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Research questions

How does biodiversity respond to human-driven
environmental change ?

• Improve predictive capacity, data and uncertainty
quantification

• Improve understanding of relevant processes and
feedbacks

• Improve scientific basis for environmental 
management and monitoring



What is biodiversity?

Biological diversity means the variety of life on Earth –
within species, between species and of entire
ecosystems (Convention on Biological Diversity, 1992)

Wilson & Primack (2019) Open Book Publisher.



The global biodiversity crisis
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Aiming higher to bend the curve of  
biodiversity loss
The development of the post-2020 strategic plan for the Convention on Biological Diversity provides a vital window 
of opportunity to set out an ambitious plan of action to restore global biodiversity. The components of such a plan, 
including its goal, targets and some metrics, already exist and provide a roadmap to 2050.

Georgina M. Mace, Mike Barrett, Neil D. Burgess, Sarah E. Cornell, Robin Freeman, Monique Grooten and 
Andy Purvis

The Convention on Biological Diversity 
(CBD) outlines an ambitious vision: 
“...by 2050, biodiversity is valued, 

conserved, restored and wisely used, 
maintaining ecosystem services, sustaining 
a healthy planet and delivering benefits 
essential for all people.” In November 2018 
the 195 countries (plus the EU) that are 
parties to the CBD will meet to start work 
on a new strategic plan for the period 
after 2020. These deliberations come in 
the wake of the well-publicized failure to 
meet the 2010 target to significantly reduce 
biodiversity loss and evidence that the 
ambition of the plan for 2020 (the Aichi 
Targets) will also not be achieved1. Far from 
it: biodiversity continues to decline steeply. 
Without a substantial change in approach 
and ambition, these successive failures will 
almost certainly be repeated.

The degradation of nature is among the 
most serious issues that the world faces, 
but current targets and consequent actions 
amount, at best, to a managed decline. 
Required now are bold and well-defined 
goals and a credible set of actions to restore 
the abundance of nature to levels that enable 
both people and nature to thrive. Crucially, 
given pressing needs to simultaneously avoid 
dangerous climate change, feed a growing 
population and restore biodiversity, we need 
cross-cutting solutions that enable our land 
and oceans to support all three objectives 
effectively and equitably, while recognizing 
the interactions and interdependencies 
between them that offer opportunities as 
well as risks.

Here we argue that well-defined, 
ambitious and measurable targets must 
support the next CBD vision, and we 
propose three indicators that would 
together measure the required progress in 
biodiversity recovery.

The problem
Over 25 years have passed since the 
1992 Rio Earth Summit where the first 

global commitment for biodiversity 
conservation was agreed. Despite numerous 
international scientific studies and policy 
agreements confirming that conservation 
and sustainable use of biological diversity 
is a global priority, worldwide trends in 
biodiversity continue to decline. The Living 
Planet Index, based on trends in vertebrate 
population sizes, reports an estimated 58% 
decline since 19702, current rates of species 
extinction are 100 to 1,000 times higher 
than the background rate3 and although 
net changes in local species diversity 
reflect a variable mix of extirpation and 
introductions4 approximately 13% of local 

species diversity has been lost on average 
across the world since 15005.

This declining trend must not only be 
halted but also reversed if the Agenda 2030 
Sustainable Development Goals (SDGs) are 
to be achieved. Nature has a critical role to 
play in mitigating climate change6, adapting 
to climate impacts7, maintaining the quality 
of soil, air and water and supporting a 
resilient basis for the food, fuel and fibre 
that future generations of people will need8. 
Failure to address these challenges will hit 
the poorest hardest and most immediately.

Without a dramatic change in efforts to 
reverse the on-going decline, our persistent 
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Fig. 1 | Biodiversity declines have continued despite repeated policy commitments aimed at slowing 
or halting the rate of loss. The Strategic Plan for the Convention on Biological Diversity (2010–2020) 
includes the 20 Aichi Targets to be achieved by 2020. Recent projections suggest that this is unlikely for 
most of the targets1. Yet the 2050 vision requires a much more ambitious goal, which will necessitate 
recovery of biodiversity and bending the curve by 2030. The black line indicates currently observed 
trends (to 2015), dotted lines show extrapolations from current trends (black) and projections for 
biodiversity after 2030 that are declining (red), stabilising (orange) or recovering (green).
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Living Planet Index (2018) WWF.
Mace et al. (2018) Nat Sustain 1: 448-451.
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The global biodiversity crisis

Living Planet Index (2020) WWF.



Biodiversity loss is a self-preservation issue

Alexander von Humboldt: „all natural forces are linked together, 
and made mutually dependent upon each other“

è Biodiversity loss will jeopardize the achievement of the
sustainable development goals (SDGs)

Humboldt (1845) Cosmos. A 
Physical description of the Universe.

Living Planet Report (2018) WWF.
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extinction are 100 to 1,000 times higher 
than the background rate3 and although 
net changes in local species diversity 
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Fig. 1 | Biodiversity declines have continued despite repeated policy commitments aimed at slowing 
or halting the rate of loss. The Strategic Plan for the Convention on Biological Diversity (2010–2020) 
includes the 20 Aichi Targets to be achieved by 2020. Recent projections suggest that this is unlikely for 
most of the targets1. Yet the 2050 vision requires a much more ambitious goal, which will necessitate 
recovery of biodiversity and bending the curve by 2030. The black line indicates currently observed 
trends (to 2015), dotted lines show extrapolations from current trends (black) and projections for 
biodiversity after 2030 that are declining (red), stabilising (orange) or recovering (green).
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Living Planet Index (2018) WWF.
Mace et al. (2018) Nat Sustain 1: 448-451.
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Living Planet Index (2018) WWF.
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Biodiversity scales and processes

IPBES (2016) Methodological assessment report.

