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Motivations and definition of
Hawkes processes



Neurobiological motivations

A neuron transmits information through electrical signals: action
potentials (also called spike trains)

Action potentials can be
recorded and the excitation
times can be seen as a point
process.
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Neurobiological motivations

• Data = excitation times recorded at K neurons ⇒ multivariate
point process

• Goal: Infer the graph of connections and estimate the properties of
the interactions ( excitation and/or inhibition )

• Model: nonlinear Hawkes processes
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Temporal point process

Definition (Point process)
A point process N is a random countable set of points of R or
equivalently a non-decreasing integer-valued process (Nt)t .

Definition (Intensity of a point process)
The intensity λt of N represents the probability to observe a point at
the time t conditionally on the past before t:
λtdt = P [N has a jump ∈ [t, t + dt] conditionally on the past before t)]

Example: Poisson Process: λt is
not random. Homogeneous if λt

does not depend on t.
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Linear univariate Hawkes processes

λtdt = P [N has a jump ∈ [t, t + dt] conditionally on the past before t]

Definition
Linear univariate Hawkes process (Hawkes (1971)) Let ν > 0 and h > 0
supported by R+ such that

∫ +∞
0 h(t)dt < 1. Then any point process N

whose intensity is

λt = ν +
∫ t−

−∞
h(t − u)dNu = ν +

∑
Ti∈N,Ti<t

h(t − Ti )

is called a linear univariate Hawkes process with spontaneous rate ν
and self-exciting function h.

Remarks:
• h > 0⇒ excitation
• Unique stationary distribution (Brémaud and Massoulié [? ])
• Representation as a branching process with ancestor rate ν and
reproducing function h 5



Linear univariate Hawkes processes: example

Branching process with ancestor rate ν > 0 and reproduction h > 0
supported by R+.

• Ancestors: Realizations of a Poisson Process with λt = ν
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Linear univariate Hawkes processes: example

Branching process with ancestor rate ν > 0 and reproduction h > 0
supported by R+.

• Ancestors: Realizations of a Poisson Process with λt = ν

• Each ancestor can give birth to children according to a Poisson
Process with λt = h(t)

• Each child can give birth to children according to a Poisson Process.
with λt = h(t)

• Extinction if
∫ +∞

0 h(t)dt < 1
• Hawkes process = all the points where colors are not distinguished
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Multivariate Hawkes process

• Multivariate linear Hawkes: N = (N1, . . . ,NK ) where Nk models
the activity of neuron k ∈ [K ] whose intensity is

λk
t = νk +

K∑
l=1

δlk

∫ t−

−∞
hlk(t−s)dN l

s = νk +
K∑

l=1

∑
Ti∈N l ,Ti<t

δlkhlk(t−Ti )

• Interaction functions from l to k: hlk > 0 (excitation) with support
in [0,A] (bounded memory)

• graph of connections: δlk ∈ {0, 1}

• Multivariate nonlinear Hawkes:

λk
t = φk

νk +
K∑

l=1

∑
Ti∈N l ,Ti<t

δlkhlk(t − Ti )

 (1)

• (Nonlinear ) link function φk > 0
• hlk signed function ⇒ excitation and inhibition
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Multivariate Hawkes processes

Theorem (Brémaud and Massoulié (1996))
Existence and uniqueness of a stationary distribution for N if
‖φk‖∞<∞ for any k ∈ [K ] or φk is 1-Lipschitz and the matrix Γ with
entries Γlk = ‖hlk‖1 has a spectral radius < 1.

8



Applications of Hawkes processes

Hawkes process are useful to model many situations where excitation or
inhibition phenomena play a crucial role.

• earthquakes: Ozaki (1979), Ogata and Akaike (1982)
• neuroscience: Chornoboy, Schramm and Karr (1988)
• genome analysis: Gusto and Schbath (2005), Reynaud-Bouret and

Schbath (2010)
• financial data: Embrechts, Liniger and Lin (2011), Bacry and Muzy
(2013, 2014)

• diffusion across social networks: Crane and Sornette (2008)
• analyze and predict the diffusion of COVID-19: Mengersen,
Paraha, Rivoirard, Rousseau and S. (2020)
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Bayesian inference framework



Statistical goal

λk
t (f0) = φk

ν0
k +

K∑
l=1

∑
Ti∈N l ,Ti<t

δlkh0
lk(t − Ti )

 , k ∈ [K ]

One observes a K -dimensional Hawkes P. (Nk)k=1,...,K on [0,T ] with true
parameter f0 = ((ν0

k )k=1,...,K , (h0
`k)`,k=1,...,K ) .

