Statistical properties of deterministic dynamical systems and their applications in weather and climate forecasting

Georg Gottwald

joint work with Jason Frank, Brent Giggins, John Harlim, Ian Melbourne, Lewis Mitchell, Karsten Peters, Caroline Wormell and Jeroen Wouters

Colloquium (somewhere) 29 May 2020
I) Heuristics and a few theorems

II) Some applications

- data assimilation
- ensemble forecasting - bred vectors
- sensitivity to perturbations - Linear Response Theory
- numerical integration of deterministic multi-scale systems
- parametrisation of tropical convection
Motivation for stochastic parametrisation:

- **prediction:** computational cost in running model

\[
\begin{align*}
\dot{x} &= f(x, y) \\
\dot{y} &= \frac{1}{\varepsilon} g(x, y)
\end{align*}
\]

\[
x \in \mathbb{R}^n \\
y \in \mathbb{R}^m
\]

\[
\varepsilon \ll 1
\]

lower-dimensional stochastic problem

\[
dX = F(X) dt + \sum dW_t
\]

\[
X \in \mathbb{R}^n
\]

stiff high-dimensional deterministic multi-scale problem
Motivation for stochastic parametrisation:

- prediction: computational cost in running model
- increase of resolution necessitates stochastic approach
Motivation for stochastic parametrisation:

- prediction: computational cost in running model
- increase of resolution necessitates stochastic approach
Heuristics for why the fast process can be replaced by noise

\[dx^{(\varepsilon)} = f(x^{(\varepsilon)}, y^{(\varepsilon)}) \, dt \]
\[dy^{(\varepsilon)} = \frac{1}{\varepsilon} g(y^{(\varepsilon)}) \, dt \]
Heuristics for why the fast process can be replaced by noise

\[dx^{(\varepsilon)} = f(x^{(\varepsilon)}, y^{(\varepsilon)}) \, dt \]
\[dy^{(\varepsilon)} = \frac{1}{\varepsilon} g(y^{(\varepsilon)}) \, dt \]

Integrate the slow equation

\[x^{(\varepsilon)}(t) = x^{(\varepsilon)}(0) + \int_0^t f(x^{(\varepsilon)}, y^{(\varepsilon)}(s)) \, ds \]
\[= x^{(\varepsilon)}(0) + \varepsilon \int_0^{\frac{t}{\varepsilon}} f(x^{(\varepsilon)}, y^{(\varepsilon=1)}(\tau)) \, d\tau \]
\[= x^{(\varepsilon)}(0) + \frac{1}{n} \int_0^{nt} f(x^{(\varepsilon)}, y^{(\varepsilon=1)}(\tau)) \, d\tau \]
Heuristics for why the fast process can be replaced by noise

\[dx^{(\varepsilon)} = f(x^{(\varepsilon)}, y^{(\varepsilon)}) \, dt \]

\[dy^{(\varepsilon)} = \frac{1}{\varepsilon} g(y^{(\varepsilon)}) \, dt \]

Integrate the slow equation

\[x^{(\varepsilon)}(t) = x^{(\varepsilon)}(0) + \int_0^t f(x^{(\varepsilon)}, y^{(\varepsilon)}(s)) \, ds \]

\[= x^{(\varepsilon)}(0) + \varepsilon \int_0^{t/\varepsilon} f(x^{(\varepsilon)}, y^{(\varepsilon=1)}(\tau)) \, d\tau \]

\[= x^{(\varepsilon)}(0) + \frac{1}{n} \int_0^{nt} f(x^{(\varepsilon)}, y^{(\varepsilon=1)}(\tau)) \, d\tau \]

Envoking Birkhoff’s Ergodic Theorem

\[X(t) = X(0) + \int_0^t F(X(s)) \, ds \]

\[F(X) = \int f(x, y) \mu(dy) \]

Averaged deterministic dynamics

Law of large numbers
Heuristics for why the fast process can be replaced by noise

\[dx^{(\varepsilon)} = f(x^{(\varepsilon)}, y^{(\varepsilon)}) \, dt \]

\[dy^{(\varepsilon)} = \frac{1}{\varepsilon} g(y^{(\varepsilon)}) \, dt \]

Integrate the slow equation

\[x^{(\varepsilon)}(t) = x^{(\varepsilon)}(0) + \int_0^t f(x^{(\varepsilon)}, y^{(\varepsilon)}(s)) \, ds \]

\[= x^{(\varepsilon)}(0) + \varepsilon \int_0^{\varepsilon t} f(x^{(\varepsilon)}, y^{(\varepsilon=1)}(\tau)) \, d\tau \]

\[= x^{(\varepsilon)}(0) + \frac{1}{n} \int_0^{nt} f(x^{(\varepsilon)}, y^{(\varepsilon=1)}(\tau)) \, d\tau \]

Envoking Birkhoff’s Ergodic Theorem

\[X(t) = X(0) + \int_0^t F(X(s)) \, ds \]

\[F(X) = \int f(x, y) \mu(dy) \]

Averaged deterministic dynamics

law of large numbers
Heuristics for why the fast process can be replaced by noise

\[dx^{(\varepsilon)} = f(x^{(\varepsilon)}, y^{(\varepsilon)}) \, dt \]

\[dy^{(\varepsilon)} = \frac{1}{\varepsilon} g(y^{(\varepsilon)}) \, dt \]
Heuristics for why the fast process can be replaced by noise

\[dx^{(\varepsilon)} = \frac{1}{\varepsilon} f(y^{(\varepsilon)}) \, dt \]

\[dy^{(\varepsilon)} = \frac{1}{\varepsilon^2} g(y^{(\varepsilon)}) \, dt \]

go to long *diffusive* time scale
Heuristics for why the fast process can be replaced by noise

\[dx^{(\varepsilon)} = \frac{1}{\varepsilon} f(y^{(\varepsilon)}) \, dt \]

\[dy^{(\varepsilon)} = \frac{1}{\varepsilon^2} g(y^{(\varepsilon)}) \, dt \]

Integrate the slow equation

\[x^{(\varepsilon)}(t) = x^{(\varepsilon)}(0) + \frac{1}{\varepsilon} \int_0^t f(y^{(\varepsilon)}(s)) \, ds \]

\[= x^{(\varepsilon)}(0) + \varepsilon \int_0^{t/\varepsilon^2} f(y^{(\varepsilon=1)}(\tau)) \, d\tau \]

\[= x^{(\varepsilon)}(0) + \frac{1}{\sqrt{n}} \int_0^{nt} f(y^{(\varepsilon=1)}(\tau)) \, d\tau \]
Heuristics for why the fast process can be replaced by noise

\[dx^{(\varepsilon)} = \frac{1}{\varepsilon} f(y^{(\varepsilon)}) \, dt \]
\[dy^{(\varepsilon)} = \frac{1}{\varepsilon^2} g(y^{(\varepsilon)}) \, dt \]

