Low dimensional approximation of weak constraint variational data assimilation

Melina Freitag

Universität Potsdam
Institut für Mathematik

SFB Colloquium

13th December 2019
joint work with Daniel Green (University of Bath)

Data assimilation setting

Denote $x_{k} \in \mathbb{R}^{n}$ state of a system at time t_{k}.

- numerical (physical) model $\mathcal{M}_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
x_{k+1}=\mathcal{M}_{k}\left(x_{k}\right)+\eta_{k} .
$$

- prior estimate x_{0}^{b} of the initial condition x_{0},

$$
x_{0}=x_{0}^{b}+e_{0}
$$

- observations $y_{k} \in \mathbb{R}^{p_{k}}$ of the state:

$$
y_{k}=\mathcal{H}_{k}\left(x_{k}\right)+\epsilon_{k},
$$

where $\mathcal{H}_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p_{k}}$ is an observation operator.
The errors $\eta_{k}, e_{0}, \epsilon_{k}$ are Gaussian with zero mean and covariances $Q_{k} \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}, R_{k} \in \mathbb{R}^{p_{k} \times p_{k}}$ respectively.

Schematics of 4D-Var data assimilation

- Take observations y_{k} of the true dynamical system.

Schematics of 4D-Var data assimilation

- Use a priori information x_{0}^{b} for the initial condition for the numerical model $x_{k+1}=\mathcal{M}_{k+1, k}\left(x_{k}\right)$, approximating the ("true") dynamical system.

Schematics of 4D-Var data assimilation

- Run the numerical model using the estimated initial condition.

Schematics of 4D-Var data assimilation

- Minimise a cost function $J(x)$ to find an improved initial condition x_{0}^{a}.

Schematics of 4D-Var data assimilation

- The numerical model is run using x_{0}^{a} as an initial condition.

Schematics of 4D-Var data assimilation

- The simulation is continued to create a forecast.

Schematics of 4D-Var data assimilation

- The process is repeated for new observations.

Part I: A low-rank approach to the solution of weak constraint variational data assimilation problems
(1) Saddle point formulation of weak constraint 4D-Var
(2) Low-rank GMRES (LR-GMRES)
(3) Numerical results
(4) Conclusions

Part II: Balanced truncation within weak constraint 4D-Var
(5) Model order reduction by Balanced Truncation
(6) Application to weak constraint 4D-Var
(7) Numerical results
(8) Conclusions

Part I

A low-rank approach to the solution of weak constraint variational data assimilation problems

Outline

(1) Saddle point formulation of weak constraint 4D-Var
 Low-rank GMRES (LR-GMRES)}Numerical resultsConclusions

Weak Constraint 4D-Var

4D-Var cost function

$$
\begin{aligned}
J(x)= & \frac{1}{2}\left\|x_{0}-x_{0}^{b}\right\|_{B^{-1}}^{2}+\frac{1}{2} \sum_{k=0}^{N}\left\|y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right\|_{R_{k}^{-1}}^{2} \\
& +\frac{1}{2} \sum_{k=1}^{N}\left\|x_{k}-\mathcal{M}_{k}\left(x_{k-1}\right)\right\|_{Q_{k}^{-1}}^{2} .
\end{aligned}
$$

where

- $x=\left[x_{0}^{T}, x_{1}^{T}, \ldots, x_{N}^{T}\right]^{T}$
- B, R_{k}, Q_{k} postitive definite error covariance matrices
- y_{k} observation vector
- \mathcal{H}_{k} maps state vector x_{k} from model space to observation space
- \mathcal{M}_{k} model integration

Incremental 4D-Var - Gauss-Newton method

4D-Var cost function

$$
\begin{aligned}
J(x)= & \frac{1}{2}\left\|x_{0}-x_{0}^{b}\right\|_{B^{-1}}^{2}+\frac{1}{2} \sum_{k=0}^{N}\left\|y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right\|_{R_{k}^{-1}}^{2} \\
& +\frac{1}{2} \sum_{k=1}^{N}\left\|x_{k}-\mathcal{M}_{k}\left(x_{k-1}\right)\right\|_{Q_{k}^{-1}}^{2}
\end{aligned}
$$

Minimisation using Gauss-Newton method:

- linearise \mathcal{M}_{k} and \mathcal{H}_{k} about $x^{(\ell)}$ at each step
- (approximately) minimise quadratic cost function $\tilde{J}\left(\delta x^{(\ell)}\right)$.
- Increment at iterate ℓ,

$$
\begin{gathered}
\delta x^{(\ell)}=\left[\left(\delta x_{0}^{(\ell)}\right)^{T},\left(\delta x_{1}^{(\ell)}\right)^{T}, \ldots,\left(\delta x_{N}^{(\ell)}\right)^{T}\right]^{T} \\
x^{(\ell+1)}=x^{(\ell)}+\delta x^{(\ell)}
\end{gathered}
$$

Incremental 4D-Var - Gauss-Newton method

Incremental 4D-Var cost function

$$
\begin{aligned}
\tilde{J}\left(\delta x^{(\ell)}\right) & =\frac{1}{2}\left\|\delta x_{0}^{(\ell)}-b_{0}^{(\ell)}\right\|_{B^{-1}}+\frac{1}{2} \sum_{k=0}^{N}\left\|d_{k}^{(\ell)}-H_{k} \delta x_{k}^{(\ell)}\right\|_{R_{k}^{-1}} \\
& +\frac{1}{2} \sum_{k=1}^{N}\left\|\delta x_{k}^{(\ell)}-M_{k} \delta x_{k-1}^{(\ell)}-c_{k}^{(\ell)}\right\|_{Q_{k}^{-1}}
\end{aligned}
$$

$M_{k} \in \mathbb{R}^{n \times n}, H_{k} \in \mathbb{R}^{p_{k} \times n}$ linearisations of \mathcal{M}_{k} and \mathcal{H}_{k} about $x^{(\ell)}$.

$$
b_{0}^{(\ell)}=x_{0}^{b}-x_{0}^{(\ell)}, \quad d_{k}^{(\ell)}=y_{k}-\mathcal{H}_{k}\left(x_{k}^{(\ell)}\right), \quad c_{k}^{(\ell)}=\mathcal{M}_{k}\left(x_{k-1}^{(\ell)}\right)-x_{k}^{(\ell)} .
$$

Concise notation for incremental 4D-Var (all-at-once approach)

Minimise (inner iteration)

$$
\tilde{J}(\delta x)=\frac{1}{2}\|L \delta x-b\|_{D^{-1}}^{2}+\frac{1}{2}\|\mathrm{H} \delta x-d\|_{\mathrm{R}^{-1}}^{2}
$$

with

$$
L=\left[\begin{array}{cccc}
I & & & \\
-M_{1} & I & & \\
& \ddots & \ddots & \\
& & -M_{N} & I
\end{array}\right]
$$

$$
\begin{gathered}
D=\left[\begin{array}{llll}
B & & & \\
& Q_{1} & & \\
& & \ddots & \\
& & & Q_{N}
\end{array}\right], \quad \mathrm{R}=\left[\begin{array}{llll}
R_{0} & & & \\
& R_{1} & & \\
& & \ddots & \\
& & & R_{N}
\end{array}\right] \\
\mathrm{H}=\left[\begin{array}{llll}
H_{0} & H_{1} & & \\
& & \ddots & \\
& & & H_{N}
\end{array}\right], b=\left[\begin{array}{c}
x_{0}^{b}-x_{0} \\
\mathcal{M}_{1}\left(x_{0}\right)-x_{1} \\
\vdots \\
\mathcal{M}_{N}\left(x_{N-1}\right)-x_{N}
\end{array}\right], d=\left[\begin{array}{c}
y_{0}-\mathcal{H}_{0}\left(x_{0}\right) \\
y_{1}-\mathcal{H}_{1}\left(x_{1}\right) \\
\vdots \\
y_{N}-\mathcal{H}_{N}\left(x_{N}\right)
\end{array}\right] .
\end{gathered}
$$