Statistical Goals:

• Estimate the process parameters f0
• Infer the graph adjacency δ0 = (δ0

`k)`,k=1,...,K ∈ {0, 1}K×K

• Infer some link parameters of φk : θ0
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Nonlinear Hawkes process: example with 5 neurons

Observations: spike trains emitted by 5 neurons in a time window [0,T ]
with T = 5 secs
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Nonlinear Hawkes process: example with 5 neurons
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Graph of interactions:

δ =


0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1
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Bayesian approach

λk
t (f ) = νk +

k∑
l=1

δlk

∫ t−

hlk(t − s)dN l (s).

• prior distribution Π on η = (f , θ)
• update via likelihood

logLT (N; f , θ) :=
K∑

k=1

[∫ T

0
log(λk

t (f ))dNk
t −

∫ T

0
λk

t (f )dt
]
,

• Posterior distribution

Π(B|N) =
∫

B exp(LT (N; f ))dΠ(f , θ)∫
F×Θ exp(LT (N; f , θ))dΠ(f , θ)

.

• Posterior leads to estimates, credible sets, tests, prediction

e.g . ĥlk(t) = Eπ(hlk(t)|N),
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Posterior concentration and consistency

• posterior concentration rate εT = o(1) s.t. η = (f , θ)
Eη0 [Π (d(η0, η) < εT |N)] −−−−→

T→∞
1, d(·, ·) = distance,

• intensity

λk
t (f ) = φθk

νk +
K∑

l=1

∑
Ti∈N l ,Ti<t

δlkhlk(t − Ti )

 ,

we consider the L1-distance

d(η1, η2) := ‖f1 − f2‖1=
K∑

k=1
|ν1

k − ν2
k |+

K∑
k=1

K∑
`=1
‖h1

k` − h2
k`‖1

or
d2(η1, η2) := ‖f1 − f2‖1+

∑
k
|θ1k − θ2k |

• Posterior consistency on the graph

Ef0 [Π (δ = δ0|N)] −−−−→
T→∞

1.
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Our results



Contributions

• We consider 3 nonlinear models, 2 have additional parameters θ
attached to the non-linearity

• We obtain Bayesian concentration rates for f and θ
• We obtain the posterior consistency on the graph δ
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Nonlinear models

λk
t (f0) = φk

ν0
k +

K∑
l=1

∑
Ti∈N l ,Ti<t

δlkh0
lk(t − Ti )


with 3 non-linear link functions

• Model 0: φk(x) = x and hlk > 0 (linear)
• Model 1: φk(x) = θk + max(x , 0), θk > 0
• Model 2: φk(x) = 1x>θk min(x ,Λk), θk > 0, Λk > 0
• Model 3: φk(x) = max(x , 0)

Link parameters in models 1 and 2: θ = (θk)K
k=1
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Posterior concentration rates: general theorem

Ghosal and van der Vaart Theory :

• Kullback-Leibler condition :

Π(P : KL(PT
0 ,PT ) 6 T ε2T ,V (PT

0 ,PT ) 6 T ε2T ) > e−c1Tε2
T

• Testing condition : ∃φ(N) ∈ [0, 1] and FT s.t. Π(F c
T ) 6 e−(c1+2)Tε2

T

E0(φ) = o(1), sup
d(η,η0)>MεT ,FT

Eη(1− φ) 6 e−(c1+2)Tε2
T ,

Then
E0Π(d(η, η0) > MεT |N) = o(1)

Aim 1 express these [implicit] conditions as simple (at least common)
conditions

Aim 2 Only useful for statistical distances – not enough for estimation of
the graph
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Posterior concentration rates for Hawkes : case θ known

H = {hlk : [0,A]→ R, ‖hlk‖∞<∞, r(S) < 1} S = (‖hlk‖1)lk

• KL bis :

Π(max
l,k
‖hlk − h0

lk‖∞6 εT , |νk − ν0
k |6 εT ) & e−c1Tε2

T

• Testing : ∃HT ⊂ H

N (εT ,HT , ‖·‖1) 6 x0T ε2T
Theorem (Posterior concentration rate on f and θ)

Under KL bis and Testing and ‖h−lk ‖∞< νk In Models 1 and 2

Ef0 [Π(d(f , f0) < εT |N)] −−−−→
T→∞

1.