Correlative
models

Dynamic global 
vegetation
models

Scaling Issues in Landscape Ecology  19

If we instead hold extent constant, we can increase 
the grain size of our observation set by increasing the 
‘sampling window’ or ‘box size’ of our analysis using 
some type of data aggregation procedure (e.g. averaging 
data over a larger area to achieve a coarser resolution 
in the dataset; Figure 2.4B). Increasing the grain of 
observation or measurement (i.e. a decrease in the spa-
tial resolution of the dataset) generally results in a 
decrease in spatial variance (Figure 2.5A). As grain size 
increases, more of the spatial variability inherent in the 
system is contained within each sample (Figure 2.5B). 
As a consequence, samples become more similar to each 
other as the grain size approaches the spatial extent of 
the observation set. Thus, between-sample variation 
decreases with an increase in grain size (Wiens 1989a; 
Figure 2.5B).

To illustrate, consider a heterogeneous landscape con-
sisting of different land-use/land-cover types (Figure 2.6). 
At the !nest scale, corresponding to our data  resolution 

(a 1 × 1 pixel or window size), the landscape contains 
numerous patches, both large and small, and appears 
to have a river running along the lower portion of 
the map. As we increase the grain or window size of 
the analysis, a majority rule is used to assign the value 
of the most-common cover type within each window 
to that larger pixel; thus, if 60% of the pixels within a 
10 × 10 window are agriculture, the entire 10 × 10 pixel 
would be classi!ed as agriculture. Thus, as we increase 
the grain size of our analysis, patches take on a more 
blocky appearance and the smaller scattered patches 
disappear altogether. At the coarsest resolution (60 × 60), 
we still have the overall impression of the original 
landscape, in which the dominant cover types and 
largest patches persist. Note, however, that we have 
lost some features—the river no longer spans the land-
scape but has been reduced to a few ‘pixel puddles,’ 
which disappear entirely if we increase grain size fur-
ther (i.e. to 80 × 80 or 100 × 100) (Wu et al. 2002). Thus, 
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è Models at 
conservation-
relevant scales



Modelling biodiversity response

• Correlative species distribution models (SDMs)

Examples: Zurell et al. (2012) Ecography 35: 590-603.
Zurell et al. (2016) Diversity and Distributions 22: 905-917.
Zurell et al. (2018) Nature Climate Change 8: 992-996.
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Correlative species distribution models (SDMs)

• Example: plant species distribution in Switzerland at 93 m 
spatial resolution to guide monitoring and citizen scientists

Descombes et al. (2020) Ecography 43: 1448-1463.

1458

for soils with more constant soil moisture (Supplementary 
material Appendix 1 Fig. A12). Also, species growing at the 
extremes of the soil moisture gradient showed higher gains 
than species preferring intermediate levels (Supplementary 
material Appendix 1 Fig. A12).

Discussion

We show that combining large occurrence databases with 
expert knowledge of plant EIVs is a powerful way for gen-
erating ecophysiologically meaningful predictors of local 
edaphic and climatic conditions at a high spatial resolu-
tion (93 m) over complex terrain. EIV models showed very 
high performances and their predictions were correlated to 
in-situ physico-chemical properties assessed in soil pro!les, 
emphasizing the relevance of EIVs in re"ecting ecological 
and physico-chemical properties. When used in SDMs, EIV 
variables outperformed mapped in-situ soil properties and 
some of the commonly used variables (Fig. 4), and improved 
the performance of SDMs by 7.7% on average by increas-
ing model speci!city and reducing over-predictions of species 
distributions (Fig. 5, Supplementary material Appendix 1 
Fig. A12). Together, our results suggest that combining large 
occurrence databases with expert knowledge of plant EIVs is 

a powerful approach for generating additional, ecologically 
relevant predictors of plant species’ distributions.

Relationship between site averaged EIVs and in-situ 
soil properties

In this study, we !rst investigated the relationship between 
in-situ soil properties and site averaged EIVs using exhaustive 
plant inventories from the WSL and NABO soil databases. 
Among the EIVs investigated, EIV-R best correlated to 
in-situ topsoil properties, showing a positive correlation to 
soil pH. While strong correlations between EIV-R and soil 
pH are generally reported (Ertsen  et  al. 1998, Scha$ers 
and Sýkora 2000, Wamelink et al. 2002, Diekmann 2003), 
EIV-R has also been shown to better re"ect the total amount 
of calcium (exchangeable Ca2+ and Ca from carbonates) 
rather than soil reaction per se (Scha$ers and Sýkora 2000), 
which is a pattern that we could not con!rm in our analyses 
on forest plots (lower correlation of EIV-R with Ca than 
pH). &e strong relationship observed between in-situ soil 
pH and averaged EIV-R suggests that this EIV is an excellent 
surrogate of pH measurements.