State formulation and saddle formulation

$$
\tilde{J}(\delta x)=\frac{1}{2}\|L \delta x-b\|_{D^{-1}}^{2}+\frac{1}{2}\|\mathrm{H} \delta x-d\|_{\mathrm{R}^{-1}}^{2}
$$

Minimise

$$
\begin{gathered}
\nabla \tilde{J}(\delta x)=L^{T} D^{-1}(L \delta x-b)+\mathrm{H}^{T} \mathrm{R}^{-1}(\mathrm{H} \delta x-d)=0 \\
\left(L^{T} D^{-1} L+\mathrm{H}^{T} \mathrm{R}^{-1} \mathrm{H}\right) \delta x=L^{T} D^{-1} b+\mathrm{H}^{T} \mathrm{R}^{-1} d
\end{gathered}
$$

with $\lambda=D^{-1}(b-L \delta x), \mu=\mathrm{R}^{-1}(d-\mathrm{H} \delta x)$ (or writing the problem with equality constraints and using KKT conditions) we obtain

$$
\begin{aligned}
\nabla \tilde{J}=L^{T} \lambda+\mathrm{H}^{T} \mu & =0, \\
D \lambda+L \delta x & =b, \\
\mathrm{R} \mu+\mathrm{H} \delta x & =d .
\end{aligned}
$$

Saddle Point Formulation

$$
\begin{aligned}
\nabla \tilde{J}=L^{T} \lambda+\mathrm{H}^{T} \mu & =0, \\
D \lambda+L \delta x & =b, \\
\mathrm{R} \mu+\mathrm{H} \delta x & =d .
\end{aligned}
$$

Saddle point formulation of 4D-Var

$$
\left[\begin{array}{ccc}
D & 0 & L \\
0 & \mathrm{R} & \mathrm{H} \\
L^{T} & \mathrm{H}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right]
$$

Saddle Point Formulation

$$
\begin{aligned}
\nabla \tilde{J}=L^{T} \lambda+\mathrm{H}^{T} \mu & =0, \\
D \lambda+L \delta x & =b, \\
\mathrm{R} \mu+\mathrm{H} \delta x & =d .
\end{aligned}
$$

Saddle point formulation of 4D-Var

$$
\left[\begin{array}{ccc}
D & 0 & L \\
0 & \mathrm{R} & \mathrm{H} \\
L^{T} & \mathrm{H}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right]
$$

- L integration of a numerical model, L^{T} its adjoint
- H, L computationally expensive!
- D, R are large, but cheaper to apply than a model evaluation
- saddle point matrix is symmetric indefinite
- preconditioned MINRES or GMRES.

Low dimensional approximation of weak constraint variational data assimilation

Outline

(1) Saddle point formulation of weak constraint 4D-Var
(2) Low-rank GMRES (LR-GMRES)Numerical resultsConclusions

The Kronecker product

Let \mathcal{A}, \mathcal{B} and \mathcal{C} be matrices of appropriate size. Properties of the Kronecker product and vec (.) operator:

$$
\mathcal{A} \otimes \mathcal{B}=\left[\begin{array}{ccc}
a_{11} \mathcal{B} & \cdots & a_{1 n} \mathcal{B} \\
\vdots & \ddots & \vdots \\
a_{m 1} \mathcal{B} & \cdots & a_{m n} \mathcal{B}
\end{array}\right] \quad \operatorname{vec}(\mathcal{C})=\left[\begin{array}{c}
c_{11} \\
\vdots \\
c_{1 n} \\
\vdots \\
c_{m n}
\end{array}\right]
$$

Moreover

$$
\left(\mathcal{B}^{T} \otimes \mathcal{A}\right) \operatorname{vec}(\mathcal{C})=\operatorname{vec}(\mathcal{A C B})
$$

Kronecker formulation

Saddle point formulation of 4D-Var

$$
\left[\begin{array}{ccc}
D & 0 & L \\
0 & \mathrm{R} & \mathrm{H} \\
L^{T} & \mathrm{H}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right]
$$

Assume $Q_{k}=Q, R_{k}=R, H_{k}=H, M_{k}=M$, and number of observations $p_{k}=p$ for each k. Define

$$
C=\left[\begin{array}{cccc}
0 & & & \\
-1 & 0 & & \\
& \ddots & \ddots & \\
& & -1 & 0
\end{array}\right], \quad E_{1}=\left[\begin{array}{cccc}
1 & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{llll}
0 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right] .
$$

Kronecker saddle point formulation of 4D-Var

$$
\left[\begin{array}{ccc}
E_{1} \otimes B+E_{2} \otimes Q & 0 & I_{N+1} \otimes I_{n}+C \otimes M \\
0 & I_{N+1} \otimes R & I_{N+1} \otimes H \\
I_{N+1} \otimes I_{n}+C^{T} \otimes M^{T} & I_{N+1} \otimes H^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right]
$$

Simultaneous matrix equations

Kronecker saddle point formulation of 4D-Var

$$
\left[\begin{array}{ccc}
E_{1} \otimes B+E_{2} \otimes Q & 0 & I_{N+1} \otimes I_{n}+C \otimes M \\
0 & I_{N+1} \otimes R & I_{N+1} \otimes H \\
I_{N+1} \otimes I_{n}+C^{T} \otimes M^{T} & I_{N+1} \otimes H^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right],
$$

Using $\left(\mathcal{B}^{T} \otimes \mathcal{A}\right) \operatorname{vec}(\mathcal{C})=\operatorname{vec}(\mathcal{A C B})$:

Simultaneous matrix equations

Kronecker saddle point formulation of 4D-Var

$$
\left[\begin{array}{ccc}
E_{1} \otimes B+E_{2} \otimes Q & 0 & I_{N+1} \otimes I_{n}+C \otimes M \\
0 & I_{N+1} \otimes R & I_{N+1} \otimes H \\
I_{N+1} \otimes I_{n}+C^{T} \otimes M^{T} & I_{N+1} \otimes H^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right],
$$

Using $\left(\mathcal{B}^{T} \otimes \mathcal{A}\right) \operatorname{vec}(\mathcal{C})=\operatorname{vec}(\mathcal{A C B})$:

Simultaneous matrix equations

$$
\begin{aligned}
B \Lambda E_{1}+Q \Lambda E_{2}+X+M X C^{T} & =\mathfrak{b} \\
R U+H X & =\mathbb{d} \\
\Lambda+M^{T} \Lambda C+H^{T} U & =0
\end{aligned}
$$

where $\lambda, \delta x, b, \mu$ and d are vectorised forms of the matrices $\Lambda, X, \mathfrak{b} \in \mathbb{R}^{n \times N+1}$ and $U, \mathbb{d} \in \mathbb{R}^{p \times N+1}$ respectively.

