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Motivations and definition of
Hawkes processes



Neurobiological motivations

A neuron transmits information through electrical signals: action

potentials (also called spike trains)
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Neurobiological motivations

e Data = excitation times recorded at K neurons = multivariate

point process

e Goal: Infer the graph of connections and estimate the properties of
the interactions ( excitation and/or inhibition )

e Model: nonlinear Hawkes processes

_______________________
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Temporal point process

Definition (Point process)
A is a random countable set of points of R or

equivalently a non-decreasing integer-valued process (/N;):.

Definition (Intensity of a point process)

The of N represents the probability to observe a point at
the time t conditionally on the past before t:

Aedt = P [N has a jump € [t, t + dt] conditionally on the past before t)]

N(t)
Example: Poisson Process: A is - e e 7\ (t)
not random. it 4 b
does not depend on t. N ] G,
= ]




Linear univariate Hawkes processes

Aedt = P [N has a jump € [t, t + dt] conditionally on the past before t]

Definition
Linear univariate Hawkes process (Hawkes (1971)) Let » > 0 and h > 0
supported by Ry such that [,"> h(t)dt < 1. Then any

t7
)\t:y+/ h(t—uw)dN,=v+ > h(t—T)

TieN, Ti<t
is called a with
and
Remarks:
e h>0=

e Unique stationary distribution (Brémaud and Massoulié [? ])
e Representation as a branching process with rate v and
reproducing function h 5



Linear univariate Hawkes processes: example

Branching process with ancestor rate v > 0 and reproduction h > 0
supported by R, .
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Linear univariate Hawkes processes: example

Branching process with ancestor rate v > 0 and reproduction h > 0
supported by R .
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e Ancestors: Realizations of a Poisson Process with \; = v

e Each ancestor can give birth to children according to a Poisson
Process with A\; = h(t)

e Each child can give birth to children according to a Poisson Process.
with A\ = h(t)

e Extinction if [["*° h(t)dt < 1

e Hawkes process = all the points where colors are not distinguished



Multivariate Hawkes process

e Multivariate linear Hawkes: N = (N, ..., NX) where N models
the activity of neuron k € [K] whose intensity is

t—
= Vk—‘rz 5lk/ h/k t S dNI = Vk+z Z 5/kh/k(t— T,)

I=1 T,eN!,T;<t

e Interaction functions from / to k: hy > 0 (excitation) with support
in [0, A] (bounded memory)
e graph of connections: oy € {0,1}



Multivariate Hawkes process

e Multivariate linear Hawkes: N = (N, ..., NX) where N models
the activity of neuron k € [K] whose intensity is

t—
= Vk—‘rz 5lk/ h/k t S dNI = Vk+z Z 5/kh/k(t— T,)

I=1 T,eN!,T;<t

e Interaction functions from / to k: hy > 0 (excitation) with support
in [0, A] (bounded memory)
e graph of connections: oy € {0,1}

e Multivariate nonlinear Hawkes:
K
= | v+ Z Z Suchu(t — T;) (1)
I=1 T,eN!T;<t

e (Nonlinear ) link function ¢k >0
e hy signed function = excitation and inhibition



Multivariate Hawkes processes

Theorem (Brémaud and Massoulié (1996))
Existence and uniqueness of a stationary distribution for N if

|¢¥|lo< 00 for any k € [K] or ¢* is 1-Lipschitz and the matrix T with
entries [y = ||hi||1 has a spectral radius < 1.



Applications of Hawkes processes

Hawkes process are useful to model many situations where excitation or
inhibition phenomena play a crucial role.

e earthquakes: Ozaki (1979), Ogata and Akaike (1982)
e neuroscience: Chornoboy, Schramm and Karr (1988)

e genome analysis: Gusto and Schbath (2005), Reynaud-Bouret and
Schbath (2010)

e financial data: Embrechts, Liniger and Lin (2011), Bacry and Muzy
(2013, 2014)

e diffusion across social networks: Crane and Sornette (2008)

e analyze and predict the diffusion of COVID-19: Mengersen,
Paraha, Rivoirard, Rousseau and S. (2020)