and in Model 3 : under addditional assumption

1
T E0

(∫ T

0

1λt (f0)>0

λt(f0) dt
)
< +∞
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Comments

• KLbis and Testing : very standard in literature - - similar to
conditions for density estimation, regression etc . One can us directly
results already proved on families of priors

• Model 3 : Case linear is a sub case of Model 3

1
T E0

(∫ T

0

1λt (f0)>0

λt(f0) dt
)
< +∞

If h−lk 6= 0 : nasty conditions. If this is not satisfied

Π(d(f , f0) 6
√
εT |N) = 1 + op(1)

• Important tool : renewal times
τj+1 = inf{t > τj ,N[t − A, t) > 0N(t − A, t] = 0} (N|[τj ,τj+1))j are
iid.
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Posterior concentration rates for Hawkes : case θ unknown

M1 : φθ(x) = θ + x+, M2 : min(x ,Λ)1x>θ, M3 : x+

Theorem
If in addition : ∀k, ∃l s.t. h−lk > c∗ > 0 on (x1, x2) then in M1

Ef0 [Π( ‖θ − θ0‖1 < εT |N)] −−−−→
T→∞

1,

and in Model 2, true if h−lk Lipschitz on some interval near 0
Ef0 [Π( ‖θ − θ0‖1 <

√
εT |N)] −−−−→

T→∞
1.
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comments

• ∃l s.t. h−lk > 0 : necessary for identifiability. hence h−lk > c∗ > 0 on
(x1, x2) is a weak condition

• in model 2 : stronger condition and slower rate : harder problem .
lower bound on the rate is an open problem.

• Estimation of θ a bit harder : it came as a suprise to be able to
estimate θ.

21



Posterior consistency of the graph

hlk = δlkhlk , δlk ∈ {0, 1}, hlk = 0 if δlk = 0
• Prior

δ = (δlk)lk , (hlk , (l , k) ∈ I(δ)|δ) ∼ πh||delta, I(δ) = {(l , k) : δlk = 1}

Theorem
Under the same conditions as case θ known

• If δ0
lk = 1 and ‖h0

lk‖1> M ′εT

E0
[
Π(δlk = δ0

lk |N)
]
−−−−→
T→∞

1

• If δ0
lk = 0 and if

∀(l , k) ∈ I(δ), Π(‖hlk‖16 εT |δ) 6 e−C1Tε2
T

then
E0
[
Π(δlk = δ0

lk |N)
]
−−−−→
T→∞

1
22



comments

• Easier to detect signal than to see that h0
lk = 0

• Extra condition in the null case :

∀(l , k) ∈ I(δ), Π(‖hlk‖16 εT |δ) 6 e−C1Tε2
T

• Simple to verify in the following hierarchical prior

hlk = δlkSlk h̄lk , ‖h̄lk‖1= 1, dΠ(h) = Π(δ)Π(S|δ)dΠ(h̄|δ)

• Unpleasant : strong penalisation around 0
Pi(Slk 6 εT |δlk = 1) 6 e−C1Tε2

T e.g. Gamma-type prior on some
power p ∈ N of the norms

Π(ρp) ∝ ρ−pα−p exp(−β/ρp)1[0,1](ρ),

• impact on estimation and detection of small signal
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Example of priors : Concentration rate: case of Holder func-
tions

One can choose Histograms, spline, wavelets etc . . . simple conditions
hlk = δlkSlk h̄lk

• Histogram prior

δlk
iid∼ B(p), Slk |δlk = 1 ∼ ΠS , h̄lk =

∑
j

ejwj1Ij , ej = −1, 1, (w1, · · · ,wJ ) ∼ D(α1, · · · , αJ )

Ij = (tj , tj+1)

Corollary
In Models 1 and 2, under the random histogram prior satisfying the
assumptions, if ∀k, l ∈ [K ], h0

kl ∈ H(β, L) with β ∈ (0, 1], then

E0

[
Π
(

d(f0, f ) <
(

T
log T

)−β/(2β+1)
|N
)]
−−−−→
T→∞

1.
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Conclusion

• Theory for L1-posterior concentration rates under weak assumptions
in different non linear models:

• φk (x) = max(x , 0): not completely solved...
• φk (x) = θk + max(x , 0)
• φk (x) = 1x>θk min(x ,Λk ): estimation of θ harder

• Inference of the graph parameter with realistic priors
• Possible extensions

• sparse high-dimensional case
• processes with unbounded memory
• concentration rates in supremum norms
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The end

Thank you for your attention.
Questions and remarks are welcomed!
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