Simultaneous matrix equations

Kronecker saddle point formulation of 4D-Var

$$
\left[\begin{array}{ccc}
E_{1} \otimes B+E_{2} \otimes Q & 0 & I_{N+1} \otimes I_{n}+C \otimes M \\
0 & I_{N+1} \otimes R & I_{N+1} \otimes H \\
I_{N+1} \otimes I_{n}+C^{T} \otimes M^{T} & I_{N+1} \otimes H^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right],
$$

Using $\left(\mathcal{B}^{T} \otimes \mathcal{A}\right) \operatorname{vec}(\mathcal{C})=\operatorname{vec}(\mathcal{A C B})$:

Simultaneous matrix equations

$$
\begin{aligned}
B \Lambda E_{1}+Q \Lambda E_{2}+X+M X C^{T} & =\mathfrak{b} \\
R U+H X & =\mathbb{d} \\
\Lambda+M^{T} \Lambda C+H^{T} U & =0
\end{aligned}
$$

where $\lambda, \delta x, b, \mu$ and d are vectorised forms of the matrices $\Lambda, X, \mathfrak{b} \in \mathbb{R}^{n \times N+1}$ and $U, \mathbb{d} \in \mathbb{R}^{p \times N+1}$ respectively.
Suppose that the matrices Λ, U, X have low-rank representations,

$$
\Lambda=W_{\Lambda} V_{\Lambda}^{T}, \quad U=W_{U} V_{U}^{T}, \quad X=W_{X} V_{X}^{T}
$$

Low-Rank GMRES (LR-GMRES)

GMRES for solving a linear system $A x=b$

- Krylov subspace $\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \cdots, A^{k-1} b\right\}$
- Gram-Schmidt orthogonalisation

We need:

- Vector addition,
- Matrix vector products,
- Inner products.

Input: Choose x_{0}, compute $r_{0}=b-A x_{0}$ and $v_{1}=r_{0} /\left\|r_{0}\right\|$;
Output: Solution of linear system $A x=b$.
(1) for $j=1,2, \ldots, k$ do
(2) Compute $h_{i j}=\left\langle A v_{j}, v_{i}\right\rangle$ for $i=1,2, \ldots, j$
(3) Compute $\tilde{v}_{j+1}=A v_{j}-\Sigma_{i=1}^{j} h_{i j} v_{i}$
(4) Compute $h_{j+1, j}=\left\|\tilde{v}_{j+1}\right\|_{2}$
(5) $v_{j+1}=\tilde{v}_{j+1} / h_{j+1, j}$
(6) end for
(7) $x_{k}=x_{0}+V_{k} y_{k}$.

Low-Rank GMRES (LR-GMRES)

GMRES for solving a linear system $A x=b$

- Krylov subspace $\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \cdots, A^{k-1} b\right\}$
- Gram-Schmidt orthogonalisation

We need:

- Vector addition,
- Matrix vector products,
- Inner products.

Input: Choose x_{0}, compute $r_{0}=b-A x_{0}$ and $v_{1}=r_{0} /\left\|r_{0}\right\|$;
Output: Solution of linear system $A x=b$.
(1) for $j=1,2, \ldots, k$ do
(2) Compute $h_{i j}=\left\langle A v_{j}, v_{i}\right\rangle$ for $i=1,2, \ldots, j$
(3) Compute $\tilde{v}_{j+1}=A v_{j}-\Sigma_{i=1}^{j} h_{i j} v_{i}$
(4) Compute $h_{j+1, j}=\left\|\tilde{v}_{j+1}\right\|_{2}$
(5) $v_{j+1}=\tilde{v}_{j+1} / h_{j+1, j}$
(6) end for
(7) $x_{k}=x_{0}+V_{k} y_{k}$.

Low-Rank GMRES (LR-GMRES)

$$
\Lambda=W_{\Lambda} V_{\Lambda}^{T}, \quad U=W_{U} V_{U}^{T}, \quad X=W_{X} V_{X}^{T}
$$

Matrix vector products

$$
\begin{aligned}
B \Lambda E_{1}+Q \Lambda E_{2}+X+M X C^{T} & =\mathfrak{b} \\
R U+H X & =\mathfrak{d} \\
\Lambda+M^{T} \Lambda C+H^{T} U & =0
\end{aligned}
$$

becomes
$\left[\begin{array}{llll}B W_{\Lambda} & Q W_{\Lambda} & W_{X} & M W_{X}\end{array}\right]\left[\begin{array}{llll}E_{1} V_{\Lambda} & E_{2} V_{\Lambda} & V_{X} & C V_{X}\end{array}\right]^{T}=\mathfrak{b}$, $\left[\begin{array}{ll}R W_{U} & H W_{X}\end{array}\right]\left[\begin{array}{ll}V_{U} & W_{X}\end{array}\right]^{T}=d$,

$$
\left[\begin{array}{lll}
W_{\Lambda} & M^{T} W_{\Lambda} & H^{T} W_{U}
\end{array}\right]\left[\begin{array}{lll}
V_{\Lambda} & C^{T} V_{\Lambda} & V_{U}
\end{array}\right]^{T}=0
$$

Low-Rank GMRES (LR-GMRES)

$$
\Lambda=W_{\Lambda} V_{\Lambda}^{T}, \quad U=W_{U} V_{U}^{T}, \quad X=W_{X} V_{X}^{T}
$$

Matrix vector products

```
Algorithm 2 Matrix multiplication (Amult)
Input: \(W_{11}, W_{12}, W_{21}, W_{22}, W_{31}, W_{32}\)
Output: \(Z_{11}, Z_{12}, Z_{21}, Z_{22}, Z_{31}, Z_{32}\)
    \(Z_{11}=\left[\begin{array}{llll}B W_{11}, & Q W_{11}, & W_{31}, & M W_{31}\end{array}\right]\),
    \(Z_{12}=\left[\begin{array}{llll}E_{1} W_{12}, & E_{2} W_{12}, & W_{32}, & C W_{32}\end{array}\right]\),
    \(Z_{21}=\left[\begin{array}{ll}R W_{21}, & H W_{31}\end{array}\right]\),
    \(Z_{21}=\left[\begin{array}{ll}W_{22}, & W_{32}\end{array}\right]\),
    \(Z_{31}=\left[\begin{array}{lll}W_{11}, & M^{T} W_{11}, & H^{T} W_{21}\end{array}\right]\),
    \(Z_{32}=\left[\begin{array}{lll}W_{12}, & C^{T} W_{12}, & W_{22}\end{array}\right]\)
```


Low-Rank GMRES (LR-GMRES)

Suppose that the matrices Λ, U, X have low-rank representations,

$$
\Lambda=W_{\Lambda} V_{\Lambda}^{T}, \quad U=W_{U} V_{U}^{T}, \quad X=W_{X} V_{X}^{T}
$$

Vectors z in GMRES become:

$$
\operatorname{vec}\left(\left[\begin{array}{c}
W_{\Lambda} V_{\Lambda}^{T} \\
W_{U} V_{U}^{T} \\
W_{X} V_{X}^{T}
\end{array}\right]\right)=\operatorname{vec}\left(\left[\begin{array}{c}
Z_{11} Z_{12}^{T} \\
Z_{21} Z_{22}^{T} \\
Z_{31} Z_{32}^{T}
\end{array}\right]\right)=z
$$

Vector addition

$$
\begin{aligned}
X_{k 1}= & {\left[\begin{array}{ll}
Y_{k 1}, & Z_{k 1}
\end{array}\right], X_{k 2}=\left[\begin{array}{ll}
Y_{k 2}, & Z_{k 2}
\end{array}\right] \text { for } k=1,2,3: } \\
& x=\operatorname{vec}\left(\left[\begin{array}{l}
X_{11} X_{12}^{T} \\
X_{21} X_{22}^{T} \\
X_{31} X_{32}^{T}
\end{array}\right]\right)=\operatorname{vec}\left(\left[\begin{array}{l}
Y_{11} Y_{12}^{T}+Z_{11} Z_{12}^{T} \\
Y_{21} Y_{22}^{T}+Z_{21} Z_{22}^{T} \\
Y_{31} Y_{32}^{T}+Z_{31} Z_{32}^{T}
\end{array}\right]\right)=y+z .
\end{aligned}
$$

