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Introduction

Data assimilation setting

Denote xk ∈ Rn state of a system at time tk.

numerical (physical) model Mk: Rn → Rn such that

xk+1 =Mk(xk) + ηk.

prior estimate xb0 of the initial condition x0,

x0 = xb0 + e0.

observations yk∈ Rpk of the state:

yk = Hk(xk) + εk,

where Hk : Rn → Rpk is an observation operator.

The errors ηk, e0, εk are Gaussian with zero mean and covariances Qk ∈ Rn×n,
B ∈ Rn×n, Rk ∈ Rpk×pk respectively.
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Introduction

Schematics of 4D-Var data assimilation

Take observations yk of the true dynamical system.
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Introduction

Schematics of 4D-Var data assimilation

Use a priori information xb0 for the initial condition for the numerical model
xk+1 =Mk+1,k(xk), approximating the (”true”) dynamical system.
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Introduction

Schematics of 4D-Var data assimilation

Run the numerical model using the estimated initial condition.
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Introduction

Schematics of 4D-Var data assimilation

Minimise a cost function J(x) to find an improved initial condition xa0 .
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Introduction

Schematics of 4D-Var data assimilation

The numerical model is run using xa0 as an initial condition.
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Introduction

Schematics of 4D-Var data assimilation

The simulation is continued to create a forecast.
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Introduction

Schematics of 4D-Var data assimilation

The process is repeated for new observations.
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Part I

A low-rank approach to the solution of weak constraint
variational data assimilation problems



Low dimensional approximation of weak constraint variational data assimilation

Saddle point formulation of weak constraint 4D-Var
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Saddle point formulation of weak constraint 4D-Var

Weak Constraint 4D-Var

4D-Var cost function

J(x) =
1

2
‖x0 − xb0‖2B−1 +

1

2

N∑
k=0

‖yk −Hk(xk)‖2
R−1

k

+
1

2

N∑
k=1

‖xk −Mk(xk−1)‖2
Q−1

k
.

where

x =
[
xT0 , x

T
1 , . . . , x

T
N

]T
B, Rk, Qk postitive definite error covariance matrices

yk observation vector

Hk maps state vector xk from model space to observation space

Mk model integration
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Saddle point formulation of weak constraint 4D-Var

Incremental 4D-Var - Gauss-Newton method

4D-Var cost function

J(x) =
1

2
‖x0 − xb0‖2B−1 +

1

2

N∑
k=0

‖yk −Hk(xk)‖2
R−1

k

+
1

2

N∑
k=1

‖xk −Mk(xk−1)‖2
Q−1

k
.

Minimisation using Gauss-Newton method:

linearise Mk and Hk about x(`) at each step

(approximately) minimise quadratic cost function J̃(δx(`)).

Increment at iterate `,

δx(`) =
[
(δx

(`)
0 )T , (δx

(`)
1 )T , . . . , (δx

(`)
N )T

]T
.

x(`+1) = x(`) + δx(`)
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Saddle point formulation of weak constraint 4D-Var

Incremental 4D-Var - Gauss-Newton method

Incremental 4D-Var cost function

J̃(δx(`)) =
1

2
‖δx(`)

0 − b(`)0 ‖B−1 +
1

2

N∑
k=0

‖d(`)
k −Hkδx

(`)
k ‖R−1

k

+
1

2

N∑
k=1

‖δx(`)
k −Mkδx

(`)
k−1 − c

(`)
k ‖Q−1

k
.

Mk ∈ Rn×n, Hk ∈ Rpk×n linearisations of Mk and Hk about x(`).

b
(`)
0 = xb0 − x

(`)
0 , d

(`)
k = yk −Hk(x

(`)
k ), c

(`)
k =Mk(x

(`)
k−1)− x(`)

k .
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Saddle point formulation of weak constraint 4D-Var

Concise notation for incremental 4D-Var (all-at-once approach)

Minimise (inner iteration)

J̃(δx) =
1

2
‖Lδx− b‖2D−1 +

1

2
‖Hδx− d‖2R−1

with

L =


I
−M1 I

. . .
. . .

