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Parametric multiscale problems in science and engineering

Modelling of lipid bilayers (source: Luigi Delle Site)

Atomistic-to-continuum models

▶ large biomolecular systems

▶ coarse grain models of materials

Stochastic turbulence models

▶ atmosphere ocean interaction

▶ combustion models

Flame front propagation (source: Michael Oevermann)



Parametric multiscale problems in science and engineering, cont’d

▶ microscale model not fully parametrised (e.g. due to unobservable DOFs)

▶ coarse-graining technique may be sensitive to parameter uncertainties

▶ macroscale model may exhibit parameter-dependent regime changes

Sequence-dependent mechanical stiffness of coarse-grained B-DNA models (source: John Maddocks)



Outline

Diffusions with uncertain diffusion (coefficient)

Goal-oriented coarse-graining using nonlinear expectations

Numerical illustration: triad model of homogeneous turbulence
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Illustrative example I: opinion dynamics

Cobb suggested the following Wright-Fisher-type diffusion model

dXt = α(µ− Xt)dt + θ
√

Xt(1− Xt) dWt , X0 = x

for the political opinion Xt ∈ [0, 1] of an individual at time t > 0 where

▶ 0 and 1 represent the extreme ends of the political spectrum

▶ µ ∈ (0, 1) denotes the average (“mainstream”) opinion

▶ α > 0 is the rate at which the average opinion becomes mainstream, i.e.

E[Xt ]− µ = (x − µ) exp(−αt)

▶ θ > 0 is the strength of the random perturbations around the average opinion.

[Cobb, Behav Sci, 1978]; cf. [Higham & Mantzaris, Chaos, 2020]



Illustrative example I, cont’d

Here is again the opinion dynamics model,

dXt = α(µ− Xt)dt + θ
√

Xt(1− Xt) dWt , X0 = x ,

and the resulting ODE for the average opinion: m′ = α(µ−m).

Observations:

▶ fluctuations are smaller for people
holding extreme views, since

σ(x) =
√

x(1− x)

vanishes at x = 0 and x = 1

▶ there is no fixed point for ϵ > 0 0 0.5 1
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Illustrative example I, cont’d

Stationary long-term opinion distribution (approached exponentially fast)

π(x) = Cµ,λx
µ/λ−1(1− x)(1−µ)/λ−1

(
λ = θ2/α

)
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Remark: Don’t try to simulate the SDE with Euler-Maruyama.

[Furioli et al, Ann Inst Henri Poincare C, 2019]; cf. [Jenkins & San~o, Ann Appl Probab, 2017]



Illustrative example II: slow-fast system

Now consider the 2-dimensional slow-fast system

dRt = (Rt − U3
t )dt , R0 = r

dUt =
1

ϵ
(Rt − Ut)dt +

√
2θ

ϵ
dWt , U0 = u .

with unknown θ ∈ [0, 1]. Here are some realisations for ϵ = 0.01:
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Illustrative example II, cont’d

The fast dynamics conditional on Rt = r ,

dU r
t = (r − U r

t )dt +
√
2θdWt , U0 = u .

has the unique invariant measure

µr =

{
N (r , θ) , θ ∈ (0, 1]

δr , θ = 0 .

By the averaging principle, lim
ϵ→0

Eθ[∥Rt − Rt∥[0,T ]] = 0, where R solves the ODE

dR

dt
= −R

3
+ R(1− 3θ) , R(0) = r .

[Freidlin & Wentzell, Springer, 1998], [Kifer, Cambridge University Press, 2004]



Illustrative example II, cont’d

For 0 ≤ θ ≤ 1 fixed, the averaged dynamics undergoes a supercritical pitchfork
bifurcation at θ = 1/3 (see green dotted curve of right panel):
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By construction, the averaged dynamics R̄ is the best approximation of R as ϵ→ 0.
Even though the limit dynamics continuously depends on θ, the notion of a best
approximation remains ambigous, since very little is known about θ.



Intermediate summary

▶ From the perspective of SDE parameter estimation, estimating diffusion
coefficients is more difficult than estimating the drift.

▶ The mean of an SDE solution (or any stochastic process) may be misleading, and
you better know the diffusion coefficient.

▶ Asymptotic properties (e.g. t → ∞ or ϵ→ 0) and the convergence rates can
sensitively depend on unobservable and unknown parameters of the underlying
dynamics; in some cases these parameters may fluctuate (e.g. in diffusing
diffusivity or Heston-type models used in physics and finance).

▶ If macroscopic quantities (e.g. moments, etc.) depend on unknown parameters, it
makes sense to consider a worst-case scenario for some functional φ(·), e.g.

Ê[|φ(R)− φ(R)|] := sup{Eθ[|φ(R)− φ(R)|] : 0 ≤ θ ≤ 1}



Diffusions with uncertain diffusion (coefficient)

Goal-oriented coarse-graining using nonlinear expectations

Numerical illustration: triad model of homogeneous turbulence



Related work (non-exhaustive)

Model reduction of parametric systems

▶ Parametric model order reduction (Gramians, moment-matching, . . . )
Baur & Benner; Bond & Daniel; Drohmann, Haasdonk & Ohlberger; Rowley & Marsden; Willcox; ...