Low-Rank GMRES (LR-GMRES)

$$
\operatorname{vec}\left(\left[\begin{array}{l}
W_{11} W_{12}^{T} \\
W_{21} W_{22}^{T} \\
W_{31} W_{32}^{T}
\end{array}\right]\right)=w \quad \text { and } \quad \operatorname{vec}\left(\left[\begin{array}{c}
V_{11}\left(V_{12}\right)^{T} \\
V_{21}\left(V_{22}\right)^{T} \\
V_{31}\left(V_{32}\right)^{T}
\end{array}\right]\right)=v
$$

To compute the inner product $\langle w, v\rangle$ we use the trace:

$$
\operatorname{vec}(\mathcal{A})^{T} \operatorname{vec}(\mathcal{B})=\operatorname{trace}\left(\mathcal{A}^{T} \mathcal{B}\right)
$$

Low-Rank GMRES (LR-GMRES)

$$
\operatorname{vec}\left(\left[\begin{array}{l}
W_{11} W_{12}^{T} \\
W_{21} W_{22}^{T} \\
W_{31} W_{32}^{T}
\end{array}\right]\right)=w \quad \text { and } \quad \operatorname{vec}\left(\left[\begin{array}{l}
V_{11}\left(V_{12}\right)^{T} \\
V_{21}\left(V_{22}\right)^{T} \\
V_{31}\left(V_{32}\right)^{T}
\end{array}\right]\right)=v
$$

To compute the inner product $\langle w, v\rangle$ we use the trace:

$$
\operatorname{vec}(\mathcal{A})^{T} \operatorname{vec}(\mathcal{B})=\operatorname{trace}\left(\mathcal{A}^{T} \mathcal{B}\right)
$$

Inner products $\langle w, v\rangle$

$$
\begin{aligned}
\langle w, v\rangle= & \operatorname{trace}\left(W_{11}^{T} V_{11}\left(V_{12}\right)^{T} W_{12}\right)+\operatorname{trace}\left(W_{21}^{T} V_{21}\left(V_{22}\right)^{T} W_{22}\right) \\
& +\operatorname{trace}\left(W_{31}^{T} V_{31}\left(V_{32}\right)^{T} W_{32}\right) .
\end{aligned}
$$

Low-Rank GMRES (LR-GMRES)

$$
\operatorname{vec}\left(\left[\begin{array}{l}
W_{11} W_{12}^{T} \\
W_{21} W_{22}^{T} \\
W_{31} W_{32}^{T}
\end{array}\right]\right)=w \quad \text { and } \quad \operatorname{vec}\left(\left[\begin{array}{l}
V_{11}\left(V_{12}\right)^{T} \\
V_{21}\left(V_{22}\right)^{T} \\
V_{31}\left(V_{32}\right)^{T}
\end{array}\right]\right)=v
$$

To compute the inner product $\langle w, v\rangle$ we use the trace:

$$
\operatorname{vec}(\mathcal{A})^{T} \operatorname{vec}(\mathcal{B})=\operatorname{trace}\left(\mathcal{A}^{T} \mathcal{B}\right)
$$

Inner products $\langle w, v\rangle$

$$
\begin{aligned}
\langle w, v\rangle= & \operatorname{trace}\left(W_{11}^{T} V_{11}\left(V_{12}\right)^{T} W_{12}\right)+\operatorname{trace}\left(W_{21}^{T} V_{21}\left(V_{22}\right)^{T} W_{22}\right) \\
& +\operatorname{trace}\left(W_{31}^{T} V_{31}\left(V_{32}\right)^{T} W_{32}\right) .
\end{aligned}
$$

Truncating after concatenation, gives a low-rank implementation of GMRES.

Existence of a low-rank solution

Tensor rank

Let $x=\operatorname{vec}(X) \in \mathbb{R}^{n^{2}}$. The minimal number r such that

$$
x=\sum_{i=1}^{r} u_{i} \otimes v_{i}
$$

where $u_{i}, v_{i} \in \mathbb{R}^{n}$ is called the tensor rank of the vector x.

Tensor rank and standard rank

Let $x \in \mathbb{R}^{n^{2}}$ be the vectorisation of $X \in \mathbb{R}^{n \times n}$, such that $x=\operatorname{vec}(X)$. The tensor rank of the vector x is equal to the rank of the matrix X.

Existence of a low-rank solution

Tensor rank

Let $x=\operatorname{vec}(X) \in \mathbb{R}^{n^{2}}$. The minimal number r such that

$$
x=\sum_{i=1}^{r} u_{i} \otimes v_{i}
$$

where $u_{i}, v_{i} \in \mathbb{R}^{n}$ is called the tensor rank of the vector x.

Tensor rank and standard rank

Let $x \in \mathbb{R}^{n^{2}}$ be the vectorisation of $X \in \mathbb{R}^{n \times n}$, such that $x=\operatorname{vec}(X)$. The tensor rank of the vector x is equal to the rank of the matrix X.

Theorem (Existence of low-rank solution)

$$
\tilde{J}(\delta x)=\frac{1}{2}(L \delta x-b)^{T} D^{-1}(L \delta x-b)+\frac{1}{2}(H \delta x-d)^{T} R^{-1}(H \delta x-d) .
$$

- M is invertible
- spectrum of $\left(-C \otimes I+I \otimes-M^{-1}\right)$ is contained in a rectangle in \mathbb{C}_{-}

Then δx can be approximated by a vector of tensor rank at most $4(2 r+1)^{2}(\operatorname{rank}(b)+p+1)$. Here r arises from the quadrature approximation of L^{-1}, and p is the number of observations in the data assimilation problem.

Low dimensional approximation of weak constraint variational data assimilation

Outline

(1) Saddle point formulation of weak constraint 4D-Var
(2) Low-rank GMRES (LR-GMRES)
(3) Numerical resultsConclusions

One-dimensional advection-diffusion system

We consider the 1D-advection-diffusion problem:

$$
\frac{\partial}{\partial t} u(x, t)=0.1 \frac{\partial^{2}}{\partial x^{2}} u(x, t)+1.4 \frac{\partial}{\partial x} u(x, t)
$$

for $x \in[0,1], t \in(0, T)$, subject to the boundary and initial conditions

$$
\begin{aligned}
u(0, t) & =0, & & t \in(0, T) \\
u(1, t) & =0, & & t \in(0, T) \\
u(x, 0) & =\sin (\pi x), & & x \in[0,1] .
\end{aligned}
$$

Crank-Nicolson scheme, $n=100, \Delta t=10^{-3}$. Assimilation window 200 time steps.

One-dimensional advection-diffusion system

Partial, noisy observations, $p=20, B_{i, j}=0.1 \exp \left(\frac{-|i-j|}{50}\right), Q=10^{-4} I_{100}$, $R=0.01 I_{p}$, saddle point matrix size $=44,000$.

Figure: Root mean squared error for 1D advection-diffusion problem with partial, noisy observations ($r=20$).

One-dimensional advection-diffusion system

Partial, noisy observations, $p=20, B_{i, j}=0.1 \exp \left(\frac{-|i-j|}{50}\right), Q=10^{-4} I_{100}$, $R=0.01 I_{p}$, saddle point matrix size $=44,000$.

Figure: Root mean squared error for 1D advection-diffusion problem with partial, noisy observations ($r=20,5$).

One-dimensional advection-diffusion system

Partial, noisy observations, $p=20, B_{i, j}=0.1 \exp \left(\frac{-|i-j|}{50}\right), Q=10^{-4} I_{100}$, $R=0.01 I_{p}$, saddle point matrix size $=44,000$.

Figure: Root mean squared error for 1D advection-diffusion problem with partial, noisy observations ($r=20,5,1$).

