let $X_i \sim \operatorname{Ber}(p_i)$ for all $i \in I$ with $p_i \leq \overline{p} < 1$ for $i \in [n]$.
- Direct simulation of {X_i; i ∈ [n]} has expected cost O(|I|) but we can do this in O(1 + |I|p̄) once the bounds are computed.

- Let $X_i \sim \text{Ber}(p_i)$ for all $i \in I$ with $p_i \leq \bar{p} < 1$ for $i \in [n]$.
- Direct simulation of {X_i; i ∈ [n]} has expected cost O(|I|) but we can do this in O(1 + |I|p̄) once the bounds are computed.

- Let $X_i \sim \text{Ber}(p_i)$ for all $i \in I$ with $p_i \leq \bar{p} < 1$ for $i \in [n]$.
- Direct simulation of {X_i; i ∈ [n]} has expected cost O(|I|) but we can do this in O(1 + |I|p̄) once the bounds are computed.

Algorithm

• Sample $N \sim \operatorname{Bin}(|I|, \bar{p})$.

- Let $X_i \sim \operatorname{Ber}(p_i)$ for all $i \in I$ with $p_i \leq \overline{p} < 1$ for $i \in [n]$.
- Direct simulation of {X_i; i ∈ [n]} has expected cost O(|I|) but we can do this in O(1 + |I|p̄) once the bounds are computed.

- Sample $N \sim \operatorname{Bin}(|I|, \bar{p})$.
- Sample N indices $i_1, ..., i_N$ in I uniformly at random without replacement and let $\mathcal{A} := (i_1, ..., i_N)$.

- Let $X_i \sim \operatorname{Ber}(p_i)$ for all $i \in I$ with $p_i \leq \overline{p} < 1$ for $i \in [n]$.
- Direct simulation of {X_i; i ∈ [n]} has expected cost O(|1|) but we can do this in O(1 + |1|p̄) once the bounds are computed.

- Sample $N \sim \operatorname{Bin}(|I|, \bar{p})$.
- Sample N indices $i_1, ..., i_N$ in I uniformly at random without replacement and let $\mathcal{A} := (i_1, ..., i_N)$.
- For $i \in \mathcal{A}$, sample $X_i \sim \operatorname{Ber}(p_i/\bar{p})$.

- Let $X_i \sim \operatorname{Ber}(p_i)$ for all $i \in I$ with $p_i \leq \overline{p} < 1$ for $i \in [n]$.
- Direct simulation of {X_i; i ∈ [n]} has expected cost O(|1|) but we can do this in O(1 + |1|p̄) once the bounds are computed.

- Sample $N \sim \operatorname{Bin}(|I|, \bar{p})$.
- Sample N indices $i_1, ..., i_N$ in I uniformly at random without replacement and let $\mathcal{A} := (i_1, ..., i_N)$.
- For $i \in \mathcal{A}$, sample $X_i \sim \operatorname{Ber}(p_i/\bar{p})$.
- Optional: For $i \in I \setminus A$, set $X_i \leftarrow 0$.

• Assume you want to sample from

$$\pi(x) \propto \prod_{i=1}^{n} \pi_i(x).$$

• Assume you want to sample from

$$\pi(x) \propto \prod_{i=1}^n \pi_i(x).$$

• Assume you want to sample from

$$\pi(x)\propto\prod_{i=1}^n\pi_i(x).$$

Algorithm

• Sample $x^* \sim q(x, \cdot)$ from a symmetric proposal.

• Assume you want to sample from

$$\pi(x)\propto\prod_{i=1}^n\pi_i(x).$$

Algorithm

- Sample $x^* \sim q(x, \cdot)$ from a symmetric proposal.
- With proba

$$\alpha\left(x,x^{*}\right)=\prod_{i=1}^{n}\alpha_{i}\left(x,x^{*}\right), \text{ where } \alpha_{i}\left(x,x^{*}\right):=\min\left\{1,\frac{\pi_{i}\left(x^{*}\right)}{\pi_{i}(x)}\right\},$$

set $x' = x^*$.