We found that EIV-N, which mainly stands for nitrogen 
and phosphorus availability according to Landolt  et  al. 
(2010), was negatively correlated to C:N, which corroborates 

Figure 5. Habitat suitability maps predicted from ensemble SDMs for three of the 60 plant species modelled across Switzerland. Maps 
illustrate di$erent focal regions (squares of 30 km width) across the study area. SDMs excluded (Standard predictors) or included EIVs 
predictors (EIVs predictors), respectively, for building models. &e Ensemble SDM was calculated by averaging all replicates and algo-
rithms. Species occurrences are represented by black dots in the hillshaded maps on the left and in the focal regions. Lakes and rivers are 
represented in grey. &e scale (0–1) represents the habitat suitability of the species. Photo credits: Joëlle Magnin-Gonze (G. pneumonanthe 
L., O. jacquinii Bunge) & Patrice Descombes (O. holosericeae (Burm. f.) Greuter).



Correlative species distribution models (SDMs)

• Example: breeding and wintering ranges of Holarctic long-
distance migratory birds at 0.5° spatial resolution
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Modelling biodiversity response
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Criticism I: Dymamic response to global change

Current distribution
partly becoming unsuitable

Habitat becoming
suitable and
colonisable

Habitat becoming
suitable but not
colonisable

Species
interactions

Adaptation

Dispersal Environment

Demography Physiology

Six key mechanisms for
predicting biodiversity response:

Ferrier et al. Eds (2016) IPBES.
Urban et al. (2016) Science 353: aad8466.



Dymamic response to global change

Scheffers et al. (2016) Science 354: aaf7671.



Criticism II: Biotic constraints on the niche

• Different biological processes might constrain current patterns
• Realised and observed niche are affected by demographic and

community processes

1506

birds. Because of the vast empirical knowledge on avian sys-
tems and the high-quality data, birds offer unique possibili-
ties of developing and refining more realistic but also more 
generic models for predicting biodiversity dynamics under 
global change (Engler et al. 2017).

The ecological niche concept and community 
assembly

Central to biodiversity research is the notion that life is not 
evenly distributed on Earth but species occur in distinct 
places and habitats. "e geographic area where a species can 
be found is usually termed the species range. But what limits 
this range? We know that most species are fundamentally 
constrained by their physiological tolerance to environmen-
tal conditions and their resource requirements. For example, 
birds could be constrained by temperature due to its effect 
on thermoregulatory processes and on resource availability 
(Methorst et al. 2017). "is relationship between species 
occurrence and environment is called the species niche and 
comprises all environmental conditions where the species 
can exist indefinitely exhibiting a positive net growth rate r 
(Hutchinson 1957).

Inferring the ecological niche of species from observa-
tional data is challenging because biogeographic history, 
demographic processes and interspecific interactions also 
affect the presence of a species. For example, the tempera-
ture extremes found within the geographic range of a spe-
cies may be less than what the species could physiologically 
tolerate and thus less than what could be measured in a 
laboratory. Hutchinson distinguished the fundamental and 
the realised niche of a species. "e fundamental niche refers 
to all abiotic constraints that allow positive population 
growth. Originally, the realised niche was formally described 
as those parts of the fundamental niche to which the species 
is confined due to competitive exclusion and other nega-
tive interactions (Hutchinson 1957). Refined niche theory 
acknowledges several more processes including demographic 
and community processes that 1) constrain and thus shrink 
the realised relative to the fundamental niche, including dis-
persal limitation and negative interspecific interactions (Fig. 
1a), and processes that 2) expand the realised relative to the 
fundamental niche, including source-sink dynamics, time-
delayed extinctions and facilitation (Fig. 1b) (Pulliam 2000, 
Bruno et al. 2003, Holt et al. 2005, Schurr et al. 2012, Diez 
et al. 2014). Also, (genetic and behavioural) adaptation 
may lead to expanded niches under climate change but, as 
pointed out above, most of the modelling approaches that I 
will discuss here focus on contemporary demographic and 
community processes. Because of these dynamic processes, 
the realised niche may vary across time and space (Holt 
2009), and also across the life cycle of species (Taboada 
et al. 2013). For example, species may utilize different 
habitats and resources for key events within their life cycle 
such as reproduction, overwintering and dispersal (Naves 
et al. 2003, Holt 2009, Jacob et al. 2015, Rotllan-Puig and 
Traveset 2016). "is is most prominent in migratory birds 
that move between distant regions on a seasonal basis, and 
for which both seasonal niche-tracking and niche-switching 
have been reported (Laube et al. 2015, Gómez et al. 2016, 
Eyres et al. 2017).

Community assembly theory is closely linked to the niche 
concept. Often, the metaphor of filters (Weiher and Keddy 
1999) is used to describe how species from the regional spe-
cies pool colonise and interact to form local communities 
(Fig. 2; Chase 2003, Leibold et al. 2004, HilleRisLambers 
et al. 2012). First, the dispersal filter refers to spatial and 
stochastic processes and determines whether a species can 
reach a specific geographic location depending on its disper-
sal capacity and chance events. Second, the environmental 
filter (or abiotic niche filter) selects those species that can 
establish and maintain positive population growth under the 
prevailing environmental conditions. "ird, the biotic niche 
filter describes the processes of intra- and interspecific inter-
actions that may affect a species’ presence in a location. In 
reality, these filters do not simply act as one-directional sieves 
but complex feedbacks exist between species and filter levels, 
meaning that the species themselves can also affect the filter 
processes (HilleRisLambers et al. 2012). BAM (biotic, abi-
otic, movements) diagrams describe the same three processes 
affecting species’ presence in a location, and more explic-
itly emphasise the interplay between these (Soberón and  
Nakamura 2009).