−MN I



D =


B

Q1

. . .
QN

 , R =


R0

R1

. . .
RN



H =


H0

H1

. . .
HN

 , b =


xb0 − x0

M1(x0)− x1

...
MN (xN−1)− xN

 , d =


y0 −H0(x0)
y1 −H1(x1)

...
yN −HN (xN )

 .
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Saddle point formulation of weak constraint 4D-Var

State formulation and saddle formulation

J̃(δx) =
1

2
‖Lδx− b‖2D−1 +

1

2
‖Hδx− d‖2R−1

Minimise

∇J̃(δx) = LTD−1(Lδx− b) + HTR−1(Hδx− d) = 0.

(LTD−1L+ HTR−1H)δx = LTD−1b+ HTR−1d

with λ = D−1(b− Lδx), µ = R−1(d−Hδx) (or writing the problem with
equality constraints and using KKT conditions) we obtain

∇J̃ = LTλ+ HTµ = 0,

Dλ+ Lδx = b,

Rµ+ Hδx = d.
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Saddle point formulation of weak constraint 4D-Var

Saddle Point Formulation

∇J̃ = LTλ+ HTµ = 0,

Dλ+ Lδx = b,

Rµ+ Hδx = d.

Saddle point formulation of 4D-VarD 0 L
0 R H
LT HT 0

 λµ
δx

 =

bd
0



L integration of a numerical model, LT its adjoint

H, L computationally expensive!

D, R are large, but cheaper to apply than a model evaluation

saddle point matrix is symmetric indefinite

preconditioned MINRES or GMRES.
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Saddle point formulation of weak constraint 4D-Var

Saddle Point Formulation

∇J̃ = LTλ+ HTµ = 0,

Dλ+ Lδx = b,

Rµ+ Hδx = d.

Saddle point formulation of 4D-VarD 0 L
0 R H
LT HT 0

 λµ
δx

 =

bd
0


L integration of a numerical model, LT its adjoint
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Low-rank GMRES (LR-GMRES)
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1 Saddle point formulation of weak constraint 4D-Var

2 Low-rank GMRES (LR-GMRES)

3 Numerical results
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Low-rank GMRES (LR-GMRES)

The Kronecker product

Let A, B and C be matrices of appropriate size.
Properties of the Kronecker product and vec (·) operator:

A⊗ B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 vec (C) =



c11

...
c1n

...
cmn

 .

Moreover
(BT ⊗A)vec (C) = vec (ACB) .
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Low-rank GMRES (LR-GMRES)

Kronecker formulation

Saddle point formulation of 4D-Var D 0 L
0 R H
LT HT 0

 λµ
δx

 =

bd
0


Assume Qk = Q, Rk = R, Hk = H, Mk = M , and number of observations
pk = p for each k. Define

C =

 0
−1 0

.
.
.

.
.
.

−1 0

, E1 =

1
0

.
.
.

0

, E2 =

0
1

.
.
.

1

.
Kronecker saddle point formulation of 4D-Var E1 ⊗ B + E2 ⊗Q 0 IN+1 ⊗ In + C ⊗M

0 IN+1 ⊗ R IN+1 ⊗H
IN+1 ⊗ In + CT ⊗MT IN+1 ⊗HT 0

 λµ
δx

 =

bd
0

 ,
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Low-rank GMRES (LR-GMRES)

Simultaneous matrix equations

Kronecker saddle point formulation of 4D-Var E1 ⊗ B + E2 ⊗Q 0 IN+1 ⊗ In + C ⊗M
0 IN+1 ⊗ R IN+1 ⊗H

IN+1 ⊗ In + CT ⊗MT IN+1 ⊗HT 0

 λµ
δx

 =

bd
0

 ,
Using (BT ⊗A)vec (C) = vec (ACB):

Simultaneous matrix equations

BΛE1 +QΛE2 +X +MXCT = b,

RU +HX = d,

Λ +MTΛC +HTU = 0.

where λ, δx, b, µ and d are vectorised forms of the matrices Λ, X,b ∈ Rn×N+1

and U,d ∈ Rp×N+1 respectively.