• Assume you want to sample from

$$\pi(x)\propto\prod_{i=1}^n\pi_i(x).$$

- Sample $x^* \sim q(x, \cdot)$ from a symmetric proposal.
- With proba

$$\alpha\left(x,x^{*}\right)=\prod_{i=1}^{n}\alpha_{i}\left(x,x^{*}\right), \text{ where } \alpha_{i}\left(x,x^{*}\right):=\min\left\{1,\frac{\pi_{i}\left(x^{*}\right)}{\pi_{i}(x)}\right\},$$

set
$$x' = x^*$$
.
• Otherwise set $x' = x$.

• Assume you want to sample from

$$\pi(x)\propto\prod_{i=1}^n\pi_i(x).$$

- Algorithm
 - Sample $x^* \sim q(x, \cdot)$ from a symmetric proposal.
 - With proba

$$\alpha\left(x,x^{*}\right)=\prod_{i=1}^{n}\alpha_{i}\left(x,x^{*}\right), \text{ where } \alpha_{i}\left(x,x^{*}\right):=\min\left\{1,\frac{\pi_{i}\left(x^{*}\right)}{\pi_{i}(x)}\right\},$$

set $x' = x^*$.

- Otherwise set x' = x.
- As long as one can upper bound cheaply $\mathbb{P}(B_i = 1) = 1 \alpha_i(x, x^*)$, subsampling tricks are applicable; e.g. logistic regression.

• Assume you want to sample from

$$\pi(x)\propto\prod_{i=1}^n\pi_i(x).$$

- Algorithm
 - Sample $x^* \sim q(x, \cdot)$ from a symmetric proposal.
 - With proba

$$\alpha\left(x,x^{*}\right)=\prod_{i=1}^{n}\alpha_{i}\left(x,x^{*}\right), \text{ where } \alpha_{i}\left(x,x^{*}\right):=\min\left\{1,\frac{\pi_{i}\left(x^{*}\right)}{\pi_{i}(x)}\right\},$$

set $x' = x^*$.

- Otherwise set x' = x.
- As long as one can upper bound cheaply $\mathbb{P}(B_i = 1) = 1 \alpha_i(x, x^*)$, subsampling tricks are applicable; e.g. logistic regression.
- For logistic regression, sufficient conditions for geometric ergodicity presented in (Cornish et al., 2018).

• Initialization: For $i \in [n]$, sample inter-event times τ_i with distribution

$$\max\left(0,1-\frac{\pi_i(x+\nu(\tau_i+1)\epsilon)}{\pi_i(x+\nu\tau_i\epsilon)}\right)\prod_{k=0}^{\tau_i-1}\min\left(1,\frac{\pi_i(x+\nu(k+1)\epsilon)}{\pi_i(x+\nu k\epsilon)}\right).$$

• Initialization: For $i \in [n]$, sample inter-event times τ_i with distribution

$$\max\left(0,1-\frac{\pi_i(x+\nu(\tau_i+1)\epsilon)}{\pi_i(x+\nu\tau_i\epsilon)}\right)\prod_{k=0}^{\tau_i-1}\min\left(1,\frac{\pi_i(x+\nu(k+1)\epsilon)}{\pi_i(x+\nu k\epsilon)}\right).$$

Iterate.

• Initialization: For $i \in [n]$, sample inter-event times τ_i with distribution

$$\max\left(0,1-\frac{\pi_i(x+\nu(\tau_i+1)\epsilon)}{\pi_i(x+\nu\tau_i\epsilon)}\right)\prod_{k=0}^{\tau_i-1}\min\left(1,\frac{\pi_i(x+\nu(k+1)\epsilon)}{\pi_i(x+\nu k\epsilon)}\right).$$

Iterate.

• If min $\tau_i \geq 1$, then output $z' = (x + \epsilon v, v)$. Update $\tau_i \leftarrow \tau_i - 1$.