Integrate the slow equation

\[x^{(\varepsilon)}(t) = x^{(\varepsilon)}(0) + \frac{1}{\varepsilon} \int_0^t f(y^{(\varepsilon)}(s)) \, ds \]
\[= x^{(\varepsilon)}(0) + \varepsilon \int_0^{\frac{t}{\varepsilon^2}} f(y^{(\varepsilon=1)}(\tau)) \, d\tau \]
\[= x^{(\varepsilon)}(0) + \frac{1}{\sqrt{n}} \int_0^{nt} f(y^{(\varepsilon=1)}(\tau)) \, d\tau \]

Assuming \(\int f(y)\mu(dy) = 0 \) and invoking the Central Limit Theorem

\[X(t) = X(0) + W_t \]
\[dX = dW_t \]
Homogenisation in action

\[x_{n+1} = x_n + \varepsilon(y_n - \frac{1}{2}) \]
\[y_{n+1} = 4y_n(1 - y_n) \]

strong chaos

Brownian motion
Homogenisation in action

\[x_{n+1} = x_n + \varepsilon(y_n - \frac{1}{2}) \]
\[y_{n+1} = 4y_n(1 - y_n) \]

strong chaos

\[x_{n+1} = x_n + \varepsilon(y^* - y_n) \]
\[y_{n+1} = \begin{cases} y_n(1 + 2\gamma y_n^\gamma) & 0 \leq y_n \leq \frac{1}{2} \\ 2y_n - 1 & \frac{1}{2} \leq y_n \leq 1 \end{cases} \]

weak chaos

Brownian motion
Homogenisation in action

\[x_{n+1} = x_n + \varepsilon (y_n - \frac{1}{2}) \]
\[y_{n+1} = 4y_n(1 - y_n) \]

strong chaos

\[x_{n+1} = x_n + \varepsilon (y^* - y_n) \]
\[y_{n+1} = \begin{cases}
 y_n(1 + 2\gamma y_n) & 0 \leq y_n \leq \frac{1}{2} \\
 2y_n - 1 & \frac{1}{2} \leq y_n \leq 1
\end{cases} \]

weak chaos

Brownian motion
Homogenisation in action

\[x_{n+1} = x_n + \varepsilon (y_n - \frac{1}{2}) \]
\[y_{n+1} = 4y_n (1 - y_n) \]

\textit{strong chaos}

\[x_{n+1} = x_n + \varepsilon (y^* - y_n) \]
\[y_{n+1} = \begin{cases}
 y_n (1 + 2\gamma y_n) & 0 \leq y_n \leq \frac{1}{2} \\
 2y_n - 1 & \frac{1}{2} \leq y_n \leq 1
\end{cases} \]

\textit{weak chaos}

\textbf{Brownian motion}

\textbf{\textit{α}-stable noise}

\[S(\alpha, \beta, \eta, \mu) \]

\textit{(GAG, & Melbourne, Proc Roy Soc A (2013))}
Homogenisation in action

\[x_{n+1} = x_n + \varepsilon (y_n - \frac{1}{2}) \]
\[y_{n+1} = 4y_n(1 - y_n) \]

strong chaos

\[x_{n+1} = x_n + \varepsilon (y^* - y_n) \]
\[y_{n+1} = \begin{cases}
 y_n(1 + 2\gamma y_n) & 0 \leq y_n \leq \frac{1}{2} \\
 2y_n - 1 & \frac{1}{2} \leq y_n \leq 1
\end{cases} \]

weak chaos

Can be used to devise a test for anomalous diffusion in time series

\[(GAG \& Melbourne, J Stat Mech (2016)) \]
\[(GAG, \& Melbourne, Proc Roy Soc A (2013)) \]

inducing \(\alpha \)-stable noise \(S(\alpha, \beta, \eta, \mu) \)
Homogenisation

resolved/slow: \[dx = \frac{1}{\varepsilon} f_0(x, y) \, dt + f_1(x, y) \, dt \]
unresolved/fast: \[dy = \frac{1}{\varepsilon^2} g(x, y) \, dt + \frac{1}{\varepsilon} \sigma(x, y) \, dW_t \]

Assumptions:
- fast \(y \)-process is ergodic with measure \(\mu_x \) (mild chaoticity assumptions)
- \(\int f_0(x, y) d\mu_x = 0 \)

Then, in the limit of \(\varepsilon \to 0 \), the statistics of the slow \(x \)-dynamics is approximated by

\[dX = F(X) \, dt + \Sigma(X) \, dW_t \]

where the diffusion matrix is given by a Green-Kubo formula

\[\frac{1}{2} \Sigma \Sigma^T = \int_0^\infty C(s) ds \]

with the auto-correlation matrix \(C(t) = \mathbb{E}^{\mu_x} [f_0(x, y) f_0(x, y(t))] \) and

\[F(X) = \int f_1(x, y) d\mu_x + \int_0^\infty \int \nabla_x f_0(x, y(s)) \otimes f_0(x, y) d\mu_x \, ds \]

formally:
\[d\mu = \rho(x, y) dx \]
\[\rho(x, y) = \hat{\rho}(x) \rho_\infty(y|x) + \varepsilon \rho_1(x, y) + \ldots \]
Open problems and challenges

- slow dynamics couples back into the fast dynamics

\[
\begin{align*}
\dot{x} &= \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y) \\
\dot{y} &= \frac{1}{\varepsilon^2} g_0(x, y)
\end{align*}
\]

What can go wrong?

If the fast invariant measure \(\mu_x \) does not depend smoothly on \(x \) ("no linear response") even averaging does not "work"

\[
F(X) = \int f_1(x, y) \mu_x(dy)
\]

non-Lipschitz
uniqueness of solutions not guaranteed
slow dynamics couples back into the fast dynamics

finite time scale separation

Theory works in the limit $\varepsilon \to 0$
but in many physical applications ε is not so small

Where do we need the limit?