▶ Surrogate modelling (regression, interpolation, response surfaces, . . . )
Box & Wilson; Draper; Constantine & Wang; Hardin & Sloane; Simpson & Mistree; ...

▶ Equation-free modelling (projective integration, gap-tooth schemes, . . . )
Gear, Kevrekidis & Samaey; (Tony) Roberts; Dietrich, Reich & Kevrikidis et al.; ...

▶ Variational inference (relative entropy, Bayesian approaches, . . . )
Katsoulakis & Plechac; Koumoutsakos; Majda & Harlim; Turkington; Reich & Opper; Freitag et al; ...

▶ Parameter estimation for multiscale systems (MLE, regression-based, . . . )
Abdulle; Crommelin & Vanden-Eijnden; Krumscheid; Pavliotis & Stuart; Spiliopoulos; Timofeyev; ...



Set-up: parametric multiscale diffusions

We consider slow-fast systems of the form

dRt =

(
f0(Rt ,Ut) +

1√
ϵ
f1(Rt ,Ut)

)
dt + α(Rt ,Ut)dW

r
t

dUt =
1

ϵ
g(Rt ,Ut ; θ)dt +

1√
ϵ
β(Rt ,Ut ; θ)dW

u
t ,

with sufficiently smooth drift and diffusion coefficients, and

▶ R = Rϵ ∈ Rns slow variables (resolved)

▶ U = Uϵ ∈ Rnf fast variables (unresolved)

▶ θ ∈ Θ unknown parameter (Θ ⊂ Rp compact)

Aim: Find a closed equation for the best approximation of R as ϵ→ 0.



An worst-case averaging principle

Given the slow-fast system

dRt =

(
f0(Rt ,Ut) +

1√
ϵ
f1(Rt ,Ut)

)
dt + α(Rt ,Ut)dW

r
t

dUt =
1

ϵ
g(Rt ,Ut ; θ)dt +

1√
ϵ
β(Rt ,Ut ; θ)dW

u
t ,

for fixed θ ∈ Θ and its averaged (or: homogenised) equation

dR = b(Rt ; θ) dt + σ(Rt ; θ)dW
r
t

we say that some quantity of interest φ = φ(R) converges to in the sense of sublinear
expectations Ê[·] := supθ Eθ[·] if

lim
ϵ→0

∣∣∣Ê[φ(R)]− Ê[φ(R)]
∣∣∣ = 0



A short excurse . . .



Stochastic calculus under uncertainty: Peng’s sublinear expectation

Let H be a space of random variables.

Definition (Peng’s sublinear expectation)

The functional Ê : H → R is called a sublinear expectation if for all X ,Y ∈ H:

(a) X ≥ Y implies Ê[X ] ≥ Ê[Y ] (monotonicity)

(b) Ê[c] = c for all constants c ∈ R (preservation of constants)

(c) Ê[X + Y ] ≤ Ê[X ] + Ê[Y ] (sublinearity)

(d) Ê[λX ] = λE[X ] for all λ > 0 (positive homogeneity).

By properties (c)–(d), sublinear expectations are convex and admit the following
characterisation: there exists a family {Eθ : θ ∈ Θ}, such that

Ê[X ] = sup{Eθ[X ] : θ ∈ Θ} , X ∈ H .

[Peng, Springer, 2019]



Stochastic calculus under uncertainty: G -Brownian motion

Recall that any standard Gaussian random variable X ∼ N (0, 1) with expectation

E[φ(X )] =
1√
2π

∫ ∞

−∞
φ(x)e−

x2

2 dx , φ ∈ Lip(R)

for an arbitrary Lipschitz function φ can be characterised by E[φ(X )] = u(0, 1), where
u = u(x , t) is the solution to the heat equation with initial condition u(x , 0) = φ(x).

We can characterise the G -normal distribution N (0, [σ2, σ2]) by Ê[φ(X )] = v(0, 1),
where v is the viscosity solution to the G -heat equation

∂v

∂t
= G

(
∂2v

∂x2

)
, v(x , 0) = φ(x) ,

with G (w) =
1

2
max{cw : σ2 ≤ c ≤ σ2}.

[Peng, Stochastic Analysis and Applications, 2007]



G -Brownian motion, cont’d

The right hand side of the G -heat equation is the (nonlinear) infinitesimal generator of
a stochastic process B, called G -Brownian motion, with the properties

Ê[Bt ] = 0 , Ê[B2
t ] = σ2 and − Ê[−B2

t ] = σ2

for any t > 0.

Noting that the G -heat equation can be recast as a Hamilton-Jacobi-Bellman equation
for a diffusion-controlled SDE, the G -Brownian motion B admits the representation

Bt =

∫ t

0
Cs dWs

where W denotes standard Brownian motion and C ∈ [σ2, σ2] is adapted.

Remark: The generalisation to the multidimensional case is straightforward.

[Peng, Stochastic Analysis and Applications, 2007]; [Denis & Hu, Potential Analysis, 2011]



Back to our problem . . .