• Initialization: For $i \in [n]$, sample inter-event times τ_i with distribution

$$\max\left(0,1-\frac{\pi_i(x+\nu(\tau_i+1)\epsilon)}{\pi_i(x+\nu\tau_i\epsilon)}\right)\prod_{k=0}^{\tau_i-1}\min\left(1,\frac{\pi_i(x+\nu(k+1)\epsilon)}{\pi_i(x+\nu k\epsilon)}\right).$$

- Iterate.
 - If min $\tau_i \ge 1$, then output $z' = (x + \epsilon v, v)$. Update $\tau_i \leftarrow \tau_i 1$.
 - Otherwise

• Initialization: For $i \in [n]$, sample inter-event times τ_i with distribution

$$\max\left(0,1-\frac{\pi_i(x+\nu(\tau_i+1)\epsilon)}{\pi_i(x+\nu\tau_i\epsilon)}\right)\prod_{k=0}^{\tau_i-1}\min\left(1,\frac{\pi_i(x+\nu(k+1)\epsilon)}{\pi_i(x+\nu k\epsilon)}\right).$$

- Iterate.
 - If min $\tau_i \ge 1$, then output $z' = (x + \epsilon v, v)$. Update $\tau_i \leftarrow \tau_i 1$.
 - Otherwise
 - Compute

$$abla \overline{U}(x) := \sum_{i: au_i=\mathbf{0}}
abla U_i(x_{\mathcal{S}_i})$$

and set $z^* = (x, v^*)$ where $v^* = R_{
abla \overline{U}}(x) v$.

• Initialization: For $i \in [n]$, sample inter-event times τ_i with distribution

$$\max\left(0,1-\frac{\pi_i(x+\nu(\tau_i+1)\epsilon)}{\pi_i(x+\nu\tau_i\epsilon)}\right)\prod_{k=0}^{\tau_i-1}\min\left(1,\frac{\pi_i(x+\nu(k+1)\epsilon)}{\pi_i(x+\nu k\epsilon)}\right).$$

Iterate.

- If min $\tau_i \ge 1$, then output $z' = (x + \epsilon v, v)$. Update $\tau_i \leftarrow \tau_i 1$.
- Otherwise

Compute

$$\nabla \overline{U}(x) := \sum_{i:\tau_i=0} \nabla U_i(x_{S_i})$$

and set $z^* = (x, v^*)$ where $v^* = R_{\nabla \overline{U}}(x)v$.
• With proba
$$\prod_{i:\tau_i>0} \min\left\{1, \frac{\min(\pi_i(x), \pi_i(x-v^*\epsilon))}{\min(\pi_i(x), \pi_i(x+v\epsilon))}\right\} \prod_{i:\tau_i=0} \min\left\{1, \frac{[\pi_i(x) - \pi_i(x-v^*\epsilon)]_+}{[\pi_i(x) - \pi_i(x+v\epsilon)]}\right\},$$

output $z' = (x, v^*)$. Sample again τ_i for all i where $v_j^* \neq v_j$ for some $j \in S_i$.

• Initialization: For $i \in [n]$, sample inter-event times τ_i with distribution

$$\max\left(0,1-\frac{\pi_i(x+\nu(\tau_i+1)\epsilon)}{\pi_i(x+\nu\tau_i\epsilon)}\right)\prod_{k=0}^{\tau_i-1}\min\left(1,\frac{\pi_i(x+\nu(k+1)\epsilon)}{\pi_i(x+\nu k\epsilon)}\right).$$

Iterate.

- If min $\tau_i \ge 1$, then output $z' = (x + \epsilon v, v)$. Update $\tau_i \leftarrow \tau_i 1$.
- Otherwise

Compute

$$\nabla \overline{U}(x) := \sum_{i:\tau_i=0} \nabla U_i(x_{S_i})$$

and set $z^* = (x, v^*)$ where $v^* = R_{\nabla \overline{U}}(x)v$.
• With proba
$$\prod_{i:\tau_i>0} \min\left\{1, \frac{\min(\pi_i(x), \pi_i(x-v^*\epsilon))}{\min(\pi_i(x), \pi_i(x+v\epsilon))}\right\} \prod_{i:\tau_i=0} \min\left\{1, \frac{[\pi_i(x) - \pi_i(x-v^*\epsilon)]_+}{[\pi_i(x) - \pi_i(x+v\epsilon)]}\right\},$$

output $z' = (x, v^*)$. Sample again τ_i for all i where $v_j^* \neq v_j$ for some $j \in S_i$.
• Otherwise output $z' = (x, -v)$. Sample τ_i for all i .