Suppose that the matrices Λ, U,X have low-rank representations,

Λ = WΛV
T
Λ , U = WUV

T
U , X = WXV

T
X .
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Low-rank GMRES (LR-GMRES)
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Low-rank GMRES (LR-GMRES)

Simultaneous matrix equations

Kronecker saddle point formulation of 4D-Var E1 ⊗ B + E2 ⊗Q 0 IN+1 ⊗ In + C ⊗M
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Using (BT ⊗A)vec (C) = vec (ACB):

Simultaneous matrix equations

BΛE1 +QΛE2 +X +MXCT = b,

RU +HX = d,

Λ +MTΛC +HTU = 0.

where λ, δx, b, µ and d are vectorised forms of the matrices Λ, X,b ∈ Rn×N+1

and U,d ∈ Rp×N+1 respectively.
Suppose that the matrices Λ, U,X have low-rank representations,
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T
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T
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Low-rank GMRES (LR-GMRES)

Low-Rank GMRES (LR-GMRES)

GMRES for solving a linear system Ax = b

Krylov subspace Kk(A, b) = span{b, Ab, · · · , Ak−1b}
Gram-Schmidt orthogonalisation

We need:

Vector addition,

Matrix vector products,

Inner products.

Input: Choose x0, compute r0 = b− Ax0 and
v1 = r0/‖r0‖;
Output: Solution of linear system Ax = b.

1 for j = 1, 2, . . . , k do

2 Compute hij = 〈Avj , vi〉 for
i = 1, 2, . . . , j

3 Compute ṽj+1 = Avj−Σj
i=1hijvi

4 Compute hj+1,j = ‖ṽj+1‖2
5 vj+1 = ṽj+1/hj+1,j

6 end for

7 xk = x0+Vkyk.
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Low-rank GMRES (LR-GMRES)

Low-Rank GMRES (LR-GMRES)

Λ = WΛV
T
Λ , U = WUV

T
U , X = WXV

T
X .

Matrix vector products

BΛE1 +QΛE2 +X +MXCT = b,

RU +HX = d,

Λ +MTΛC +HTU = 0.

becomes[
BWΛ QWΛ WX MWX

] [
E1VΛ E2VΛ VX CVX

]T
= b,[

RWU HWX

] [
VU WX

]T
= d,[

WΛ MTWΛ HTWU

] [
VΛ CTVΛ VU

]T
= 0.
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Low-rank GMRES (LR-GMRES)

Low-Rank GMRES (LR-GMRES)

Λ = WΛV
T
Λ , U = WUV

T
U , X = WXV

T
X .

Matrix vector products
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Low-rank GMRES (LR-GMRES)

Low-Rank GMRES (LR-GMRES)

Suppose that the matrices Λ, U,X have low-rank representations,

Λ = WΛV
T
Λ , U = WUV

T
U , X = WXV

T
X .

Vectors z in GMRES become:

vec

WΛV
T
Λ

WUV
T
U

WXV
T
X

 = vec

Z11Z
T
12

Z21Z
T
22

Z31Z
T
32

 = z.

Vector addition

Xk1 = [Yk1, Zk1], Xk2 = [Yk2, Zk2] for k = 1, 2, 3:

x = vec

X11X
T
12

X21X
T
22

X31X
T
32

 = vec

Y11Y
T
12 + Z11Z

T
12

Y21Y
T
22 + Z21Z

T
22

Y31Y
T
32 + Z31Z

T
32

 = y + z.
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Low-rank GMRES (LR-GMRES)

Low-Rank GMRES (LR-GMRES)

vec

W11W
T
12

W21W
T
22

W31W
T
32

 = w and vec

V11(V12)T

V21(V22)T

V31(V32)T

 = v,

To compute the inner product 〈w, v〉 we use the trace:

vec (A)T vec (B) = trace(ATB)

Inner products 〈w, v〉

〈w, v〉 = trace
(
WT

11V11(V12)TW12

)
+ trace

(
WT

21V21(V22)TW22

)
+ trace

(
WT

31V31(V32)TW32

)
.