Bayesian inference framework




Statistical goal

M (fo) = VE+Z Y owh(t=T)|, kelK]

I=1 T,eN'\T;<t

One observes a K-dimensional Hawkes P. (Nk)k:L_._,K on [0, T| with true
parameter fy = ((1)k=1,....k, (i )ek=1,...k) -

Statistical Goals:

e Estimate the process parameters f;

o Infer the graph adjacency 0o = (02, )e.k=1,.. k € {0, 1}K*K

o Infer some link parameters of ¢*: 6,

10



Nonlinear Hawkes process: example with 5 neurons

Observations: spike trains emitted by 5 neurons in a time window [0, T]
with T =5 secs

N'(t) -o-0—-0—@
N2(t) ®

N(t) oo
O @

N(t)

N*(t) —@ *—©
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Nonlinear Hawkes process: example with 5 neurons

hi2(x) = hss(x)

—— hzalx)

o

®
® ©

Graph of interactions:
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Bayesian approach

—Vk+25/k/ hi t—s)d/V()

e prior distribution N on n = (f,6)

update via likelihood
K T T
log L7(N; £,0) :=> l/ Iog()\’t‘(f))de—/ /\’t‘(f)dt] ;
i /o 0
Posterior distribution

Jgexp(Lr(N; ))d(f,0)
f]—'xeeXp(LT(N £,0))dN(f,0)

Posterior leads to estimates, credible sets, tests, prediction

N(B|N) =

e.g. hy(t) = E™(hi(t)|N),

13



Posterior concentration and consistency

e posterior concentration rate et = o(1) s.t. nn = (f,6)
Ep, [N (d(m0,m) < e7|N)] o 1, d(-,-) = distance,
—00

e intensity

K
() =¢a (v+D. D owhu(t=T)],
I=1 T,eN!, T;<t
we consider the [L{-distance

d(n1,m2) := || — fall1= Z\Vk - WI+ZZH’7 — hiells

k=1 ¢=1
or

do(n1,72) = (1L — Bolli+ > _[01 — 02l
K
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Posterior concentration and consistency

e posterior concentration rate et = o(1) s.t. n = (f,0)
Eq, [M(d(nm0,7m) < eT|N)] o 1, d(-,-) = distance,
—00

e intensity

K
() =¢a (v+D. D owhu(t=T)],
I=1 T,eN!, T;<t
we consider the [L{-distance

d(n1,m2) := || — fall1= Z\Vk - Vk|+ZZ||h — hiells

k=1 ¢=1

do(n1,72) = (1L — Bolli+ > _[01 — 02l
K

or

e Posterior consistency on the graph

Eg [M(0 = do|N)] —— 1.
T—oo
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Our results




Contributions

e We consider 3 nonlinear models, 2 have additional parameters 6
attached to the non-linearity

e We obtain Bayesian concentration rates for f and 6

e We obtain the posterior consistency on the graph

15



Nonlinear models

Mw=o (BeY X aue-T)
I=1 T,eN!,T;<t
with 3 non-linear link functions
Model 0: ¢*(x) = x and hy > 0 (linear)
Model 1: ¢*(x) = i + max(x,0), 6x >0
Model 2: ¢¥(x) = 1>, min(x, Ax), 0k >0, Ak >0
Model 3: ¢*(x) = max(x,0)

Link parameters in models 1 and 2: 6 = (6x)%_;

|
— y=max(x,0)
— y=max(x,0)+u

— y=X1(L > x >5))

16




Posterior concentration rates: general theorem

Ghosal and van der Vaart Theory :
e Kullback-Leibler condition :
NP : KL(PY ,PT) < T, V(P ,PTY S Td) > e aTer
e Testing condition : J(N) € [0,1] and Fr st. N(FS) < e~ (@tDTer

Eo(¢) = o(1), sup  Ey(1—¢) < e (@A
d(n,m0)>Mer,Fr

Then

Eol(d(n,m0) > Mer|N) = o(1)
Aim 1 express these [implicit] conditions as simple (at least common)
conditions

Aim 2 Only useful for statistical distances — not enough for estimation of
the graph