• **Motivation**: intractable potential $H(z) = \int_{\Omega} H_{\omega}(z) \mu(d\omega)$.

- **Motivation**: intractable potential $H(z) = \int_{\Omega} H_{\omega}(z) \mu(d\omega)$.
- Deterministic dynamics: a diffeomorphism $\Phi: \mathcal{Z} \to \mathcal{Z}$.

- **Motivation**: intractable potential $H(z) = \int_{\Omega} H_{\omega}(z) \mu(d\omega)$.
- Deterministic dynamics: a diffeomorphism $\Phi: \mathcal{Z} \to \mathcal{Z}$.
- Acceptance probability $\alpha:\mathcal{Z} \rightarrow [0,1]$ where

$$\alpha\left(\boldsymbol{z}\right) = \exp\left\{\int_{\Omega}\log\alpha_{\omega}\left(\boldsymbol{z}\right)\mu\left(\boldsymbol{d}\omega\right)\right\}$$

with $\alpha_{\omega} : \mathbb{Z} \to (0, 1]$. Sample a Poisson process P on Ω of rate $\Lambda(d\omega) = -\log \alpha_{\omega}(z) \ \mu(d\omega)$ of law denoted $\mathbb{P}(dP|z)$: $\alpha(z)$ is the void probability of P.

- **Motivation**: intractable potential $H(z) = \int_{\Omega} H_{\omega}(z) \mu(d\omega)$.
- Deterministic dynamics: a diffeomorphism $\overline{\Phi}: \mathcal{Z} \to \mathcal{Z}$.
- Acceptance probability $\alpha : \mathcal{Z} \rightarrow [0,1]$ where

.

$$\alpha\left(z\right) = \exp\left\{\int_{\Omega}\log\alpha_{\omega}\left(z\right)\mu\left(d\omega\right)\right\}$$

with $\alpha_{\omega} : \mathbb{Z} \to (0, 1]$. Sample a Poisson process P on Ω of rate $\Lambda(d\omega) = -\log \alpha_{\omega}(z) \ \mu(d\omega)$ of law denoted $\mathbb{P}(dP|z)$: $\alpha(z)$ is the void probability of P.

• Markov kernel: Conditional on P, with $|P| \ge 1$, sample $Z' \sim Q_P(Z, \cdot)$ so that

$$Q(z, dz') = \int_{\mathcal{P}} \mathbb{P}(dP|z, |P| \ge 1) Q_P(z, dz')$$

where $\mathbb{P}\left(dP|z,|P|\geq 1
ight)$ is the law of P conditioned upon $|P|\geq 1$

$$\mathbb{P}(dP|z, |P| \ge 1) = \frac{\mathbb{I}(|P| \ge 1)}{1 - \alpha(z)} \mathbb{P}(dP|z).$$

• Simple generalizations of the conditions C1-C2 given before: allows to derive non-reversible algorithms for intractable targets.

- Simple generalizations of the conditions C1-C2 given before: allows to derive non-reversible algorithms for intractable targets.
- Main idea provides simple Metropolis-like algorithms in this scenario to sample from $\pi(x) \propto \exp(-\int_{\Omega} H_{\omega}(z) \ \mu(d\omega))$.

- Simple generalizations of the conditions C1-C2 given before: allows to derive non-reversible algorithms for intractable targets.
- Main idea provides simple Metropolis-like algorithms in this scenario to sample from $\pi(x) \propto \exp(-\int_{\Omega} H_{\omega}(z) \ \mu(d\omega))$.
- Algorithm

- Simple generalizations of the conditions **C1-C2** given before: allows to derive non-reversible algorithms for intractable targets.
- Main idea provides simple Metropolis-like algorithms in this scenario to sample from $\pi(x) \propto \exp(-\int_{\Omega} H_{\omega}(z) \ \mu(d\omega))$.

Algorithm

• Sample $z^* \sim q(\cdot|z)$ from a symmetric proposal.