"e concepts of limiting similarity and niche partitioning 
are important to understand long-term coexistence between 
species in local communities (MacArthur and Levins 1967). 
Contemporary coexistence theory formalises these ideas in 
a mechanistic framework that distinguishes between niche 
differences and differences in fitness (i.e. competitive domi-
nance; Chesson 2000). Relative niche differences are impor-
tant as they act as stabilising mechanisms (niche partitioning) 
whereas average fitness differences (inequalities) favour dom-
inance and, in the absence of stabilising niche differences, 
lead to competitive exclusion (Fig. 2; Chesson 2000, Adler 
et al. 2007, Valladares et al. 2015). To make it more compli-
cated, coexistence may also depend on the life cycle and the 
annual cycle of the interacting species. For example, stabilis-
ing mechanisms in plants have been shown to be strongest 

(a)

(b)

Figure 1. Schematic representation of biotic factors restricting or 
expanding the realised niche relative to the fundamental niche. 
Adapted from Bruno et al. (2003).

Zurell (2017) J Avian Biol 48: 1505-1516.



THE DEMOGRAPHIC BASIS OF NICHES AND
RANGE DYNAMICS

The niche concept is central to ecology (Hutchinson, 1957;

Holt, 2009). It is widely used to characterize requirements and

impacts of species (Chase & Leibold, 2003), to study commu-

nity dynamics, and to predict ecological and evolutionary

responses of species to environmental change (Wiens &

Graham, 2005; Lavergne et al., 2010). In particular, the niche

concept is invoked in a plethora of recent studies that attempt

to forecast future range dynamics of species under environ-

mental change (Elith & Leathwick, 2009). Such range forecasts

are widely used to assess the impacts of environmental change

on biodiversity (Pereira et al., 2010; Dawson et al., 2011) and

increasingly serve as the basis for systematic conservation

planning (Pressey et al., 2007).

While the ecological literature abounds with various defini-

tions of the niche (Chase & Leibold, 2003), the most influential

quantitative definition is arguably that of G. Evelyn Hutchinson

(Hutchinson, 1957, 1978). The Hutchinsonian niche is defined

as the set of environmental conditions under which a species

can ‘exist indefinitely’ (Hutchinson, 1957). In the absence of

dispersal and environmental variability, the persistence of a

species in a given location depends on its population growth

rate. As this is the difference between per-capita birth and death

rates, the Hutchinsonian niche can be expressed in demo-

graphic terms (Maguire, 1973; Hutchinson, 1978). Fundamen-

tally, a species’ niche consists of those environments for which

the intrinsic population growth rate r (the population growth

rate at low population density) is positive (Maguire, 1973;

Hutchinson, 1978). In the case of complex population dynam-

ics, this simple demographic niche definition has to be refined

somewhat (Holt, 2009). Importantly, however, all of these

refinements of the Hutchinsonian niche can be derived from

‘demographic response functions’ (Pulliam, 2000) that describe

how birth and death rates vary with environmental conditions

(Maguire, 1973; Hutchinson, 1978; Holt, 2009).

Furthermore, demographic responses link Hutchinsonian

niches to range dynamics (Pulliam, 2000; Fig. 1). This is because

demographic response functions translate spatio-temporal

variation in environmental variables into variation of the three

fundamental demographic rates of birth, death and dispersal

(with the former two determining local population growth and

the niche). Range dynamics then arise from the dynamics of

many local populations that are founded and connected by

dispersal, with range size changes depending on how many sites
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Figure 1 The demographic basis of Hutchinsonian niches, range dynamics and biogeographical data. Demographic response functions
translate spatio-temporal variation of the environment into variation of the fundamental demographic rates of birth, death and dispersal. In
particular, the demographic response of birth and death determines variation in local population dynamics and defines the Hutchinsonian
niche as the set of environments for which population growth is positive. Range dynamics then result from the dynamics of local populations
that are coupled by dispersal. Data useful for the estimation of niches and range dynamics are collected by observing spatio-temporal
variation in distribution, local abundance, demographic rates and environmental conditions. However, these observations are subject to
observation errors and they typically represent only a subsample of the entire variation present.
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Dynamic distribution models

• Understanding structure and dynamics of populations
• Explicitly model population growth and dispersal:

𝑁!"# = 𝑁! + 𝐵! + 𝐼! − 𝐷! − 𝐸!

N .. Population size
B .. Birth rate
D .. Death rate
I .. Immigration
E .. Emigration

Schurr et al. (2012) J Biogeogr 39: 2146-2162.
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RangeShifter modelling platform

Malchow et al. (2020) bioRxiv 2020.11.17.384545
Building on  Bocedi et al. (2012) Methods Ecol Evol 5: 388-396.

ØAn individual-based eco-evolutionary modelling platform

Anne Malchow



RangeShifter modelling platform

Malchow et al. (2020) bioRxiv 2020.11.17.384545
Building on  Bocedi et al. (2012) Methods Ecol Evol 5: 388-396.