Averaging: Large deviation principle:

$$\left| \frac{1}{T} \int_0^T f_1(x, y(s)) ds - F(x) \right|$$

Homogenisation: Central Limit Theorem (Weak Invariance Principle)

$$W_\varepsilon(t) = \varepsilon \int_0^{t/\varepsilon^2} f_0(y(s)) ds \to_w W(t) \text{ as } \varepsilon \to 0$$

Finite ε effects are finite size effects
The Central Limit Theorem and the Edgeworth expansion

The Central Limit Theorem

Assume X_i are *i.i.d.* random variables

$$S_n := \frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n} (X_j - \mu) \rightarrow_d \mathcal{N}(0, 1)$$

where $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \mathbb{E}[X_i^2]$

For finite n there are *deviations* to the CLT

These are described by the **Edgeworth expansion**

$$\rho_n(x) = \Phi_{0, \sigma^2}(x) \times \left(1 + \frac{1}{6 \sqrt{n} \sigma^3} \frac{\gamma}{\sigma^3} H_3(x/\sigma)\right) + o\left(\frac{1}{\sqrt{n}}\right)$$

where $H_3(x) = x^3 - 3x$ is the third Hermite polynomial

and γ/σ^3 is the skewness of X_i
The Central Limit Theorem and the Edgeworth expansion

The Central Limit Theorem

Assume X_i are *i.i.d.* random variables

$$S_n := \frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n} (X_j - \mu) \to_d \mathcal{N}(0, 1)$$

where $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \mathbb{E}[X_i^2]$

For finite n there are *deviations* to the CLT

These are described by the **Edgeworth expansion**

$$\rho_n(x) = \Phi_{0, \sigma^2}(x) \times \left(1 + \frac{1}{6 \sqrt{n}} \frac{\gamma}{\sigma^3} H_3(x/\sigma) \right) + o\left(\frac{1}{\sqrt{n}} \right)$$

where $H_3(x) = x^3 - 3x$ is the third Hermite polynomial

and γ/σ^3 is the skewness of X_i

this is not a density!
The Central Limit Theorem and the Edgeworth expansion

The Central Limit Theorem

Assume X_i are i.i.d. random variables

$$S_n := \frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n} (X_j - \mu) \to_d \mathcal{N}(0, 1)$$

where $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \mathbb{E}[X_i^2]$

For finite n there are deviations to the CLT
These are described by the Edgeworth expansion

$$\rho_n(x) = \Phi_{0, \sigma^2}(x) \times \left(1 + \frac{1}{6 \sqrt{n} \sigma^3} \frac{\gamma}{\sigma^3} H_3(x/\sigma)\right) + o\left(\frac{1}{\sqrt{n}}\right)$$

where $H_3(x) = x^3 - 3x$ is the third Hermite polynomial
and γ/σ^3 is the skewness of X_i

\[\text{can be pushed to any order involving higher-order moments}\]
The Central Limit Theorem and the Edgeworth expansion

The Central Limit Theorem

Assume X_i are stationary *weakly dependent* random variables

$$S_n := \frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n} (X_j - \mu) \rightarrow_d \mathcal{N}(0, 1)$$

where $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \mathbb{E}[X_i^2] + 2 \sum_{j=1}^{\infty} \mathbb{E}[X_1 X_{j+1}]$

For finite n there are *deviations* to the CLT

These are described by the **Edgeworth expansion**

$$\rho_n(x) = \Phi_{0, \sigma^2 + \delta \sigma^2 / n}(x) \times \left(1 + \frac{1}{\sqrt{n}} \delta \kappa H_3(x / \sigma)\right) + o\left(\frac{1}{\sqrt{n}}\right)$$

where H_3 is the third Hermite polynomial and $\delta \sigma^2$ and $\delta \kappa$ are integrals of correlation functions of X_i (*Götze & Hipp (1983)*)
Stochastic Parametrisation using the Edgeworth expansion

Given a multi-scale dynamical system

\[
\begin{align*}
\dot{x} &= \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y) \\
\dot{y} &= \frac{1}{\varepsilon^2} g(y)
\end{align*}
\]

(I) determine the Edgeworth expansion coefficients \(\sigma_{GK}^2, \delta \kappa \)

associated with \(f_0(x, y) \)
Given a multi-scale dynamical system

\[\begin{align*}
\dot{x} &= \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y) \\
\dot{y} &= \frac{1}{\varepsilon^2} g_0(y) + \frac{1}{\varepsilon} g_1(x, y)
\end{align*} \]

(I) determine the Edgeworth expansion coefficients \(\sigma_{GK}^2, \delta \kappa \) associated with \(f_0(x, y) \)

(II) model the multi-scale system by the surrogate stochastic process

\[\begin{align*}
\dot{X} &= \frac{1}{\varepsilon} A(\eta) + F(X) \\
d\eta &= -\frac{1}{\varepsilon^2} \gamma \eta \, dt + \frac{1}{\sqrt{\varepsilon}} \, dW_t
\end{align*} \]

with \(A(\eta) = a\eta^2 + b\eta + c \)

1d Ornstein-Uhlenbeck process

where the parameters \(a, b, c, \gamma \) are determined such that the Edgeworth expansion coefficients associated with \(A(\eta) \) match \(\sigma_{GK}^2, \delta \kappa \)
Stochastic Parametrisation using the Edgeworth expansion

Given a multi-scale dynamical system

\[\dot{x} = \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y) \]
\[\dot{y} = \frac{1}{\varepsilon^2} g_0(y) + \frac{1}{\varepsilon} g_1(x, y) \]

(I) determine the Edgeworth expansion coefficients \(\sigma^2_{\text{GK}}, \delta \kappa \) associated with \(f_0(x, y) \)

(II) model the multi-scale system by the surrogate stochastic process

\[\dot{X} = \frac{1}{\varepsilon} A(\eta) + F(X) \]
\[d\eta = -\frac{1}{\varepsilon^2} \gamma \eta \, dt + \frac{1}{\sqrt{\varepsilon}} \, dW_t \]

where the parameters \(a, b, c, \gamma \) are determined such that the Edgeworth expansion coefficients associated with \(A(\eta) \) match \(\sigma^2_{\text{GK}}, \delta \kappa \)

Remark: By construction the homogenised limit system of the original and the surrogate system are the same!
How to calculate the Edgeworth coefficients?

The three time scales of multi-scale systems

\[
\begin{align*}
\dot{x} &= \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y) \\
\dot{y} &= \frac{1}{\varepsilon^2} g_0(y) + \frac{1}{\varepsilon} g_1(x, y)
\end{align*}
\]
How to calculate the Edgeworth coefficients?