Truncating after concatenation, gives a low-rank implementation of GMRES.
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Low-rank GMRES (LR-GMRES)
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Low-rank GMRES (LR-GMRES)
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Low-rank GMRES (LR-GMRES)

Existence of a low-rank solution

Tensor rank

Let x = vec (X) ∈ Rn
2

. The minimal number r such that

x =

r∑
i=1

ui ⊗ vi,

where ui, vi ∈ Rn is called the tensor rank of the vector x.

Tensor rank and standard rank

Let x ∈ Rn
2

be the vectorisation of X ∈ Rn×n, such that x = vec (X). The
tensor rank of the vector x is equal to the rank of the matrix X.

Theorem (Existence of low-rank solution)

J̃(δx) =
1

2
(Lδx− b)TD−1(Lδx− b) +

1

2
(Hδx− d)TR−1(Hδx− d).

M is invertible

spectrum of (−C ⊗ I + I ⊗−M−1) is contained in a rectangle in C−
Then δx can be approximated by a vector of tensor rank at most
4(2r + 1)2(rank(b) + p+ 1). Here r arises from the quadrature approximation
of L−1, and p is the number of observations in the data assimilation problem.
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Numerical results
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Numerical results

One-dimensional advection-diffusion system

We consider the 1D-advection-diffusion problem:

∂

∂t
u(x, t) = 0.1

∂2

∂x2
u(x, t) + 1.4

∂

∂x
u(x, t)

for x ∈ [0, 1], t ∈ (0, T ), subject to the boundary and initial conditions

u(0, t) = 0, t ∈ (0, T )

u(1, t) = 0, t ∈ (0, T )

u(x, 0) = sin(πx), x ∈ [0, 1].

Crank-Nicolson scheme, n = 100, ∆t = 10−3. Assimilation window 200 time
steps.
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Numerical results

One-dimensional advection-diffusion system

Partial, noisy observations, p = 20, Bi,j = 0.1 exp(−|i−j|
50

), Q = 10−4I100,
R = 0.01Ip, saddle point matrix size = 44, 000.
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Low-rank

Figure: Root mean squared error for 1D advection-diffusion problem with partial, noisy
observations (r = 20).
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Numerical results

One-dimensional advection-diffusion system

Partial, noisy observations, p = 20, Bi,j = 0.1 exp(−|i−j|
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Figure: Root mean squared error for 1D advection-diffusion problem with partial, noisy
observations (r = 20, 5).
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Numerical results

One-dimensional advection-diffusion system

Partial, noisy observations, p = 20, Bi,j = 0.1 exp(−|i−j|
50

), Q = 10−4I100,
R = 0.01Ip, saddle point matrix size = 44, 000.
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Figure: Root mean squared error for 1D advection-diffusion problem with partial, noisy
observations (r = 20, 5, 1).
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Numerical results

One-dimensional advection-diffusion system

# of matrix elements in storage
n N p rank full-rank solution low-rank solution reduction

100 199 100 20 20,000 6,000 70%
500 199 500 20 100,000 14,000 86%
500 199 100 20 100,000 14,000 86%
500 199 100 5 100,000 3,500 96.5%
500 199 100 1 100,000 700 99.3%

Table: Storage requirements for full- and low-rank methods in the advection-diffusion
equation examples.

Solver runtime (s)

GMRES 9.0055
LR-GMRES (rank 50) 12.9397
LR-GMRES (rank 20) 2.5673
LR-GMRES (rank 5) 0.5909
LR-GMRES (rank 1) 0.3127

Table: Comparison of computation time for low-rank GMRES for advection-diffusion.
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Numerical results

Extension to time-dependent systems

For time-dependent operators we can rewrite the Kronecker saddle point matrix
as

Kronecker saddle point formulation of 4D-Var E1 ⊗ B + E2 ⊗Q 0 IN+1 ⊗ In + C ⊗M
0 IN+1 ⊗ R IN+1 ⊗H

IN+1 ⊗ In + CT ⊗MT IN+1 ⊗HT 0

 λµ
δx

 =

bd
0

 ,

Here

Fi only has 1 on the ith entry of the diagonal,

Ci only has −1 on the ith column of the subdiagonal.
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CT
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T
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Numerical results

Lorenz-95 example

The model is defined by a system of n non-linear ODEs

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + f,

where x = [x1, x2, . . . , xn]T is the state, and f is a forcing term.
We take n = 150, with noisy observations at each point, over 150 timesteps.
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Lorenz-95 example

Noisy observations, p = 150, Bi,j = 0.1 exp(−|i−j|
50

), Q = 10−4I150,
R = 0.01Ip, saddle point matrix size = 67, 500.