RangeShifter modelling platform

Malchow et al. (2020) bioRxiv 2020.11.17.384545
Building on  Bocedi et al. (2012) Methods Ecol Evol 5: 388-396.

Maynard-Smith & Slatkin (1973):



RangeShifter modelling platform

Malchow et al. (2020) bioRxiv 2020.11.17.384545
Building on  Bocedi et al. (2012) Methods Ecol Evol 5: 388-396.

Neubert & Caswell (2000):

Caswell (2001):



RangeShifter modelling platform

Malchow et al. (2020) bioRxiv 2020.11.17.384545
Building on  Bocedi et al. (2012) Methods Ecol Evol 5: 388-396.



Applying dynamic distribution models

Example: Caucasian leopard
• Stage-structured model, individual-based movement decisions

Bleyhl et al. (2021) Ecol Appl. DOI: 10.1002/eap.2338
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Applying dynamic distribution models

Example: black grouse in Switzerland
• Stage-structured model, individual-based

movement decisions

600

  

Figure 6.     Consensus on black grouse presence for years 2001 (top), 2050 (centre) and 2100 (bottom); calculated as the fraction of all 
simulations (n  !  1215) predicting black grouse to be present. (Note that zero percent consensus on presence equal 100 percent consensus 
on black grouse absence.)  

2001

2050

2100

596

  Table 3. Model output for default IBM parameterisation, averaged 
across different SDM algorithms and climate scenarios. For each 
combination of SDM algorithm and climate scenario the IBM was 
run with 100 replicate simulations.  

Output Year Mean SE Median

Population size 2001 5508 56 5144
2050 2318 36 1998
2100 974 21 703

Area size [km 2 ] 2001 3221 27 3090
2050 1478 20 1323
2100 662 14 504

Mean elevation [m] 2001 1791 1 1791
2050 2039 15 2026
2100 2217 32 2171

  Figure 2.     Mean elevation occupied by black grouse for scenarios of 
climate change. Bottom: grey lines show mean elevations across all 
simulations, coloured lines those for default IBM parameterisation 
(cf. Table 2) across diff erent SDMs and climate scenarios. Top: box-
plots depict variation of mean elevations predicted for the end of 
21st century (2100) and for diff erent SDMs and climate scenarios.  

cause an increase in population size of 3000 to 4000 indi-
viduals (compare Supplementary material Appendix 1, Fig. 
A5). Under current climate, survival probability alone repre-
sented 55% of variation in population size and even 68% of 
variation in occupied area size. While probability of extinc-
tion by 2100 was zero for the default IBM parameterisation, 
decreases in the demographic parameters especially survival 
probability led to black grouse extinction in up to 90% of 
the simulations on average (Fig. 5). Conversely, increases in 
the demographic parameters reversed climate-induced popu-
lation declines and even led to temporarily increasing popu-
lation sizes (Fig. 4). " e shape of the probability distribution 
of pleadYoung (more fl attened or more peaked; determined 
by standard deviation of the Gaussian distribution, Table 2) 
and, thus, the magnitude of environmental stochasticity, had 
no eff ect on the mean predictions but only resulted in slightly 
increased variability between replicates of simulations. We 

calculated a consensus map across all simulations as the frac-
tion of simulations (n  !  1215) that predicted black grouse 
to be present at a site (Fig. 6). Under current climate, con-
sensus about black grouse presence was very high ( "  80%) 
in the Swiss Alps and intermediate (20 – 60%) for most parts 
of the Jura mountains where black grouse are in fact absent 
(Schmid et al. 1998). With ongoing climate change, con-
sensus on presence sites decreased considerably as extinction 
probability increased for many model confi gurations.    

 Discussion 

 In this study, we integrated correlative species distribution 
models and a simple, spatially explicit individual-based 
model to predict climate-induced range dynamics of black 
grouse in the Swiss Alps and evaluated variability introduced 
by diff erent uncertainty components. By this, we were able 
to better understand important features of range predic-
tions and current as well as transient population dynamics. 
Our results clearly show that extinction risks cannot sim-
ply be approximated by expected changes in suitable habi-
tat (Ak ç akaya et al. 2006, Keith et al. 2008, Brook et al. 
2009). Rather, the expected population trajectory seems to 
result from a complex interplay between available habitat 
and demographic processes. Our study also underscores the 
necessity of sensitivity analyses in dynamic range predictions. 
Predicted population response to environmental change may 
be highly variable, both quantitatively as well as qualitatively. 
" us, robustness of modelling results can only be assessed if 
the inherent uncertainty is explicitly considered.  

 Black grouse population and range dynamics 

 We were very careful in choosing SDM algorithms and 
climate scenarios that were both realistic and refl ected a 
range of predictions reaching from pessimistic to optimis-
tic. Overall, all three SDMs produced congruent predic-
tions of habitat change (Supplementary material Appendix 
1, Fig. A3). Absolute area size of suitable habitat, however, 
diff ered slightly and diff erences became more pronounced 
with ongoing climate change. " is both corroborates and 
contradicts fi ndings of previous studies. On the one hand, 
diff erences between predictions become more pronounced 
the further we project into the future which is in line with 
earlier fi ndings (" uiller 2004, Pearson et al. 2006, Buisson 
et al. 2010). Consensus between SDM predictions was still 
remarkably high though (Supplementary material Appendix 
1, Fig. A4) while earlier studies partially reported highly con-
trasting predictions (Buisson et al. 2010). Nevertheless, fur-
ther research is needed regarding why method performance 
and predictions diff er (Elith and Graham 2009) and to pro-
vide general guidelines on appropriate model choice. 