The three time scales of multi-scale systems

\[
\begin{align*}
\dot{x} &= \frac{1}{\epsilon} f_0(x, y) + f_1(x, y) \\
\dot{y} &= \frac{1}{\epsilon^2} g_0(y) + \frac{1}{\epsilon} g_1(x, y)
\end{align*}
\]

- nontrivial fast dynamics
- trivial slow dynamics \(x(t) = x_0 \)
How to calculate the Edgeworth coefficients?

The three time scales of multi-scale systems

\[\dot{x} = \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y) \]
\[\dot{y} = \frac{1}{\varepsilon^2} g_0(y) + \frac{1}{\varepsilon} g_1(x, y) \]

nontrivial fast dynamics

trivial slow dynamics \(x(t) = x_0 \)

fast dynamics has equilibrated

trivial slow dynamics \(x(t) = x_0 \)
The three time scales of multi-scale systems

nontrivial fast dynamics
trivial slow dynamics \(x(t) = x_0 \)

fast dynamics has equilibrated
trivial slow dynamics \(x(t) = x_0 \)

diffusive time scale: CLT
\[
dX = F(X) \, dt + \sigma(X) \circ dW_t
\]
How to calculate the Edgeworth coefficients?

The three time scales of multi-scale systems

- nontrivial fast dynamics
- trivial slow dynamics \(x(t) = x_0 \)

\[\dot{x} = \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y) \]
\[\dot{y} = \frac{1}{\varepsilon^2} g_0(y) + \frac{1}{\varepsilon} g_1(x, y) \]

diffusive time scale: CLT
\[dX = F(X) \, dt + \sigma(X) \circ dW_t \]

fast dynamics has equilibrated

trivial slow dynamics \(x(t) = x_0 \)

expect deviations of CLT on timescale \(t = \varepsilon \)

\[\frac{x(t) - x_0}{\sqrt{t}} \rightarrow \sigma(x_0) W_t \]
How to calculate the Edgeworth coefficients?

Consider
\[\rho_t(x(t)|x(0) = x_0) = \int dx dy e^{Lt} \delta_{x_0}(x) \mu(dy) \]
for \(t = \varepsilon \)

\[
\dot{x} = \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y)
\]
\[
\dot{y} = \frac{1}{\varepsilon^2} g_0(y) + \frac{1}{\varepsilon} g_1(x, y)
\]

Transfer operator

\[
\mathcal{L} = \frac{1}{\varepsilon^2} \mathcal{L}_0 + \frac{1}{\varepsilon} \mathcal{L}_1 + \mathcal{L}_2
\]

\[
\mathcal{L}_0 \rho = -\partial_y (g_0 \rho), \quad \mathcal{L}_1 \rho = -\partial_x (f_0 \rho) - \partial_y (g_1 \rho), \quad \mathcal{L}_2 \rho = -\partial_x (f_1 \rho)
\]
How to calculate the Edgeworth coefficients?

Consider
\[\rho_t(x(t)|x(0) = x_0) = \int dx dy \, e^{Lt} \delta_{x_0}(x) \mu(dy) \quad \text{for } t = \varepsilon \]

\[\dot{x} = \frac{1}{\varepsilon} f_0(x, y) + f_1(x, y) \]
\[\dot{y} = \frac{1}{\varepsilon^2} g_0(y) + \frac{1}{\varepsilon} g_1(x, y) \]

Calculate asymptotically, using successive applications of the Duhamel-Dyson formula, up to \(O(\varepsilon^n) \):

\[\frac{\mathbb{E}[x(\varepsilon) - x_0]}{\sqrt{\varepsilon}} = \sqrt{\varepsilon} \xi = \sqrt{\varepsilon} \langle f_1(x_0) \rangle \]

\[\frac{\mathbb{E}[\dot{x}^2]}{\varepsilon} = \sigma_{\text{GK}}^2 - 2\varepsilon \int_0^{\frac{t}{\varepsilon^2}} ds \, (s \langle f_0 e^{L_0 s} f_0 \rangle - \langle f_0 e^{L_0 s} f_1 \rangle) + \cdots \]
\[\hat{x} = x - \mathbb{E}[x] \]

\[\frac{\mathbb{E}[\dot{x}^3]}{\varepsilon^{\frac{3}{2}}} = \sqrt{\varepsilon} \int_0^{\frac{t}{\varepsilon^2}} ds_1 ds_2 \langle f_0 e^{L_0 s_1} f_0 e^{L_0 s_2} f_0 \rangle \]
Theorem (Wouters & GAG, 2019)

The Edgeworth expansion of the transition probability \(\pi_\varepsilon(\xi, t = \varepsilon, x_0) \) for the deterministic multi-scale system up to \(O(\varepsilon^{3/2}) \) is given in the limit \(t = \varepsilon \ll 1 \) and \(t/\varepsilon^2 \to \infty \) by

\[
\pi_\varepsilon(\xi, t = \varepsilon, x_0) = n_{0, \sigma^2}(\xi) \left(1 + \sqrt{\varepsilon} \left(\frac{c_{1/2}^{(1)}}{\sigma} H_1 \left(\frac{\xi}{\sigma} \right) + \frac{c_{1/2}^{(3)}}{3!\sigma^3} H_3 \left(\frac{\xi}{\sigma} \right) \right) + \varepsilon \left(\frac{c_1^{(2)} + c_{1/2}^{(1)^2}}{2\sigma^2} H_2 \left(\frac{\xi}{\sigma} \right) + \frac{c_1^{(4)} + 4c_{1/2}^{(1)}c_{1/2}^{(3)}}{4!\sigma^4} H_4 \left(\frac{\xi}{\sigma} \right) + \frac{c_{1/2}^{(3)^2}}{2(3!\sigma^3)^2} H_6 \left(\frac{\xi}{\sigma} \right) \right) \right) + O(\varepsilon^{3/2}).
\]

It involves only the cumulants \(c_{\varepsilon}^{(p)} \) with \(p \leq 4 \) with explicit expressions. These cumulants only involve the leading order measure \(\mu_{x_0}^{(0)} \) and, in particular, do not involve the linear response term \(\mu_{x_0}^{(1)} \).

\[
x_{j+1}^{(\varepsilon)} = x_j^{(\varepsilon)} + \varepsilon f_0(y_j) + \varepsilon^2 f_1(x_j^{(\varepsilon)})
\]

\[
y_{j+1} = p y_j \pmod{1}
\]

\[
\dot{x} = \frac{1}{\varepsilon} B_0 y_1 y_2
\]

\[
\dot{y}_1 = \frac{1}{\varepsilon} B_1 x y_2 - \frac{1}{\varepsilon^2} \gamma_1 y_1 - \frac{1}{\varepsilon} \sigma_1 \dot{W}_1
\]

\[
\dot{y}_2 = \frac{1}{\varepsilon} B_2 x y_1 - \frac{1}{\varepsilon^2} \gamma_2 y_2 - \frac{1}{\varepsilon} \sigma_2 \dot{W}_2
\]