17



Posterior concentration rates for Hawkes : case § known

H = {hy: [0,A] = R, ||hulloo< 00, r(S) <1} S = (|lhull1)
e KL bis :
I'I(rT)E,i(xHh/k — W o< €7, [k — V2|< €7) = —aTé

e Testing: IH+ CH
Nler, Hr, |) < xoTet

Theorem (Posterior concentration rate on f and 6)

Under KL bis and Testing and ||h, || < vk In Models 1 and 2
Eq [N(d(f,fo) < er|N)] —— 1.

and in Model 3 : under addditional assumption

1g, /T Intwr>0 ) o
T 0 /\f(fo) 18



Comments

e KLbis and Testing : very standard in literature - - similar to
conditions for density estimation, regression etc . One can us directly
results already proved on families of priors

e Model 3 : Case linear is a sub case of Model 3

l]Eo /T]l/\t(fobo dt | < 400
T o Ac(fo)
If h, # 0 : nasty conditions. If this is not satisfied
MN(d(f, o) < er|N) =1+ 0,(1)
e Important tool : renewal times
Tjir1 = inf{t > 7;, N[t — A, t) > ON(t — A, t] = 0} (N|r,,7,.,)); are

iid.
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Posterior concentration rates for Hawkes : case ¢ unknown

Myt ¢o(x) =0+ x4, My :min(x,A)l59, Ms:xy

Theorem

If in addition : Vk, 3/ s.t. h, > c. >0 on (x1,x2) then in M

Er, [N(116 — boll, < er[N)] ——— 1,
T—o0

and in Model 2, true if h, Lipschitz on some interval near 0
Eq (11 = oll, < vVerIN)] —— 1.

20



comments

e d/s.t. h, >0 : necessary for identifiability. hence h, > ¢, > 0 on
(x1,x2) is a weak condition

e in model 2 : stronger condition and slower rate : harder problem .
lower bound on the rate is an open problem.

e Estimation of 6 a bit harder : it came as a suprise to be able to

estimate 6.
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Posterior consistency of the graph

hic = owchi, O € {0,1}, hye =0if oy =0

e Prior
6= (0m)ws (hi, (I, k) € Z(6)[6) ~ h|dettas  Z(6) = {(/, k) : duc = 1}

Theorem
Under the same conditions as case 6 known

o If5) =1 and || |1> M'er

Eo [M(6i = 63 |N)] T 1

—>00

° Iféfk =0 and if

then 0
Eo [ﬂ(5/k = 6,k|N)] —_1
T—o0
22



comments

e Easier to detect signal than to see that h% =0

e Extra condition in the null case :

Y(1, k) € Z(5), N(||Ak|1< e7|6) < e~ T

e Simple to verify in the following hierarchical prior
hi = SwSihi,  |[hlli=1, dN(h) = N(8)N(S]6)dMN(h|5)

e Unpleasant : strong penalisation around 0
Pi(Sik < et]d =1) < e GTer e.g. Gamma-type prior on some
power p € N of the norms

M(p?) o< p~P* P exp(=B/p")Lp,1(p),
e impact on estimation and detection of small signal
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Example of priors : Concentration rate: case of Holder func-

tions

One can choose Histograms, spline, wavelets etc . . . simple conditions
hik = O Sichik

e Histogram prior

iid T
o ~ B(p), Swldok=1~MNs, hy = Zejwjlljv e =-11, (w, -, wy)
J

Ij - (tJ‘ tj+1)

Corollary
In Models 1 and 2, under the satisfying the
assumptions, if with € (0,1], then
T\ —8/@8+1)
Eq (M d(f, F N 1.
0 (fo,f) < (Iog T) | o

24



Conclusion

e Theory for ILi-posterior concentration rates under weak assumptions
in different non linear models:

o ¢*(x) = max(x,0): not completely solved...

o ¢¥(x) = Ok + max(x,0)

o ¢*(x) = 1x=q, min(x,Ax): estimation of 6 harder
e Inference of the graph parameter with realistic priors
e Possible extensions

e sparse high-dimensional case
e processes with unbounded memory

e concentration rates in supremum norms
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Thank you for your attention.
Questions and remarks are welcomed!

26



	Motivations and definition of Hawkes processes
	Bayesian inference framework
	Our results