 By the end of the 21st century, diff erences in suitable area 
were larger between climate scenarios than between SDMs. 
Considerable loss in suitable habitat was predicted for 
two out of fi ve climate scenarios, namely for the more 
extreme climate scenarios with mean temperature increases 
between 4 ° C and 5 ° C. Current trends in CO 2  emissions and 
global air temperature indicate that expected increases in 

598

  Figure 4.     Population size relative to 2001 (current climate). Bot-
tom: grey lines show relative population trajectories across all simu-
lations, black lines those for default IBM parameterisation (cf. 
Table 2) across diff erent SDMs and climate scenarios. Top: box-
plots depict population size ratio of year 2100 relative to 2001 for 
diff erent demographic parameters.  

century, gradual declines in black grouse population and 
occupied area sizes were predicted across all climate sce-
narios and underlying SDMs. " is primarily resulted from 
a negative trend in population growth given the observed 
demographic rates (Fig. 4). On the other hand, Schmid et al. 
(1998) judged the population to be stable but these estimates 
rely only on rather short time periods. " e strong fl uctua-
tion and high site turnover predicted by our model suggest 
that longer observation periods are needed to accurately assess 

black grouse population status. Reassuringly, however, even 
with the negative trend in current population growth rate, 
population size is predicted to not fall below 1000 hens by 
2100 which is a decent population size especially as that pop-
ulation is predicted to strive in continuous areas (Fig. 6). 

 Our results underscore that inferring extinction risks sim-
ply from quantity of suitable habitat might be misleading 
(Supplementary material Appendix 1, Fig. A5; Ak ç akaya et al. 
2006, Keith et al. 2008, Brook et al. 2009). A non-dynamic 
approach might considerably underestimate extinction risks 
because important interactions between life history traits and 
habitat suitability would be ignored. Expected mean abundance 
is only indirectly related to habitat suitability through demo-
graphic functions which determine site turnover and, thus, how 
much of available habitat is maximally occupied at the time 
(Table 4). Considering the diff erences between habitat suitabil-
ity predictions by diff erent SDM algorithms and the associated 
population dynamics (Supplementary material Appendix 1, Fig. 
A5), expected mean abundance also depends on spatial distribu-
tion of available habitat and on the degree of fragmentation.   

 Robustness of range predictions 

 Our study not only highlights the benefi ts of a dynamic 
approach to range predictions but also underlines that we 
have to deal with immense additional prediction uncertainty 
when modelling population dynamics and that robustness 
of model results needs to be explicitly assessed. Here, quan-
titative predictions of absolute population and occupied area 
size as well as probability of extinction showed great varia-
tions across simulations (Table 4). " is is in accordance with 
previous criticism on spatially explicit simulation models 
(SEPM, Dunning et al. 1995) and related population viabil-
ity analysis (PVA) expressing concerns about taking predic-
tions, for example probabilities of extinction, at face value 

  Table 4. Sensitivity analysis of model outputs based on n  !  1215 model confi gurations.  

Explained variance R 2  by uncertainty components 
and direction of infl uence (in parentheses)

Output Year Mean SE Median N SDM RCM pSurv pFemale

plead 
Young 
mean

Population size 2001 15 430 558 5127 1215 0 0 0.55 ( " ) 0.14 ( " ) 0.10 ( " )
2050 17 330 618 2207 1215 0 0 0.60 ( " ) 0.11 ( " ) 0.08 ( " )
2100 13 770 521 856 1215 0 0.04 0.52 ( " ) 0.09 ( " ) 0.07 ( " )

Probability of extinction 2001 0 0 0 1215
2050 0.23 0.01 0 1215 0 0 0.44 (#) 0.10 #) 0.08 (#)
2100 0.38 0.01 0 1215 0 0 0.59 (#) 0.08 (#) 0.07 (#)

Area size [km 2 ] 2001 4462 120 3022 1215 0 0 0.68 ( " ) 0.12 ( " ) 0.09 ( " )
2050 4339 138 1389 1215 0 0 0.63 ( " ) 0.09 ( " ) 0.07 ( " )
2100 3685 126 585 1215 0 0.02 0.56 ( " ) 0.08 ( " ) 0.07 ( " )

Mean elevation [m] 2001 1788 0.19 1790 1215 0.18 0.13 0.14 ( " ) 0.05 ( " ) 0.03 ( " )
2050 2014 2.33 2013 1102 0.08 0.40 0.11 ( " ) 0.01 ( " ) 0.01 ( " )
2100 2199 4.39 2159 900 0.14 0.63 0.03 ( " ) 0 0

Mean   population   centre 2001 Easting 683 600 57 684 000 1215 0.18 0 0.21 ( " ) 0.05 ( " ) 0.03 ( " )
2001 Northing 160 000 20 159 800 1215 0.50 0 0 0 0
2050 Easting 694 800 422 697 000 1102 0.01 0.01 0.10 ( " ) 0 0
2050 Northing 158 400 176 158 200 1102 0.01 0.01 0.01 (#) 0 0
2100 Easting 707 200 581 706 700 900 0.05 0.13 0.01 ( " ) 0 0
2100 Northing 157 400 187 157 200 900 0.06 0 0.02 (#) 0 0

Zurell et al. (2012) Ecography 35: 590-603.