(Majda et al) Triad backcoupling

\begin{align*}
E[\left(y_{n\rightarrow j}, E(y_n) \right)] \\
E[\left(x, E(x) \right)] \\
E[\left(x - E(x) \right)^2]
\end{align*}
We have used the Edgeworth expansion to push stochastic model reduction past the limit of infinite time scale separation, going beyond the Central Limit Theorem. We have developed a machinery to calculate the Edgeworth corrections for continuous time deterministic systems. The fast dynamics are replaced by a stochastic surrogate process, the parameters of which are tuned to match the Edgeworth expansion corrections of the full multi-scale system.

Summary

We have used the Edgeworth expansion to push stochastic model reduction past the limit of infinite time scale separation, going beyond the Central Limit Theorem.

We have developed a machinery to calculate the Edgeworth corrections for continuous time deterministic systems.

The fast dynamics are replaced by a stochastic surrogate process, the parameters of which are tuned to match the Edgeworth expansion corrections of the full multi-scale system.

Outlook:

- Use the strategy for the triad system to apply Edgeworth expansion to the barotropic vorticity equation.
- Use Edgeworth expansions in a data-driven approach.
- Prove the corrections rigorously (start with stochastic fast dynamics).
Applications of Statistical Limit Theorems

- Data assimilation - Ensemble Kalman Filters
- Ensemble forecasting - Stochastically perturbed bred vectors
- Linear response theory
- Numerical integration of deterministic multi-scale systems
- Parametrisation of tropical convection
using the reduced stochastic model as forecast model leads to reliable ensembles via dynamics-informed inflation.

\[
\frac{dx}{dt} = x - x^3 + \frac{4}{90\varepsilon} y_2
\]
\[
\frac{dy_1}{dt} = \frac{10}{\varepsilon^2} (y_2 - y_1)
\]
\[
\frac{dy_2}{dt} = \frac{1}{\varepsilon^2} (28y_1 - y_2 - y_1y_3)
\]
\[
\frac{dy_3}{dt} = \frac{1}{\varepsilon^2} (y_1y_2 - \frac{8}{3} y_3)
\]

Homogenisation

\[
dx = (x - x^3) dt + \sigma dW
\]

\[
\sigma^2 = 2 \left(\frac{4}{90} \right)^2 \int_0^\infty \mathbb{E}[y_2(0)y_2(t)] dt \approx 0.113
\]

In chaotic systems a single forecast is not meaningful.

Probabilistic forecast

Ensemble forecast

$\mathbf{t=0} \quad \mathbf{t}$
In chaotic systems a single forecast is not meaningful.

Probabilistic forecast

Ensemble forecast

Use ensemble mean and spread to estimate forecast and its uncertainty.
A good ensemble should have (at least) these 4 properties (Pazó et al 2010):

- Evolve into areas in phase space with large measure
- Forecast skill
- Reliability
- Dynamic adaptation
Bred vectors (BV)

Toth & Kalnay ’93, ‘97

\[z_p(t_i) = z_c(t_i) + \delta \frac{b}{\|b\|} \]
Bred vectors (BV)

Toth & Kalnay '93, '97

\[z_p(t_i) = z_c(t_i) + \delta \frac{b}{\|b\|} \]

\[\Delta z(t_{i+1}) = z_p(t_{i+1}) - z_c(t_{i+1}) \]

\[b(t_{i+1}) = \delta \frac{\Delta z(t_{i+1})}{\|\Delta z(t_{i+1})\|} \]
Bred vectors (BV)

Toth & Kalnay ’93, ‘97

\[
z_p(t_i) = z_c(t_i) + \delta \frac{b}{\|b\|}
\]

\[
\Delta z(t_{i+1}) = z_p(t_{i+1}) - z_c(t_{i+1})
\]

Advantages
- computationally cheap
- dynamically consistent

Disadvantages
- collapse to a low-dimensional subspace
- alignment with leading Lyapunov vector bad spread

Covariant Lyapunov Vectors \(l_n \)

\[
\pi_n^i(t_i) = \left\| \frac{b^i(t_j)}{\|b^i(t_j)\|} \cdot \frac{l_n(t_j)}{\|l_n(t_j)\|} \right\|
\]
Way out: Stochastically Perturbed Bred Vectors (SPBVs)

In multi-scale systems with time-scale separation $1/\varepsilon$ we can approximate

$$\rho(X, Y, t) = \hat{\rho}(X, t)\rho_{\infty}(Y|X) + \mathcal{O}(\varepsilon)$$

X: slow
Y: fast
Way out: Stochastically Perturbed Bred Vectors (SPBVs)

In multi-scale systems with time-scale separation $1/\varepsilon$ we can approximate

$$\rho(X, Y, t) = \hat{\rho}(X, t)\rho_\infty(Y|X) + \mathcal{O}(\varepsilon)$$

$$BV = \begin{pmatrix}
\text{slow}_1 \approx 0 \\
\vdots \\
\text{slow}_K \approx 0 \\
\text{fast}_1 \\
\vdots \\
\text{fast}_D
\end{pmatrix}$$
Way out: Stochastically Perturbed Bred Vectors (SPBVs)

In multi-scale systems with time-scale separation $1/\varepsilon$ we can approximate

$$\rho(X, Y, t) = \hat{\rho}(X, t)\rho_\infty(Y | X) + \mathcal{O}(\varepsilon)$$

$$BV = \begin{pmatrix}
\text{slow}_1 \approx 0 \\
\vdots \\
\text{slow}_K \approx 0 \\
\text{fast}_1 \\
\vdots \\
\text{fast}_D
\end{pmatrix} \quad \Rightarrow \quad SPBV = \begin{pmatrix}
\text{slow}_1 \approx 0 \\
\vdots \\
\text{slow}_K \approx 0 \\
(1 + \eta)\text{fast}_1 \\
\vdots \\
(1 + \eta)\text{fast}_D
\end{pmatrix}$$

$\eta \sim \mathcal{N}(0, \sigma^2)$

X: slow
Y: fast
Way out: Stochastically Perturbed Bred Vectors (SPBVs)