0 200 400 600 800 1,000 1,200 1,400
0

10

20

30

40

50

60

70

80

Timestep

R
M

S
E

rr
or

No assimilation

Full-rank

Low-rank

Figure: Root mean squared error for 150-dimensional Lorenz-95 system with noisy
observations (r = 20).
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Figure: Root mean squared error for 150-dimensional Lorenz-95 system with noisy
observations (r = 5).
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Numerical results

Lorenz-95 example

Experimenting with different rank choices, we have achieved the following
reductions:

# of matrix elements in storage
n N p rank full-rank solution low-rank solution reduction

40 199 40 20 8,000 4,800 40%
40 199 8 20 8,000 4,800 40%
500 199 500 20 100,000 14,000 86%
500 199 500 5 100,000 3,500 96.5%

Table: Storage requirements for full- and low-rank methods in the Lorenz-95 examples.
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Conclusions

Weak constraint 4D-Var is a very large optimisation problem.

It can be shown that under certain assumptions low-rank solutions exist.

Preconditioning may not be necessary, with the low-rank approach acting
like a regularisation.

Very large reduction in storage and computing time.

Future work

Higher dimensional examples

Better theoretical foundation (inexact GMRES theory)
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Model order reduction by Balanced Truncation

Model order reduction

Given a physical model with
dynamics described by states
x ∈ Rn where n is large.

Describe the dynamics of the
system using a reduced
number of states (� n).

Should be available at
significantly lower
cost/storage.

Can be used for simulation,
prediction, optimisation, data
assimilation, ....
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Model order reduction by Balanced Truncation

Linear time invariant systems

Linear time invariant system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Coefficient matrices

system matrix A ∈ Rn×n,

input matrix B ∈ Rn×m,

output matrix C ∈ Rp×n.

Input/output/state vectors

state vector x(t) ∈ Rn with
x(t0) = x0

input vector/control u(t) ∈ Rn

output y(t) ∈ Rp

Properties

n is the order of the system

Problem

Many modern applications lead to
large systems orders n, e.g. n ≈ 106

or higher ⇒ very high computations
costs!
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Model order reduction by Balanced Truncation

Linear time invariant systems

Linear time invariant system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp.

−→

Model order reduction

˙̃x(t) = Ãx̃(t) + B̃u(t)

ỹ(t) = C̃x̃(t)

Ã ∈ Rr×r, B̃ ∈ Rr×m, C̃ ∈ Rp×r,
x̃(t) ∈ Rr, u(t) ∈ Rm and ỹ(t) ∈ Rp
such that

ỹ(t) ≈ y(t)

and
r � n.
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Model order reduction by Balanced Truncation

Model reduction by projection

Approximate state variable x(t) in a reduced basis, e.g. x(t) ≈ V x̃(t) for some
V ∈ Rn×r and r � n:

V ˙̃x(t) ≈ AV x̃(t) +Bu(t)

ỹ(t) = CV x̃(t)

Let WTV = I ∈ Rr×r, W ∈ Rn×r and require Petrov-Galerkin condition:

WT (V ˙̃x(t)− (AV x̃(t) +Bu(t))
)

= 0.