State-of-the-art dynamic distribution models

Coupled SDM-
demography models

Hierarchical models simultaneously
infer process rates and demography-

environment relationship
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Next steps: calibration workflows

Fitting single-species simulation models to data
èModel selection & process attribution
èValidation of predictive accuracy, cross-validation

Modified from Hartig et al. (2012) J Biogeogr 39: 2240-2252.
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Next steps: calibration workflows

Fitting single-species simulation models to data
èModel selection & process attribution
èValidation of predictive accuracy, cross-validation

  Biodiversitätsmonitoring Schweiz BDM. Beschreibung der Methoden und Indikatoren BAFU 2014  42 
     

     
 

 

 

Abb. 4 > Stichprobennetz für Z7 

Das Stichprobennetz für Z7 wurde in den beiden biogeografischen Regionen Jura und  
Alpensüdflanke verdichtet. 

 
 
 
Abb. 5 > Stichprobennetz für Z9 (Gefässpflanzen, Moose und Mollusken) 

Das Z9-Stichprobennetz für landlebende Arten umfasst rund 1600 terrestrische  
Stichprobeflächen. 

 

 

Spatial block-cross validation

Sampling grid + data

THE DEMOGRAPHIC BASIS OF NICHES AND
RANGE DYNAMICS

The niche concept is central to ecology (Hutchinson, 1957;

Holt, 2009). It is widely used to characterize requirements and

impacts of species (Chase & Leibold, 2003), to study commu-

nity dynamics, and to predict ecological and evolutionary

responses of species to environmental change (Wiens &

Graham, 2005; Lavergne et al., 2010). In particular, the niche

concept is invoked in a plethora of recent studies that attempt

to forecast future range dynamics of species under environ-

mental change (Elith & Leathwick, 2009). Such range forecasts

are widely used to assess the impacts of environmental change

on biodiversity (Pereira et al., 2010; Dawson et al., 2011) and

increasingly serve as the basis for systematic conservation

planning (Pressey et al., 2007).

While the ecological literature abounds with various defini-

tions of the niche (Chase & Leibold, 2003), the most influential

quantitative definition is arguably that of G. Evelyn Hutchinson

(Hutchinson, 1957, 1978). The Hutchinsonian niche is defined

as the set of environmental conditions under which a species

can ‘exist indefinitely’ (Hutchinson, 1957). In the absence of

dispersal and environmental variability, the persistence of a

species in a given location depends on its population growth

rate. As this is the difference between per-capita birth and death

rates, the Hutchinsonian niche can be expressed in demo-

graphic terms (Maguire, 1973; Hutchinson, 1978). Fundamen-

tally, a species’ niche consists of those environments for which

the intrinsic population growth rate r (the population growth

rate at low population density) is positive (Maguire, 1973;

Hutchinson, 1978). In the case of complex population dynam-

ics, this simple demographic niche definition has to be refined

somewhat (Holt, 2009). Importantly, however, all of these

refinements of the Hutchinsonian niche can be derived from

‘demographic response functions’ (Pulliam, 2000) that describe

how birth and death rates vary with environmental conditions

(Maguire, 1973; Hutchinson, 1978; Holt, 2009).

Furthermore, demographic responses link Hutchinsonian

niches to range dynamics (Pulliam, 2000; Fig. 1). This is because

demographic response functions translate spatio-temporal

variation in environmental variables into variation of the three

fundamental demographic rates of birth, death and dispersal

(with the former two determining local population growth and

the niche). Range dynamics then arise from the dynamics of

many local populations that are founded and connected by

dispersal, with range size changes depending on how many sites
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Figure 1 The demographic basis of Hutchinsonian niches, range dynamics and biogeographical data. Demographic response functions
translate spatio-temporal variation of the environment into variation of the fundamental demographic rates of birth, death and dispersal. In
particular, the demographic response of birth and death determines variation in local population dynamics and defines the Hutchinsonian
niche as the set of environments for which population growth is positive. Range dynamics then result from the dynamics of local populations
that are coupled by dispersal. Data useful for the estimation of niches and range dynamics are collected by observing spatio-temporal
variation in distribution, local abundance, demographic rates and environmental conditions. However, these observations are subject to
observation errors and they typically represent only a subsample of the entire variation present.
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Next steps: process attribution

• Capturing disequilibrial dynamics and legacies: 
extinctions debts and colonisation credits

Modified from Kuussari et al. (2009) Trends Ecol Evol 24: 564-571.
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Zurell et al. (2016) Glob Ch Biol 22: 2651-2664.

calculated relative deviation in total abundance (summed over

all cells) as difference between predicted and observed abun-
dance divided by observed abundance (except for SDMs and
MigClim), and differences in relative abundance estimates,

which is the relative decrease in observed and predicted abun-
dance since year 0.