In multi-scale systems with time-scale separation \(1/\varepsilon\) we can approximate

\[
\rho(X, Y, t) = \hat{\rho}(X, t) \rho_\infty(Y|X) + \mathcal{O}(\varepsilon)
\]

\[
\begin{pmatrix}
\text{slow}_1 \approx 0 \\
\vdots \\
\text{slow}_K \approx 0 \\
\text{fast}_1 \\
\vdots \\
\text{fast}_D
\end{pmatrix}
\]

\[
\begin{pmatrix}
\text{slow}_1 \approx 0 \\
\vdots \\
\text{slow}_K \approx 0 \\
(1 + \eta)\text{fast}_1 \\
\vdots \\
(1 + \eta)\text{fast}_D
\end{pmatrix}
\]

\(\eta \sim \mathcal{N}(0, \sigma^2)\)
II - Ensemble forecasting

Multi-scale Lorenz 1996 model

\[
\frac{dX_k}{dt} = -X_{k-1}(X_{k-2} - X_{k+1}) - X_k + F - \frac{hc}{b} \sum_{j=1}^{J} Y_{j,k}
\]

\[
\frac{dY_{j,k}}{dt} = -cbY_{j+1,k}(Y_{j+2,k} - Y_{j-1,k}) - cY_{j,k} + \frac{hc}{b} X_k
\]
II - Ensemble forecasting

SPBVs
- good ensemble diversity
- reliable ensemble
- good forecast skill
- dynamically consistent
- computationally cheap

(Giggins and GAG, QJRMS (2019))
III - Linear Response Theory

Given a chaotic dynamical system

\[\frac{d}{dt} x = f(x, \varepsilon) \]

with a unique invariant physical measure \(\mu_\varepsilon \)

What is the change of the average of an observable

\[\mathbb{E}^\varepsilon[\Psi] = \int_D \Psi(x) \, d\mu_\varepsilon \]

upon changing the parameter from its unperturbed state with \(\varepsilon_0 \) ?

\[\mathbb{E}^\varepsilon[\Psi] \approx \mathbb{E}^{\varepsilon_0}[\Psi] + \delta \varepsilon \mathbb{E}^{\varepsilon_0}[\Psi]' \]

\(\varepsilon = \varepsilon_0 + \delta \varepsilon \)

using only information about the statistics of the unperturbed system
III - Linear Response Theory

\[E^\varepsilon[\Psi] \approx E^{\varepsilon_0}[\Psi] + \delta \varepsilon E^{\varepsilon_0}[\Psi]' \]

sufficient condition for linear response:

the invariant measure \(\mu_\varepsilon \) is differentiable with respect to \(\varepsilon \)

\[\mu_\varepsilon \approx \mu_{\varepsilon_0} + \mu'_\varepsilon(\varepsilon_0)\delta \varepsilon \]

example: Ornstein-Uhlenbeck process (stochastic)

\[dx = -\gamma x dt + \sigma dw_t \]

unperturbed

\[dx = -(\gamma + \varepsilon) x dt + \sigma dw_t \]

perturbed
Success stories in the Climate Sciences

Leith (1975)

toy models: Majda et al '07, ’10, Lucarini & Sarno ’11

barotropic models: Bell ’80, Gritsun & Dymnikov ’99, Abramov & Majda ’09

quasi-geostrophic models: Dymnikov & Gritsun ‘01

atmospheric models: North et al ’04, Cionni et al ’04, Gritsun et al ’02/’07, Gritsun & Branstator ’07, Ring & Plumb ’08, Gritsun ’10

coupled climate models: Langen & Alexeev ’05, Kirk & Davidoff ’09, Fuchs et al ’14, Ragone et al ‘15
Success stories in the Climate Sciences

Leith (1975)

toy models: Majda et al '07, '10, Lucarini & Sarno '11

barotropic models: Bell '80, Gritsun & Dymnikov '99, Abramov & Majda '09

quasi-geostrophic models: Dymnikov & Gritsun '01

atmospheric models: North et al '04, Cionni et al '04, Gritsun et al '02/'07, Gritsun & Branstator '07, Ring & Plumb '08, Gritsun '10

coupled climate models: Langen & Alexeev '05, Kirk & Davidoff '09, Fuchs et al '14, Ragone et al ‘15

However, rough parameter dependency is known to exist in atmospheric and ocean dynamics

(Chekroun et al '14)
Success stories in the Climate Sciences

Leith (1975)

toy models: Majda et al ’07, ’10, Lucarini & Sarno ’11

barotropic models: Bell ’80, Gritsun & Dymnikov ’99, Abramov & Majda ’09

quasi-geostrophic models: Dymnikov & Gritsun ‘01

atmospheric models: North et al ’04, Cionni et al ’04, Gritsun et al ’02/’07, Gritsun & Branstator ’07, Ring & Plumb ’08, Gritsun ’10

coupled climate models: Langen & Alexeev ’05, Kirk & Davidoff ’09, Fuchs et al ’14, Ragone et al ‘15

However, rough parameter dependency is known to exist in atmospheric and ocean dynamics

Note: even if linear response is not valid, this might not be detectable in a finite time series (GAG, Wormell & Wouters ‘17)

(Chekroun et al ’14)
What is known analytically?

- statistical mechanics: *Kubo ’66*

- stochastic dynamical systems: *Hänggi ’78, Hairer & Majda ‘10*
What is known analytically?

- statistical mechanics: *Kubo* ‘66

- stochastic dynamical systems: *Hänggi* ’78, *Hairer & Majda* ‘10

- forced-dissipative deterministic dynamical systems (singular measures):
What is known analytically?

- statistical mechanics: *Kubo ‘66* ✓

- stochastic dynamical systems: *Hänggi ’78, Hairer & Majda ‘10* ✓

- forced-dissipative deterministic dynamical systems (singular measures):
 - Axiom A (uniformly hyperbolic): *Ruelle ’97, ‘98* ✓

- what about more general dynamical systems?

 Baladi et al ’08, ’10, ’14, ’15 …

 no linear response for the logistic map
What is known analytically?

- statistical mechanics: *Kubo’66*
- stochastic dynamical systems: *Hänggi ’78, Hairer & Majda ’10*
- forced-dissipative deterministic dynamical systems (singular measures):
 - what about more general dynamical systems?

Baladi et al ’08, ’10, ’14, ’15 …
no linear response for the logistic map
What is known analytically?

- statistical mechanics: *Kubo*’66
- stochastic dynamical systems: *Hänggi* ’78, *Hairer & Majda* ‘10
- forced-dissipative deterministic dynamical systems (singular measures):
- what about more general dynamical systems?