Projection methods

˙̃x(t) = Ãx̃(t) + B̃u(t)

ỹ(t) = C̃x̃(t)

where Ã = WTAV ∈ Rr×r, B̃ = WTB ∈ Rr×m and C̃ = CV ∈ Rp×r

Need to find projection matrices V and W !
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Model order reduction by Balanced Truncation

Balanced Truncation - controllability/observability for deterministic case

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t)

Observability

suppose u(t) = 0 for all t ∈ [0;T ]

⇒ y(t) = CetAx0

gauge how easy the initial state x0 can be observed by the energy that
state produces (output) over the interval [0;T ]: the more energy the state
produces, the easier it is to observe:∫ T

0

‖y(t)‖2dt =

∫ T

0

xT0 e
tAT

CTCetAx0dt = xT0 QTx0

where QT =
∫ T

0
etA

T

CTCetAdt

Controllability/Reachability

amount of energy required (by input) to steer x0 to the target xT .

similar derivation gives∫ T

0

‖u(t)‖2dt = xTTP
−1
T xT where PT =

∫ T

0

etABBT etA
T

dt.
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Model order reduction by Balanced Truncation

Balanced Truncation - controllability and observability

Controllability

Let A be stable. The unique solution P of the Lyapunov equation

AP + PAT = −BBT

is positive definite if and only if the pair (A,B) is controllable.

P =

∞∫
0

eAτBBT eA
T τ dτ Controllability Gramian.

Observability

Let A be stable. The unique solution Q of the Lyapunov equation

ATQ+QA = −CTC

is positive definite if and only if the pair (A,C) is observable.

Q =

∞∫
0

eA
T τCTCeAτ dτ Observability Gramian.



Low dimensional approximation of weak constraint variational data assimilation

Model order reduction by Balanced Truncation

Balanced Truncation - controllability and observability

Controllability

Let A be stable. The unique solution P of the Lyapunov equation

AP + PAT = −BBT

is positive definite if and only if the pair (A,B) is controllable.

P =

∞∫
0

eAτBBT eA
T τ dτ Controllability Gramian.

Observability

Let A be stable. The unique solution Q of the Lyapunov equation

ATQ+QA = −CTC

is positive definite if and only if the pair (A,C) is observable.

Q =

∞∫
0

eA
T τCTCeAτ dτ Observability Gramian.



Low dimensional approximation of weak constraint variational data assimilation

Model order reduction by Balanced Truncation

Balanced Truncation

Idea behind Balanced Truncation

States that are difficult to reach have large components in the span of the
eigenvectors corresponding to small eigenvalues of the reachability
Gramian P

States that are difficult to observe have large components in the span of
eigenvectors corresponding to small eigenvalues of the observability
Gramian Q

eliminates states that are both difficult to reach and difficult to observe.

find a basis in which the dominant reachable and observable states are the
same
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Model order reduction by Balanced Truncation

Balanced Truncation (BT)

Balanced System

A stable linear system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

is called balanced if the observability/controllability Gramians P , Q from

AP + PAT = −BBT , ATQ+QA = −CTC

satisfy P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn > 0 called Hankel
Singular Values, given by

√
λ(PQ) = {σ1, . . . , σn} = Σ.

Balancing Transformation

Transformation x̃ = Tx, T ∈ Rn×n, always exists if P,Q > 0 and can be
chosen as

T = Σ−
1
2UTLT and T−1 = KV Σ−

1
2 ,

where Σ = diag(σ1, . . . , σn) and P = KKT , Q = LLT and KTL = V ΣUT .
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Model order reduction by Balanced Truncation

Balanced Truncation (BT)

Balancing Transformation

Transformation x̃ = Tx, T ∈ Rn×n, always exists if P,Q > 0 and can be
chosen as

T = Σ−
1
2UTLT and T−1 = KV Σ−

1
2 ,

where Σ = diag(σ1, . . . , σn) and P = KKT , Q = LLT and KTL = V ΣUT

gives the required matrices.

(Ã, B̃, C̃) = (TAT−1, TB,CT−1)

Balanced Gramians P̃ = TPTT and Q̃ = T−TQT−1 which are equal and
diagonal and

(Ã, B̃, C̃) =

([
Ã11 Ã12

Ã21 Ã22

]
,

[
B̃1

B̃2

]
,
[
C̃1 C̃2

])
.