One-dimensional advection-diffusion system

			\# of matrix		elements in	storage reduction
100	199	100	20	20,000	6,000	70%
500	199	500	20	100,000	14,000	86%
500	199	100	20	100,000	14,000	86%
500	199	100	5	100,000	3,500	96.5%
500	199	100	1	100,000	700	99.3%

Table: Storage requirements for full- and low-rank methods in the advection-diffusion equation examples.

Solver	runtime (s)
GMRES	9.0055
LR-GMRES (rank 50)	12.9397
LR-GMRES (rank 20)	2.5673
LR-GMRES (rank 5)	0.5909
LR-GMRES (rank 1)	0.3127

Table: Comparison of computation time for low-rank GMRES for advection-diffusion.

Extension to time-dependent systems

Kronecker saddle point formulation of 4D-Var

$$
\left[\begin{array}{ccc}
E_{1} \otimes B+E_{2} \otimes Q & 0 & I_{N+1} \otimes I_{n}+C \otimes M \\
0 & I_{N+1} \otimes R & I_{N+1} \otimes H \\
I_{N+1} \otimes I_{n}+C^{T} \otimes M^{T} & I_{N+1} \otimes H^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\mu \\
\delta x
\end{array}\right]=\left[\begin{array}{l}
b \\
d \\
0
\end{array}\right],
$$

Extension to time-dependent systems

For time-dependent operators we can rewrite the Kronecker saddle point matrix as

Time-dependent Kronecker saddle point formulation

$$
\left[\begin{array}{ccc}
F_{1} \otimes B+\sum_{i=1}^{N} F_{i+1} \otimes Q_{i} & 0 & I_{N+1} \otimes I_{n}+\sum_{i=1}^{N} C_{i} \otimes M_{i} \\
0 & \sum_{i=0}^{N} F_{i+1} \otimes R_{i} & \sum_{i=0}^{N} F_{i+1} \otimes H_{i} \\
I_{N+1} \otimes I_{n}+\sum_{i=1}^{N} C_{i}^{T} \otimes M_{i}^{T} & \sum_{i=0}^{N} F_{i+1} \otimes H_{i}^{T} & 0
\end{array}\right]
$$

Here

- F_{i} only has 1 on the i th entry of the diagonal,
- C_{i} only has -1 on the i th column of the subdiagonal.

Lorenz-95 example

The model is defined by a system of n non-linear ODEs

$$
\frac{\mathrm{d} x^{i}}{\mathrm{~d} t}=-x^{i-2} x^{i-1}+x^{i-1} x^{i+1}-x^{i}+f,
$$

where $x=\left[x^{1}, x^{2}, \ldots, x^{n}\right]^{T}$ is the state, and f is a forcing term.
We take $n=150$, with noisy observations at each point, over 150 timesteps.

Lorenz-95 example

Noisy observations, $p=150, B_{i, j}=0.1 \exp \left(\frac{-|i-j|}{50}\right), Q=10^{-4} I_{150}$, $R=0.01 I_{p}$, saddle point matrix size $=67,500$.

Figure: Root mean squared error for 150 -dimensional Lorenz- 95 system with noisy observations ($r=20$).

Lorenz-95 example

Noisy observations, $p=150, B_{i, j}=0.1 \exp \left(\frac{-|i-j|}{50}\right), Q=10^{-4} I_{150}$, $R=0.01 I_{p}$, saddle point matrix size $=67,500$.

Figure: Root mean squared error for 150 -dimensional Lorenz- 95 system with noisy observations ($r=5$).

Lorenz-95 example

Experimenting with different rank choices, we have achieved the following reductions:

				\# of matrix elements in		storage
n	N	p	rank	full-rank solution	low-rank solution	reduction
40	199	40	20	8,000	4,800	40%
40	199	8	20	8,000	4,800	40%
500	199	500	20	100,000	14,000	86%
500	199	500	5	100,000	3,500	96.5%

Table: Storage requirements for full- and low-rank methods in the Lorenz-95 examples.

Low dimensional approximation of weak constraint variational data assimilation
Conclusions

Outline

(1) Saddle point formulation of weak constraint 4D-Var
(2) Low-rank GMRES (LR-GMRES)Numerical results
(4) Conclusions

Conclusions and future work

Conclusions

- Weak constraint 4D-Var is a very large optimisation problem.
- It can be shown that under certain assumptions low-rank solutions exist.
- Preconditioning may not be necessary, with the low-rank approach acting like a regularisation.
- Very large reduction in storage and computing time.

Conclusions and future work

Conclusions

- Weak constraint 4D-Var is a very large optimisation problem.
- It can be shown that under certain assumptions low-rank solutions exist.
- Preconditioning may not be necessary, with the low-rank approach acting like a regularisation.
- Very large reduction in storage and computing time.

Future work

- Higher dimensional examples
- Better theoretical foundation (inexact GMRES theory)

References

M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained optimization, SIAM J. Sci. Comput., 37 (2015), pp. B1-B29.
L. Grasedyck, Existence of a low rank or \mathcal{H}-matrix approximant to the solution of a Sylvester equation, Numer. Linear Algebra Appl., 11 (2004), pp. 371-389.
\square Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 7 (1986), pp. 856-869.
M.A. Freitag and D.L.H. Green, A low-rank approach to the solution of weak constraint variational data assimilation problems, J. Comput. Phys., 357 (2018), pp. 263-281.
M. Fisher, S. Gratton, S. Gürol, Y. Trémolet, and X. Vasseur, Low rank updates in preconditioning the saddle point systems arising from data assimilation problems, Optimization Methods and Software, 33(1), (2018), pp. 45-69.

Part II

Balanced truncation within weak constraint 4D-Var

Outline

(5) Model order reduction by Balanced Truncation

(6) Application to weak constraint 4D-Var

Numerical resultsConclusions
Model order reduction

- Given a physical model with dynamics described by states $x \in \mathbb{R}^{n}$ where n is large.
- Describe the dynamics of the system using a reduced number of states $(\ll n)$.
- Should be available at significantly lower cost/storage.
- Can be used for simulation, prediction, optimisation, data assimilation,

Linear time invariant systems

Linear time invariant system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

Coefficient matrices

- system matrix $A \in \mathbb{R}^{n \times n}$,
- input matrix $B \in \mathbb{R}^{n \times m}$,
- output matrix $C \in \mathbb{R}^{p \times n}$.

Input/output/state vectors

- state vector $x(t) \in \mathbb{R}^{n}$ with $x\left(t_{0}\right)=x_{0}$
- input vector/control $u(t) \in \mathbb{R}^{n}$
- output $y(t) \in \mathbb{R}^{p}$

Properties

- n is the order of the system

Linear time invariant systems

Linear time invariant system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

Coefficient matrices

- system matrix $A \in \mathbb{R}^{n \times n}$,
- input matrix $B \in \mathbb{R}^{n \times m}$,
- output matrix $C \in \mathbb{R}^{p \times n}$.

Input/output/state vectors

- state vector $x(t) \in \mathbb{R}^{n}$ with $x\left(t_{0}\right)=x_{0}$
- input vector/control $u(t) \in \mathbb{R}^{n}$
- output $y(t) \in \mathbb{R}^{p}$

Properties

- n is the order of the system

Problem

Many modern applications lead to large systems orders n, e.g. $n \approx 10^{6}$ or higher \Rightarrow very high computations costs!

Linear time invariant systems

Linear time invariant system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, $x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}$ and $y(t) \in \mathbb{R}^{p}$.

Linear time invariant systems

Model order reduction

Linear time invariant system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, $x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}$ and $y(t) \in \mathbb{R}^{p}$.