Baladi et al ’08, ’10, ’14, ’15 …

no linear response for the logistic map

We address here the following conundrum

How can typical observables of high-dimensional systems obey linear response when their microscopic low-dimensional constituents typically do not?
Object of interest: macroscopic observable

\[\Psi_n = \frac{1}{M} \sum_{j=1}^{M} \psi(q_n^{(j)}) \]
III - Linear Response Theory

Object of interest:
macroscopic observable

\[\Psi_n = \frac{1}{M} \sum_{j=1}^{M} \psi(q_n^{(j)}) \]

statistical limit laws:

\[\Psi_n = \mathbb{E} \Psi + \frac{1}{\sqrt{M}} \zeta_n + o(1/\sqrt{M}) \]

Gaussian process

or

\[q_{n+1}^{(j)} = a^{(j)} q_n^{(j)} (1 - q_n^{(j)}) \]
Object of interest: macroscopic observable

\[
\Psi_n = \frac{1}{M} \sum_{j=1}^{M} \psi(q_n^{(j)})
\]

Statistical limit laws:

\[
\Psi_n = \mathbb{E}\Psi + \frac{1}{\sqrt{M}} \zeta_n + o(1/\sqrt{M})
\]

Gaussian process

\[
\mathbb{E}\Psi_n = \langle \mathbb{E}\Psi_n \rangle + \frac{1}{\sqrt{M}} \eta + o(1/\sqrt{M})
\]

III - Linear Response Theory

or

\[
q_{n+1}^{(j)} = a^{(j)} q_n^{(j)} (1 - q_n^{(j)})
\]

Heterogeneity

\[
a^{(j)} \sim \nu(a)
\]
Object of interest: macroscopic observable

$$\Psi_n = \frac{1}{M} \sum_{j=1}^{M} \psi(q_n^{(j)})$$

statistical limit laws:

$$\Psi_n = \mathbb{E}\Psi + \frac{1}{\sqrt{M}} \zeta_n + o(1/\sqrt{M})$$

Gaussian process

$$\mathbb{E}\Psi_n = \langle \mathbb{E}\Psi_n \rangle + \frac{1}{\sqrt{M}} \eta + o(1/\sqrt{M})$$

Linear response holds for macroscopic observables provided

- Ψ_n is a stochastic process (**diffusive limit**)
- the $a^{(j)}$ are distributed according to a sufficiently smooth distribution $\nu(a)$ (**heterogeneity**)
IV - Numerical integration of multi-scale systems

How does the numerical time integrator affect the statistical behaviour of the simulation?
\[\dot{x} = \varepsilon h(x) f_0(y) + \varepsilon^2 f(x, y) \]
\[\dot{y} = g(y) \]

Discretisation

\[x_{n+1} = x_n + \Delta t \varepsilon h(x_n) f_0(y_n) + \Delta t \varepsilon^2 f(x_n, y_n) \]
\[\dot{x} = \varepsilon h(x)f_0(y) + \varepsilon^2 f(x, y) \]
\[\dot{y} = g(y) \]

\[x_{n+1} = x_n + \Delta t \varepsilon h(x_n)f_0(y_n) + \Delta t \varepsilon^2 f(x_n, y_n) \]

Homogenisation *(GAG & Melbourne (2013))*

\[dX = F(X) \, dt + \sigma h(X) \circ dW_t \]
\[F(X) = \int_{\Lambda} f(X, y) \, d\mu \]
\[\frac{1}{2} \sigma^2 = \int_{0}^{\infty} \mathbb{E}[f_0(y)f_0(\varphi^t y)] \, dt \]

Discretisation

\[dX = \left(F(X) - \frac{1}{2} \Delta t h(X)h'(X) \mathbb{E}[f_0^2] \right) \, dt + \sqrt{\Delta t} \delta h(X) \circ d\tilde{W}_t \]
\[F(X) = \int_{\Lambda} f(X, y) \, d\mu \]
\[\delta^2 = \mathbb{E}[f_0^2] + 2 \sum_{n=1}^{\infty} \mathbb{E}[f_0(y)f_0(\Phi^n y)] \]
\[
\dot{x} = \varepsilon h(x) f_0(y) + \varepsilon^2 f(x, y) \\
\dot{y} = g(y)
\]

Discretisation

\[
x_{n+1} = x_n + \Delta t \varepsilon h(x_n) f_0(y_n) + \Delta t \varepsilon^2 f(x_n, y_n)
\]

Homogenisation

\[
dX = F(X) \, dt + \sigma h(X) \, dW_t
\]

\[
F(X) = \int_{\Lambda} f(X, y) \, d\mu
\]

\[
\frac{1}{2} \sigma^2 = \int_{\varepsilon}^{\infty} \mathbb{E}[f_0(y) f_0(\varphi^t y)] \, dt
\]

\[
\hat{\sigma}^2 = \mathbb{E}[f_0^2] + 2 \sum_{n=1}^{\infty} \mathbb{E}[f_0(y) f_0(\Phi^n y)]
\]

Homogenisation

\[
dX = \left(F(X) - \frac{1}{2} \Delta t h(X) h'(X) \mathbb{E}[f_0^2] \right) dt + \sqrt{\Delta t} \hat{\sigma} h(X) \, d\tilde{W}_t
\]

\[
F(X) = \int_{\Lambda} f(X, y) \, d\mu
\]

Remarks: \(\hat{\sigma}^2 \Delta t \rightarrow \sigma^2 \) for \(\Delta t \rightarrow 0 \)
\[\dot{x} = \varepsilon h(x)f_0(y) + \varepsilon^2 f(x,y) \]
\[\dot{y} = g(y) \]

\[x_{n+1} = x_n + \Delta t \varepsilon h(x_n)f_0(y_n) + \Delta t \varepsilon^2 f(x_n,y_n) \]

Remarks: \(\hat{\sigma}^2 \Delta t \to \sigma^2 \) for \(\Delta t \to 0 \)

noise is neither Stratonovich nor Itô

for i.i.d. fast dynamics, i.e. \(\hat{\sigma}^2 = \mathbb{E}[f_0^2] \), the noise is Itô
(dynamics is already rough on time scale of \(O(\Delta t) \))

but it is never Stratonovich!

\[dX = F(X) \, dt + \sigma h(X) \circ dW_t \]
\[F(X) = \int_{\Lambda} f(X,y) \, d\mu \]
\[\frac{1}{2} \sigma^2 = \int_0^\infty \mathbb{E}[f_0(y)f_0(\varphi^t y)] \, dt \]

\[dX = \left(F(X) - \frac{1}{2} \Delta t h(X)h'(X) \mathbb{E}[f_0^2] \right) \, dt + \sqrt{\Delta t} \hat{\sigma} h(X) \circ d\tilde{W}_t \]
\[F(X) = \int_{\Lambda} f(X,y) \, d\mu \]
\[\hat{\sigma}^2 = \mathbb{E}[f_0^2] + 2 \sum_{n=1}^{\infty} \mathbb{E}[f_0(y)f_0(\Phi^n y)] \]
The only difference between the two homogenised equations is

\[E := -\frac{1}{2} \Delta t h(X) h'(X) E[f_0^2] \]

How can we interpret this extra drift term in the homogenised equation of the discretisation?