Results

Stochastic community IBM

The 12 different scenarios led to distinct spatial and
temporal distribution of presence-absence and abun-
dance of the focal species (Appendix S2). Generally,
short-range dispersal resulted in stronger spatial clus-
tering of populations. Differences in spatial clustering
for long- and short-range dispersal were particularly
pronounced in neutral communities and large-scale
contagious disturbances resulted in even patchier spa-
tial distributions. Under climate change, the focal spe-
cies exhibited range shifts accompanied with distinct
population decreases. Also, for all scenarios the focal
species showed distinct time lags in range filling fol-
lowing climate change with dispersal limitations at
the range front and persistence in unsuitable condi-
tions at the rear range edge (Figs 2 and S6). Dispersal
limitations were more pronounced in short-range dis-
persal scenarios and under biotic interactions. In the

species-sorting scenario, competing species were
blocking the range front, whereas in neutral commu-
nities, dispersal success became more random due to
strong spatial clustering. Overall, these diverse distri-
butions provided a solid basis for comparing the
predictive performance of SDMs and range dynamic
models.

Range model performance under current conditions

For the observation period (year 0), DRMs best pre-
dicted the focal species’ mean and maximum abun-
dances along the temperature gradient (Figs 2, S7 and
S8). SDMs often slightly overestimated occurrence
probability at range margins, which propagated differ-
ently to the SDM hybrids. For example, LoLiPop pre-
dicted local abundances near range margins quite
successfully but underestimated abundances at range
centres, whereas DemoNiche overpredicted local abun-
dances across nearly the whole range. Correspond-
ingly, DRMs obtained highest TSS and Rho in year 0
for most scenarios although differences between range
models were minor except that DemoNiche achieved
much lower TSS scores while Rho scores were consis-
tently high (Fig. 3). By contrast, LoLiPop and SDMs
predicted range positions under equilibrium conditions
best while DemoNiche and DRMs predicted slightly
too large ranges. DRMs and LoLiPop approximated

Fig. 2 Realized temperature range of focal species for the long-range(LR) and short-range (SR) dispersal variants of the species-sorting

scenario as approximated by mean observed abundances along the temperature gradient. Top row shows the niche filled by the virtual

species before (year 0) and after climate change (year 100). For both scenarios, realized ranges in year 100 exhibit lower overall abun-

dances and a shift to the warmer end of the temperature tolerance (i.e. dispersal limitation at the cold front, persistence at the warm

rear edge). Bottom row shows the corresponding predictions by the different range models for year 0.

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2651–2664

2656 D. ZURELL et al.

Long-distance disperser Short-distance disperser



Next steps: model extension

Malchow et al. (2020) bioRxiv 2020.11.17.384545
Building on  Bocedi et al. (2012) Methods Ecol Evol 5: 388-396.

Maynard-Smith & Slatkin (1973)

=> extend to multi-species model



Next steps: integrated modelling platform

• Feedbacks between biodiversity dynamics and drivers
– E.g. feedback between climate change-induced pollinator

population decrease & demand for agricultural land

Urban et al. (under review)

Coding for Life 

24 
 

Figure 3 Uniting biodiversity and Earth system models. We coupled the RangeShifter 25 and 552 
CRAFTY 54 biodiversity and land use models (A) to represent feedbacks between climate-553 
induced changes in habitat quality, land use, and a simulated pollinator species in the French 554 
countryside surrounding Clermont-Ferand, classified by habitat type, including crops that do or 555 
do not support the pollinator (B). In C, we demonstrate changes in habitat types from the 556 
uncoupled to the coupled model with arrows and icon size proportional to habitat area. The 557 
coupled model predicts higher conversion rates of pasture and natural areas to cropland (C) than 558 
uncoupled models because fewer pollinators (D) reduce crop yields, increasing demand for 559 
agricultural land and decreasing crop supply (E). Details in Supplementary Materials. 560 
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Next steps: integrated modelling platform

• Feedbacks between trophic levels
– E.g. feedback between vegetation and herbivores, options

for wildlife management and restoration

Boulangeat et al. (2014) Global Ch Biol 20: 2368-2378.

The coupling so far: overview

Boulangeat et al 2014 (GCB), Bocedi et al 2014

Step 1 : from PFG to ungulate habitats

Step 2 : disturbance by
multiple herbivores

Landscape maps & 
habitat suitability

Species distributions

Environmental gradients and 
stochasticity

Population dynamics

DispersalSURVIVAL

FECUNDITY

PFG

3

Modelling targets: time-dynamic, spatially-explicit, plant-herbivores 
feedback, multi-species, scenarios

Scenario features: 

10 km

Planned area of study: Massif 
des Bauges (regional Park)

Which effects would have wildlife management scenarios over 
sur plant communitys at landscape scale? 

Appendix: research questions

When accounted for, does wild herbivory modify the distribution of modelled PFG
at mid- and long-term ? (depending on management / density of ungulates…)

When modelled, does a dynamical plant resource, grazed by several ungulate
species, modify predicted occupancy for chamois?

zurell
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Next steps: integrated modelling platform

• Computer-aided adaptive management

Urban et al. (under review)

Biodiversity modelling
platform

X Y Sp1 Sp2 Sp3

101 122 123 72 12

221 533 13 34 18

131 428 0 8 21

~ Abundance
distribution

~ Biodiversity
index

~ Habitat 
restoration

Prioritization

Manage State Reward

Management action

Monitoring

$
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Wanted

Accessible

Adaptable
Flexible

ScalableReproducable

Realistic
Transferable

The Swiss army knife of
biodiversity modelling

Urban et al. (under review)
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Thank you for listening!

Contact:
Prof. Dr. Damaris Zurell
Ecology & Macroecology
University of Potsdam

https://damariszurell.github.io
@ZurellLab