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =\tilde{A} \tilde{x}(t)+\tilde{B} u(t) \\
\tilde{y}(t) & =\tilde{C} \tilde{x}(t)
\end{aligned}
$$

$\longrightarrow \tilde{A} \in \mathbb{R}^{r \times r}, \tilde{B} \in \mathbb{R}^{r \times m}, \tilde{C} \in \mathbb{R}^{p \times r}$, $\tilde{x}(t) \in \mathbb{R}^{r}, u(t) \in \mathbb{R}^{m}$ and $\tilde{y}(t) \in \mathbb{R}^{p}$ such that

$$
\tilde{y}(t) \approx y(t)
$$

and

$$
r \ll n
$$

Model reduction by projection

Approximate state variable $x(t)$ in a reduced basis, e.g. $x(t) \approx V \tilde{x}(t)$ for some $V \in \mathbb{R}^{n \times r}$ and $r \ll n$:

$$
\begin{aligned}
V \dot{\tilde{x}}(t) & \approx A V \tilde{x}(t)+B u(t) \\
\tilde{y}(t) & =C V \tilde{x}(t)
\end{aligned}
$$

Model reduction by projection

Approximate state variable $x(t)$ in a reduced basis, e.g. $x(t) \approx V \tilde{x}(t)$ for some $V \in \mathbb{R}^{n \times r}$ and $r \ll n$:

$$
\begin{aligned}
V \dot{\tilde{x}}(t) & \approx A V \tilde{x}(t)+B u(t) \\
\tilde{y}(t) & =C V \tilde{x}(t)
\end{aligned}
$$

Let $W^{T} V=I \in \mathbb{R}^{r \times r}, W \in \mathbb{R}^{n \times r}$ and require Petrov-Galerkin condition:

$$
W^{T}(V \dot{\tilde{x}}(t)-(A V \tilde{x}(t)+B u(t)))=0
$$

Model reduction by projection

Approximate state variable $x(t)$ in a reduced basis, e.g. $x(t) \approx V \tilde{x}(t)$ for some $V \in \mathbb{R}^{n \times r}$ and $r \ll n$:

$$
\begin{aligned}
V \dot{\tilde{x}}(t) & \approx A V \tilde{x}(t)+B u(t) \\
\tilde{y}(t) & =C V \tilde{x}(t)
\end{aligned}
$$

Let $W^{T} V=I \in \mathbb{R}^{r \times r}, W \in \mathbb{R}^{n \times r}$ and require Petrov-Galerkin condition:

$$
W^{T}(V \dot{\tilde{x}}(t)-(A V \tilde{x}(t)+B u(t)))=0 .
$$

Projection methods

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =\tilde{A} \tilde{x}(t)+\tilde{B} u(t) \\
\tilde{y}(t) & =\tilde{C} \tilde{x}(t)
\end{aligned}
$$

where $\tilde{A}=W^{T} A V \in \mathbb{R}^{r \times r}, \tilde{B}=W^{T} B \in \mathbb{R}^{r \times m}$ and $\tilde{C}=C V \in \mathbb{R}^{p \times r}$

Model reduction by projection

Approximate state variable $x(t)$ in a reduced basis, e.g. $x(t) \approx V \tilde{x}(t)$ for some $V \in \mathbb{R}^{n \times r}$ and $r \ll n$:

$$
\begin{aligned}
V \dot{\tilde{x}}(t) & \approx A V \tilde{x}(t)+B u(t) \\
\tilde{y}(t) & =C V \tilde{x}(t)
\end{aligned}
$$

Let $W^{T} V=I \in \mathbb{R}^{r \times r}, W \in \mathbb{R}^{n \times r}$ and require Petrov-Galerkin condition:

$$
W^{T}(V \dot{\tilde{x}}(t)-(A V \tilde{x}(t)+B u(t)))=0 .
$$

Projection methods

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =\tilde{A} \tilde{x}(t)+\tilde{B} u(t) \\
\tilde{y}(t) & =\tilde{C} \tilde{x}(t)
\end{aligned}
$$

where $\tilde{A}=W^{T} A V \in \mathbb{R}^{r \times r}, \tilde{B}=W^{T} B \in \mathbb{R}^{r \times m}$ and $\tilde{C}=C V \in \mathbb{R}^{p \times r}$
Need to find projection matrices V and W !

Balanced Truncation - controllability/observability for deterministic case

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
& y(t)=C x(t)
\end{aligned}
$$

Observability

- suppose $u(t)=0$ for all $t \in[0 ; T]$

Balanced Truncation - controllability/observability for deterministic case

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0} \\
& y(t)=C x(t)
\end{aligned}
$$

Observability

- suppose $u(t)=0$ for all $t \in[0 ; T] \Rightarrow y(t)=C e^{t A} x_{0}$

Balanced Truncation - controllability/observability for deterministic case

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)
\end{aligned}
$$

Observability

- suppose $u(t)=0$ for all $t \in[0 ; T] \Rightarrow y(t)=C e^{t A} x_{0}$
- gauge how easy the initial state x_{0} can be observed by the energy that state produces (output) over the interval $[0 ; T]$: the more energy the state produces, the easier it is to observe:

$$
\int_{0}^{T}\|y(t)\|^{2} d t=\int_{0}^{T} x_{0}^{T} e^{t A^{T}} C^{T} C e^{t A} x_{0} d t=x_{0}^{T} Q_{T} x_{0}
$$

where $Q_{T}=\int_{0}^{T} e^{t A^{T}} C^{T} C e^{t A} d t$

Balanced Truncation - controllability/observability for deterministic case

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)
\end{aligned}
$$

Observability

- suppose $u(t)=0$ for all $t \in[0 ; T] \Rightarrow y(t)=C e^{t A} x_{0}$
- gauge how easy the initial state x_{0} can be observed by the energy that state produces (output) over the interval $[0 ; T]$: the more energy the state produces, the easier it is to observe:

$$
\int_{0}^{T}\|y(t)\|^{2} d t=\int_{0}^{T} x_{0}^{T} e^{t A^{T}} C^{T} C e^{t A} x_{0} d t=x_{0}^{T} Q_{T} x_{0}
$$

where $Q_{T}=\int_{0}^{T} e^{t A^{T}} C^{T} C e^{t A} d t$

Controllability/Reachability

- amount of energy required (by input) to steer x_{0} to the target x_{T}.

Balanced Truncation - controllability/observability for deterministic case

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \quad x(0)=x_{0} \\
y(t) & =C x(t)
\end{aligned}
$$

Observability

- suppose $u(t)=0$ for all $t \in[0 ; T] \Rightarrow y(t)=C e^{t A} x_{0}$
- gauge how easy the initial state x_{0} can be observed by the energy that state produces (output) over the interval $[0 ; T]$: the more energy the state produces, the easier it is to observe:

$$
\int_{0}^{T}\|y(t)\|^{2} d t=\int_{0}^{T} x_{0}^{T} e^{t A^{T}} C^{T} C e^{t A} x_{0} d t=x_{0}^{T} Q_{T} x_{0}
$$

where $Q_{T}=\int_{0}^{T} e^{t A^{T}} C^{T} C e^{t A} d t$

Controllability/Reachability

- amount of energy required (by input) to steer x_{0} to the target x_{T}.
- similar derivation gives

$$
\int_{0}^{T}\|u(t)\|^{2} d t=x_{T}^{T} P_{T}^{-1} x_{T} \quad \text { where } \quad P_{T}=\int_{0}^{T} e^{t A} B B^{T} e^{t A^{T}} d t
$$

Balanced Truncation - controllability and observability

Controllability

Let A be stable. The unique solution P of the Lyapunov equation

$$
A P+P A^{T}=-B B^{T}
$$

is positive definite if and only if the pair (A, B) is controllable.

$$
P=\int_{0}^{\infty} e^{A \tau} B B^{T} e^{A^{T} \tau} d \tau \quad \text { Controllability Gramian. }
$$