Backward error analysis:
appears in first-order schemes, but not in higher order schemes

(Frank & GAG, SIAM MMS (2018))
Can the extra term be significant? It is only $O(\Delta t)$

\[
\begin{align*}
\dot{x} &= \varepsilon \sqrt{xy} + \varepsilon^2 b(c-x)y^2 \\
\dot{\xi} &= -\eta - \zeta \\
\dot{\eta} &= \xi + r\eta \\
\dot{\zeta} &= s + (\xi - u)\zeta
\end{align*}
\]

\begin{itemize}
\item pdf of homogenised equation for full \textbf{continuous}-time multi-scale system
\item pdf of homogenised equation for full \textbf{discrete}-time multi-scale system
\end{itemize}

\begin{itemize}
\item empirical pdf for \textbf{forward Euler}
\item empirical pdf for \textbf{second-order RK}
\end{itemize}

\(\varepsilon = 0.1\)

15.6\% error in mean!
V - The problem of parametrising small-scale convection

The inadequate representation of atmospheric convection in GCMs leads to:
- considerable uncertainty in estimating climate sensitivity
- ambiguities in the numerical simulation of the Earth's climate, for example when comparing the inter-model mean and spread of hydrological-cycle related variables of the CMIP5 ensemble to observations.

Deterministic convective parametrisation:
- assumes single possible response of the small-scale convective state for given large-scale atmosphere-ocean state
- capable of only representing a mean effect of convective processes
- lack of variability at small scales (can propagate upscale)
- increase in spatial resolution does not allow for sufficient number of convective events to justify an average

Stochastic convective parametrisation:

- **physics-based**

- **data-driven**
 - Dorrestijn et al (2013, 2015): data-driven multi-cloud model; and not so many others

Transparency → Accuracy
Observational Data

Two data sets at Darwin and Kwajalein
- Large scale vertical velocity ω
- Small scale convective activity (convective area fraction)
- 6-hourly time resolution
- 190 x 190 km2 (typical size of GCM grid box)
- Darwin has 1890 and Kwajalein has 1095 data points

Precipitation radar observations combined with ECMWF analysis

Large scale field: ω

Small scale field: CAF

Davies et al. (2013)
The Differences

Kwajalein has a purely oceanic weather regime

Darwin features land-sea breeze induced convection (diurnal cycles)

\[
\frac{\text{std}}{\text{mean}} \text{ of CAF decreases for sufficiently negative } \omega_{500}
\]

heavy rain events behave deterministically with approximate linear behaviour

Kwajalein has a purely oceanic weather regime

Darwin features land-sea breeze induced convection (diurnal cycles)
The Similarities

\[p^{\text{Kwajalein}}(\text{CAF}(t)|\omega_{500}(t)) \approx p^{\text{Darwin}}(\text{CAF}(t)|\omega_{500}(t) - \Delta \omega) \]

or analogously

\[p^{\text{Darwin}}(\text{CAF}(t)|\omega_{500}(t)) \approx p^{\text{Kwajalein}}(\text{CAF}(t)|\omega_{500}(t) + \Delta \omega) \]

Despite the different prevalent atmospheric and oceanic regimes at the two locations, the empirical measure for the convective variables conditioned on large-scale mid-level vertical velocities for the two locations are close.

This allows us to train the stochastic models at one location and then apply it to the other!
Instantaneous Random Variables

Treat CAF\(t_k\) as a random variable conditioned on the large-scale \(\omega_{500}(t_k)\)

\[
p(CAF_J|\omega_I) = \frac{\#\text{points in bin } (I,J)}{\#\text{points in column } I}
\]

Training phase:
Use data from Kwajalein (Darwin) to determine the conditional probability \(p(CAF_J|\hat{\omega}_I)\)

Application phase:
Draw CAF as random variables conditioned on observations of \(\omega_{500}\) at Kwajalein (Darwin)
Mean μ, variance σ^2 and skewness ξ of CAF conditioned on ω_{500}

<table>
<thead>
<tr>
<th></th>
<th>μ</th>
<th>σ^2</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>observations</td>
<td>0.0066</td>
<td>1.89×10^{-4}</td>
<td>4.27</td>
</tr>
<tr>
<td>random variable</td>
<td>0.0073</td>
<td>1.80×10^{-4}</td>
<td>4.29</td>
</tr>
</tbody>
</table>

Trained at Darwin and applied to Kwajalein

<table>
<thead>
<tr>
<th></th>
<th>μ</th>
<th>σ^2</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>observations</td>
<td>0.0080</td>
<td>1.29×10^{-4}</td>
<td>2.38</td>
</tr>
<tr>
<td>random variable</td>
<td>0.0075</td>
<td>1.45×10^{-4}</td>
<td>2.46</td>
</tr>
</tbody>
</table>

Trained at Kwajalein and applied to Darwin

- similarly good results for conditioning on ω_{715} or on rain rates
- cannot resolve periods of sustained non-convection near $t=900$

(GAG, Peters and Davies, QJRMS (2016))
How can these stochastic parametrizations be used?

The convection scheme
- receives large-scale atmospheric state per grid box (temperature, velocities, humidity,...)
- computes vertical transport of heat, moisture
- provides tendencies to update large-scale fields

The highly challenging problem of triggering convection is performed by the convection scheme

Mass-flux parametrizations

\[M_{cb} = \rho_{air} \omega_{cb} \times CAF \]

proper estimation paramount to determine overall strength of convection

Deterministic: assume fixed CAF at 3%
Stochastic: CAF conditioned on large-scale \(\omega_{500} \)

(\textit{Wohltmann, Lehmann, GAG et al, GMD (2019)})

adapted from
http://climate.snu.ac.kr/gcmdocu/Phy_Cum.htm