Truncating

By truncating the discardable states, the truncated reduced system is then
given by (Ã11, B̃1, C̃1).
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Application to weak constraint 4D-Var

Concise notation for incremental 4D-Var (all-at-once approach)

Minimise

J̃(δx) =
1

2
‖Lδx− b‖2D−1 +

1

2
‖Hδx− d‖2R−1

with

L =


I
−M1 I

. . .
. . .

−MN I



H =


H0

H1

. . .
HN

 .
L - all-at-once model operator over the assimilation window

H - all-at-once observation operator
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Application to weak constraint 4D-Var

Balanced truncation for weak constraint 4D-Var

Idea: Project Mk and Hk onto lower dimensional subspace

M̃k = WTMkV ∈ Rr×r

H̃k = HkV ∈ Rpk×r

where W and V are obtained from Balanced Truncation.

Projection of the covariance matrices:

B̂ = WTBW, Q̂k = WTQkW

e.g.

J̃(δx̂) =
1

2
‖L̂δx̂− b̂‖2D̂−1 +

1

2
‖d− Ĥδx̂‖2

R−1
k
,

where δx̂ = WT δx, L̂, Ĥ, etc projected versions of L, H.
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Application to weak constraint 4D-Var

Balanced truncation for weak constraint 4D-Var

Consider linear discrete system

δx−1 = 0,

δxk+1 = Mδxk + uk,

dk = Hδxk,

where, in the weak constraint data assimilation case, the inputs are:

uk ∼

{
N (0, B), for k = −1

N (0, Qk), for k ≥ 0.

Reachability and observability Gramians (for the discrete version)

Gr = B +

∞∑
j=1

M jQ(MT )j ,

Go =

∞∑
j=0

(MT )jHTRHM j ,
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Application to weak constraint 4D-Var

Balanced truncation for weak constraint 4D-Var

Approach: Solve discrete Lyapunov (or Stein) equations:

Gr = MGrMT +B +M(Q−B)MT ,

Go = MTGoM +HTRH.

Decompose Gr = KKT , Go = LLT and compute SVD of

KTL = ZΣY T ,

where Σ = diag(σ1, . . . , σn) are the Hankel singular values.
Projection matrices are

V = KZrΣ
− 1

2
r ∈ Rn×r,

W = LYrΣ
− 1

2
r ∈ Rn×r.
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Numerical results

One-dimensional advection-diffusion system

∂

∂t
u(x, t) = 0.1

∂2

∂x2
u(x, t) + 1.4

∂

∂x
u(x, t)

for x ∈ [0, 1], t ∈ (0, T ), subject to the boundary and initial conditions

u(0, t) = 0, t ∈ (0, T )

u(1, t) = 0, t ∈ (0, T )

u(x, 0) = sin(πx), x ∈ [0, 1].

Crank-Nicolson scheme, n = 500, ∆t = 10−3. Assimilation window 200 time
steps.
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Numerical results

One-dimensional advection-diffusion system

0 100 200 300 400 500 600 700 800 900 1,000
10−2

10−1

100

101

Timestep

R
o

o
t

M
ea

n
S

q
u

ar
ed

E
rr

or
(R

M
S

E
)

(a) r = 20

0 100 200 300 400 500 600 700 800 900 1,000
10−2

10−1

100

101

Timestep

R
o

o
t

M
ea

n
S

q
u

ar
ed

E
rr

or
(R

M
S

E
)

(b) r = 5

Initial Guess No projection Coarse projection Balanced truncation

Figure: RMS error for the 1D advection-diffusion example with full, noisy observations
(r = 20, r = 5).
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Numerical results

One-dimensional advection-diffusion system
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Figure: RMS error for the 1D advection-diffusion example with partial, noisy
observations (r = 20, r = 5).
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Numerical results

One-dimensional advection-diffusion system

Projection method Forming CG Total
matrices solve

No proj. 0 5.0049 5.0049

BT (r = 20) 1.2271 0.1419 1.3690
Coarse proj. (r = 20) 0.0009 0.0208 0.0217

BT (r = 5) 1.1778 0.0467 1.2245
Coarse proj. (r = 5) 0.0007 0.0125 0.0132

Table: Computation time for 1D advection-diffusion equation example (r = 20, r = 5).
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