Balanced Truncation - controllability and observability

Controllability

Let A be stable. The unique solution P of the Lyapunov equation

$$
A P+P A^{T}=-B B^{T}
$$

is positive definite if and only if the pair (A, B) is controllable.

$$
P=\int_{0}^{\infty} e^{A \tau} B B^{T} e^{A^{T} \tau} d \tau \quad \text { Controllability Gramian. }
$$

Observability

Let A be stable. The unique solution Q of the Lyapunov equation

$$
A^{T} Q+Q A=-C^{T} C
$$

is positive definite if and only if the pair (A, C) is observable.

$$
Q=\int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} d \tau \quad \text { Observability Gramian. }
$$

Balanced Truncation

Idea behind Balanced Truncation

- States that are difficult to reach have large components in the span of the eigenvectors corresponding to small eigenvalues of the reachability Gramian P
- States that are difficult to observe have large components in the span of eigenvectors corresponding to small eigenvalues of the observability Gramian Q

Balanced Truncation

Idea behind Balanced Truncation

- States that are difficult to reach have large components in the span of the eigenvectors corresponding to small eigenvalues of the reachability Gramian P
- States that are difficult to observe have large components in the span of eigenvectors corresponding to small eigenvalues of the observability Gramian Q
- eliminates states that are both difficult to reach and difficult to observe.

Balanced Truncation

Idea behind Balanced Truncation

- States that are difficult to reach have large components in the span of the eigenvectors corresponding to small eigenvalues of the reachability Gramian P
- States that are difficult to observe have large components in the span of eigenvectors corresponding to small eigenvalues of the observability Gramian Q
- eliminates states that are both difficult to reach and difficult to observe.
- find a basis in which the dominant reachable and observable states are the same

Balanced Truncation (BT)

Balanced System

A stable linear system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

is called balanced if the observability/controllability Gramians P, Q from

$$
A P+P A^{T}=-B B^{T}, \quad A^{T} Q+Q A=-C^{T} C
$$

satisfy $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0$ called Hankel Singular Values, given by $\sqrt{\lambda(P Q)}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}=\Sigma$.

Balanced Truncation (BT)

Balanced System

A stable linear system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

is called balanced if the observability/controllability Gramians P, Q from

$$
A P+P A^{T}=-B B^{T}, \quad A^{T} Q+Q A=-C^{T} C
$$

satisfy $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0$ called Hankel Singular Values, given by $\sqrt{\lambda(P Q)}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}=\Sigma$.

Balancing Transformation

Transformation $\tilde{x}=T x, T \in \mathbb{R}^{n \times n}$, always exists if $P, Q>0$ and can be chosen as

$$
T=\Sigma^{-\frac{1}{2}} U^{T} L^{T} \quad \text { and } \quad T^{-1}=K V \Sigma^{-\frac{1}{2}}
$$

where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $P=K K^{T}, Q=L L^{T}$ and $K^{T} L=V \Sigma U^{T}$.

Balanced Truncation (BT)

Balancing Transformation

Transformation $\tilde{x}=T x, T \in \mathbb{R}^{n \times n}$, always exists if $P, Q>0$ and can be chosen as

$$
T=\Sigma^{-\frac{1}{2}} U^{T} L^{T} \quad \text { and } \quad T^{-1}=K V \Sigma^{-\frac{1}{2}},
$$

where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $P=K K^{T}, Q=L L^{T}$ and $K^{T} L=V \Sigma U^{T}$ gives the required matrices.

$$
(\tilde{A}, \tilde{B}, \tilde{C})=\left(T A T^{-1}, T B, C T^{-1}\right)
$$

Balanced Gramians $\tilde{P}=T P T^{T}$ and $\tilde{Q}=T^{-T} Q T^{-1}$ which are equal and diagonal and

$$
(\tilde{A}, \tilde{B}, \tilde{C})=\left(\left[\begin{array}{ll}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right],\left[\begin{array}{l}
\tilde{B}_{1} \\
\tilde{B}_{2}
\end{array}\right],\left[\begin{array}{cc}
\tilde{C}_{1} & \tilde{C}_{2}
\end{array}\right]\right)
$$

Balanced Truncation (BT)

Balancing Transformation

Transformation $\tilde{x}=T x, T \in \mathbb{R}^{n \times n}$, always exists if $P, Q>0$ and can be chosen as

$$
T=\Sigma^{-\frac{1}{2}} U^{T} L^{T} \quad \text { and } \quad T^{-1}=K V \Sigma^{-\frac{1}{2}},
$$

where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $P=K K^{T}, Q=L L^{T}$ and $K^{T} L=V \Sigma U^{T}$ gives the required matrices.

$$
(\tilde{A}, \tilde{B}, \tilde{C})=\left(T A T^{-1}, T B, C T^{-1}\right)
$$

Balanced Gramians $\tilde{P}=T P T^{T}$ and $\tilde{Q}=T^{-T} Q T^{-1}$ which are equal and diagonal and

$$
(\tilde{A}, \tilde{B}, \tilde{C})=\left(\left[\begin{array}{ll}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right],\left[\begin{array}{l}
\tilde{B}_{1} \\
\tilde{B}_{2}
\end{array}\right],\left[\begin{array}{cc}
\tilde{C}_{1} & \tilde{C}_{2}
\end{array}\right]\right)
$$

Truncating

By truncating the discardable states, the truncated reduced system is then given by $\left(\tilde{A}_{11}, \tilde{B}_{1}, \tilde{C}_{1}\right)$.

Outline

5 Model order reduction by Balanced Truncation
(6) Application to weak constraint 4D-Var
(7) Numerical resultsConclusions

Concise notation for incremental 4D-Var (all-at-once approach)

Minimise

$$
\tilde{J}(\delta x)=\frac{1}{2}\|L \delta x-b\|_{D^{-1}}^{2}+\frac{1}{2}\|\mathrm{H} \delta x-d\|_{\mathrm{R}^{-1}}^{2}
$$

with

$$
\begin{aligned}
& L=\left[\begin{array}{cccc}
I & & & \\
-M_{1} & I & & \\
& \ddots & \ddots & \\
& & -M_{N} & I
\end{array}\right] \\
& \mathrm{H}=\left[\begin{array}{llll}
H_{0} & & & \\
& H_{1} & & \\
& & \ddots & \\
& & & H_{N}
\end{array}\right]
\end{aligned}
$$

- L - all-at-once model operator over the assimilation window
- H - all-at-once observation operator

Balanced truncation for weak constraint 4D-Var

Idea: Project M_{k} and H_{k} onto lower dimensional subspace

$$
\begin{aligned}
\tilde{M}_{k} & =W^{T} M_{k} V \in \mathbb{R}^{r \times r} \\
\tilde{H}_{k} & =H_{k} V \in \mathbb{R}^{p_{k} \times r}
\end{aligned}
$$

where W and V are obtained from Balanced Truncation.

Balanced truncation for weak constraint 4D-Var

Idea: Project M_{k} and H_{k} onto lower dimensional subspace

$$
\begin{aligned}
\tilde{M}_{k} & =W^{T} M_{k} V \in \mathbb{R}^{r \times r} \\
\tilde{H}_{k} & =H_{k} V \in \mathbb{R}^{p_{k} \times r}
\end{aligned}
$$

where W and V are obtained from Balanced Truncation.
Projection of the covariance matrices:

$$
\hat{B}=W^{T} B W, \quad \hat{Q}_{k}=W^{T} Q_{k} W
$$

e.g.

$$
\tilde{J}(\delta \hat{x})=\frac{1}{2}\|\hat{L} \delta \hat{x}-\hat{b}\|_{\hat{D}^{-1}}^{2}+\frac{1}{2}\|d-\hat{H} \delta \hat{x}\|_{R_{k}^{-1}}^{2}
$$

where $\delta \hat{x}=W^{T} \delta x, \hat{L}, \hat{H}$, etc projected versions of L, H.