- Simple generalizations of the conditions C1-C2 given before: allows to derive non-reversible algorithms for intractable targets.
- Main idea provides simple Metropolis-like algorithms in this scenario to sample from $\pi(x) \propto \exp(-\int_{\Omega} H_{\omega}(z) \ \mu(d\omega))$.

- Sample $z^* \sim q\left(\cdot | \, z
 ight)$ from a symmetric proposal.
- Sample a Poisson process P on Ω of rate $\left[H_{\omega}\left(z^{*}\right)-H_{\omega}\left(z\right)\right]_{+}\mu\left(d\omega\right)$.
Sufficient conditions for invariance

- Simple generalizations of the conditions C1-C2 given before: allows to derive non-reversible algorithms for intractable targets.
- Main idea provides simple Metropolis-like algorithms in this scenario to sample from $\pi(x) \propto \exp(-\int_{\Omega} H_{\omega}(z) \ \mu(d\omega))$.

Algorithm

- Sample $z^* \sim q\left(\cdot | \, z
 ight)$ from a symmetric proposal.
- Sample a Poisson process P on Ω of rate $\left[H_{\omega}\left(z^{*}\right)-H_{\omega}\left(z\right)\right]_{+}\mu\left(d\omega\right)$.

• If
$$P = \emptyset$$
, then output $z' = z^*$.

Sufficient conditions for invariance

- Simple generalizations of the conditions C1-C2 given before: allows to derive non-reversible algorithms for intractable targets.
- Main idea provides simple Metropolis-like algorithms in this scenario to sample from $\pi(x) \propto \exp(-\int_{\Omega} H_{\omega}(z) \ \mu(d\omega))$.

Algorithm

- Sample $z^* \sim q(\cdot|z)$ from a symmetric proposal.
- Sample a Poisson process P on Ω of rate $\left[H_{\omega}\left(z^{*}\right)-H_{\omega}\left(z\right)\right]_{+}\mu\left(d\omega\right)$.
- If $P = \emptyset$, then output $z' = z^*$.
- Otherwise output z' = z.

• Discrete-time non-reversible piecewise deterministic MCMC schemes can be derived easily

- Discrete-time non-reversible piecewise deterministic MCMC schemes can be derived easily
 - Complex dynamics can be used,

- Discrete-time non-reversible piecewise deterministic MCMC schemes can be derived easily
 - Complex dynamics can be used,
 - Can be used in gradient-free scenarios,

- Discrete-time non-reversible piecewise deterministic MCMC schemes can be derived easily
 - Complex dynamics can be used,
 - Can be used in gradient-free scenarios,
 - Can be extended to discrete spaces.

- Discrete-time non-reversible piecewise deterministic MCMC schemes can be derived easily
 - Complex dynamics can be used,
 - Can be used in gradient-free scenarios,
 - Can be extended to discrete spaces.
- All the methodology developed for continuous-time algorithms has a discrete time equivalent.

- Discrete-time non-reversible piecewise deterministic MCMC schemes can be derived easily
 - Complex dynamics can be used,
 - Can be used in gradient-free scenarios,
 - Can be extended to discrete spaces.
- All the methodology developed for continuous-time algorithms has a discrete time equivalent.
- Subsampling ideas/intractable target ideas/Local updating can be used for discrete-time/reversible schemes.

- Discrete-time non-reversible piecewise deterministic MCMC schemes can be derived easily
 - Complex dynamics can be used,
 - Can be used in gradient-free scenarios,
 - Can be extended to discrete spaces.
- All the methodology developed for continuous-time algorithms has a discrete time equivalent.
- Subsampling ideas/intractable target ideas/Local updating can be used for discrete-time/reversible schemes.
- Quantitative convergence results?

- Discrete-time non-reversible piecewise deterministic MCMC schemes can be derived easily
 - Complex dynamics can be used,
 - Can be used in gradient-free scenarios,
 - Can be extended to discrete spaces.
- All the methodology developed for continuous-time algorithms has a discrete time equivalent.
- Subsampling ideas/intractable target ideas/Local updating can be used for discrete-time/reversible schemes.
- Quantitative convergence results?
- Complexity?