Balanced truncation for weak constraint 4D-Var

Consider linear discrete system

$$
\begin{aligned}
\delta x_{-1} & =0, \\
\delta x_{k+1} & =M \delta x_{k}+u_{k}, \\
d_{k} & =H \delta x_{k},
\end{aligned}
$$

where, in the weak constraint data assimilation case, the inputs are:

$$
u_{k} \sim \begin{cases}\mathcal{N}(0, B), & \text { for } k=-1 \\ \mathcal{N}\left(0, Q_{k}\right), & \text { for } k \geq 0\end{cases}
$$

Balanced truncation for weak constraint 4D-Var

Consider linear discrete system

$$
\begin{aligned}
\delta x_{-1} & =0, \\
\delta x_{k+1} & =M \delta x_{k}+u_{k}, \\
d_{k} & =H \delta x_{k},
\end{aligned}
$$

where, in the weak constraint data assimilation case, the inputs are:

$$
u_{k} \sim \begin{cases}\mathcal{N}(0, B), & \text { for } k=-1 \\ \mathcal{N}\left(0, Q_{k}\right), & \text { for } k \geq 0\end{cases}
$$

Reachability and observability Gramians (for the discrete version)

$$
\begin{aligned}
& \mathcal{G}_{r}=B+\sum_{j=1}^{\infty} M^{j} Q\left(M^{T}\right)^{j} \\
& \mathcal{G}_{o}=\sum_{j=0}^{\infty}\left(M^{T}\right)^{j} H^{T} R H M^{j}
\end{aligned}
$$

Balanced truncation for weak constraint 4D-Var

Approach: Solve discrete Lyapunov (or Stein) equations:

$$
\begin{aligned}
& \mathcal{G}_{r}=M \mathcal{G}_{r} M^{T}+B+M(Q-B) M^{T}, \\
& \mathcal{G}_{o}=M^{T} \mathcal{G}_{o} M+H^{T} R H .
\end{aligned}
$$

Balanced truncation for weak constraint 4D-Var

Approach: Solve discrete Lyapunov (or Stein) equations:

$$
\begin{aligned}
& \mathcal{G}_{r}=M \mathcal{G}_{r} M^{T}+B+M(Q-B) M^{T}, \\
& \mathcal{G}_{o}=M^{T} \mathcal{G}_{o} M+H^{T} R H
\end{aligned}
$$

Decompose $\mathcal{G}_{r}=K K^{T}, \mathcal{G}_{o}=L L^{T}$ and compute SVD of

$$
K^{T} L=Z \Sigma Y^{T}
$$

where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ are the Hankel singular values.

Balanced truncation for weak constraint 4D-Var

Approach: Solve discrete Lyapunov (or Stein) equations:

$$
\begin{aligned}
& \mathcal{G}_{r}=M \mathcal{G}_{r} M^{T}+B+M(Q-B) M^{T}, \\
& \mathcal{G}_{o}=M^{T} \mathcal{G}_{o} M+H^{T} R H
\end{aligned}
$$

Decompose $\mathcal{G}_{r}=K K^{T}, \mathcal{G}_{o}=L L^{T}$ and compute SVD of

$$
K^{T} L=Z \Sigma Y^{T}
$$

where $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ are the Hankel singular values.
Projection matrices are

$$
\begin{aligned}
V & =K Z_{r} \Sigma_{r}^{-\frac{1}{2}} \in \mathbb{R}^{n \times r} \\
W & =L Y_{r} \Sigma_{r}^{-\frac{1}{2}} \in \mathbb{R}^{n \times r}
\end{aligned}
$$

Low dimensional approximation of weak constraint variational data assimilation Numerical results

Outline

(5) Model order reduction by Balanced Truncation
(6) Application to weak constraint 4D-Var
(7) Numerical resultsConclusions

One-dimensional advection-diffusion system

$$
\frac{\partial}{\partial t} u(x, t)=0.1 \frac{\partial^{2}}{\partial x^{2}} u(x, t)+1.4 \frac{\partial}{\partial x} u(x, t)
$$

for $x \in[0,1], t \in(0, T)$, subject to the boundary and initial conditions

$$
\begin{aligned}
u(0, t) & =0, & & t \in(0, T) \\
u(1, t) & =0, & & t \in(0, T) \\
u(x, 0) & =\sin (\pi x), & & x \in[0,1] .
\end{aligned}
$$

Crank-Nicolson scheme, $n=500, \Delta t=10^{-3}$. Assimilation window 200 time steps.

One-dimensional advection-diffusion system

- - - Initial Guess \rightarrow - No projection \cdot. Coarse projection \rightarrow - Balanced truncation

Figure: RMS error for the 1D advection-diffusion example with full, noisy observations $(r=20, r=5)$.

One-dimensional advection-diffusion system

- - - Initial Guess \rightarrow - No projection \cdot. Coarse projection \rightarrow - Balanced truncation

Figure: RMS error for the 1D advection-diffusion example with partial, noisy observations $(r=20, r=5)$.

One-dimensional advection-diffusion system

Projection method	Forming matrices	CG solve	Total
No proj.	0	5.0049	5.0049
BT $(r=20)$	1.2271	0.1419	1.3690
Coarse proj. $(r=20)$	0.0009	0.0208	0.0217
BT $(r=5)$	1.1778	0.0467	1.2245
Coarse proj. $(r=5)$	0.0007	0.0125	0.0132

Table: Computation time for 1D advection-diffusion equation example ($r=20, r=5$).

Low dimensional approximation of weak constraint variational data assimilation

Outline

(5) Model order reduction by Balanced Truncation
(6) Application to weak constraint 4D-VarNumerical results
(8) Conclusions

Conclusions and future work

Conclusions

- Balanced truncation effective reducing the dimension of forward model
- Expensive offline phase, cheap online computation
- Computable error bounds available
- Reduction in storage and computing time

Conclusions and future work

Conclusions

- Balanced truncation effective reducing the dimension of forward model
- Expensive offline phase, cheap online computation
- Computable error bounds available
- Reduction in storage and computing time

Future work

- Better methods for nonlinear problems (POD-DEIM)
- Online model reduction

References

A. C. Antoulas, Approximation of large-scale dynamical systems, vol. 6, SIAM (2005), pp. B1-B29.A. S. Lawless, N. K. Nichols, C. Boess, A. Bunse-Gerstner, Approximate Gauss-Newton methods for optimal state estimation using reduced-order models., Internat. J. Numer. Methods Fluids, 56(8) (2008), pp. 1367-1373.C. Boess, A. S. Lawless, N. K. Nichols, A. Bunse-Gerstner, State estimation using model order reduction for unstable systems., Comput. Fluids, 46(1) (2011), pp. 155-160.M.A. Freitag and D.L.H. Green, Projection methods for weak constraint variational data assimilation, Submitted. 2019.

References

A. C. Antoulas, Approximation of large-scale dynamical systems, vol. 6, SIAM (2005), pp. B1-B29.A. S. Lawless, N. K. Nichols, C. Boess, A. Bunse-Gerstner, Approximate Gauss-Newton methods for optimal state estimation using reduced-order models., Internat. J. Numer. Methods Fluids, 56(8) (2008), pp. 1367-1373.R
C. Boess, A. S. Lawless, N. K. Nichols, A. Bunse-Gerstner, State estimation using model order reduction for unstable systems., Comput. Fluids, 46(1) (2011), pp. 155-160.
M.A. Freitag and D.L.H. Green, Projection methods for weak constraint variational data assimilation, Submitted. 2019.

Thank You!