Goal-oriented coarse-graining of multiscale systems

We consider the nonlinear HJB-type Kolmogorov backward equation

−∂v
ϵ

∂t
= sup

θ∈Θ

{
1

2
aϵ : ∇2v ϵ + bϵ · ∇v ϵ

}
+ ψ(x) , v ϵ(T , x) = ϕ(r)

associated with our slow-fast system that we compactly write as

dXt = bϵ(Xt ; θ) dt + σϵ(Xt ; θ)dWt

with Xt = (Rt ,Ut) and aϵ = σσT .

As a our quantity of interest (QoI), we consider the continuous functional

v ϵ(t, x) = Ê
[∫ T

t
ψ(Rs) ds + ϕ(RT )

∣∣∣∣Xt = x

]
.

[Mezdoud, H, Remita & Kebiri, arXiv:2108:06965, 2021]



A worst-case averaging principle, cont’d

Theorem (Bouanani, H & Kebiri, 2021)

Technical details aside, we have

v ϵ → v̄ , ∇v ϵ → ∇v̄

as ϵ→ 0 where the convergence of v ϵ is uniform on any compact subset of [0,T ]×Rn

and pointwise for ∇v ϵ for all (t, x) ∈ [0,T ]× Rn, with n = ns + nf , and

v̄(r , t) = Ê
[∫ T

t
ψ(R̄s) ds + ϕ(R̄T )

∣∣∣∣R̄t = r

]
.

denotes the unique classical solution to the nonlinear Kolmogorov backward equation
associated with the averaged (or: homogenised) equation.

[Bouanani, H & Kebiri, arXiv:2102.04908, 2021]; cf. [Kebiri, Neureither & H, Computation, 2018]



Some remarks

▶ The proof relies on a G-FBSDE representation of the backward equation.

▶ It uses a stability result of Zhang & Chen together with Gronwall and BDG-type
estimates for G -Brownian motion, assuming uniform Lipschitz conditions for
the drift coefficients and constant diffusion coefficients (i.e. additive noise).

▶ We have moreover proved convergence for an optimally controlled SDE, with a
parameter uncertainty that is sitting only in the diffusion coefficient, while the
control is acting on the drift part of the SDE, i.e. we consider

v ϵ(t, x) = min
α∈A

Ê
[∫ T

t
ψ(Rs , αt) ds + ϕ(RT )

∣∣∣∣Xt = x

]
.

with α controlling the drift. If the control is acting on the uncertain parts of the
SDE, extra saddle-point conditions are necessary.

[Cheridito, Soner, Touzi & Victoir, Commun Pure Appl Math, 2007], [Zhang & Chen, An St Univ Ovidius Constanta Ser Mat, 2011]
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Figure 1
A three-dimensional landscape corresponding to a function of two variables. The direct connectivity
between minima is limited by the low dimensionality.

2. VISUALIZATION OF LANDSCAPES AND PATHWAYS
The dimensionality of most molecular systems of interest poses immediate problems for visu-
alization. Theory suggests a power law growth for the number of minimum energy structures,
N st

min(N ), as a function of the number of atoms, N (26, 27). If the system is large enough that it can
be divided into m equivalent subsystems of N atoms each, and the subsystems are independent,
then

N st
min(mN ) = N st

min(N )m, so N st
min(N ) = exp(ξN ). 1.

A similar argument can be made for the number of transition states, defined as stationary points
with Hessian index one (1). If the rearrangement corresponding to a transition state is localized in
one subsystem, then a transition state of the mN-atom system occurs when one of the subsystems
is at a transition state and the rest are at a minimum, so

N st
ts (mN ) = mN st

min(N )m−1N st
ts (N ) and N st

ts (N ) = N exp(ξN ). 2.

The ratio N st
ts /N st

min is therefore predicted to grow linearly with size, in reasonable agreement with
numerical results for small atomic clusters (27), which suggest that ξ is of order one.

The scaling of connectivity with N means that plots of PESs in three dimensions are usually
useful only for low-dimensional functions. For example, the surface in Figure 1 is well populated
with local minima but actually corresponds to a function of only two variables. Locating all the
local minima, transition states, and pathways for such a landscape is straightforward.

Disconnectivity graphs provide an alternative approach (28, 29), providing a visualization that
respects the potential or free energy (30, 31) barriers between states. Quantitative results for ther-
modynamic and kinetic observables are obtained from the underlying kinetic transition network
(9–12). However, inspection of the corresponding disconnectivity graph can immediately suggest
likely properties, such as heat capacity features and separate relaxation timescales, as discussed
below (19, 22, 32–40).

Atomic clusters bound by simple potentials have provided a wealth of insight into such features.
The pairwise additive Lennard-Jones (LJ) function (41) is often employed, where the potential
energy for N atoms in an LJN cluster is

V = 4ε
∑

i< j

[(
σ

ri j

)12

−
(

σ

ri j

)6 ]

; 3.
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Numerical illustration: triad model of homogeneous turbulence



A simplified stochastic turbulence model

We consider the bilinear triad interaction model

dX (t) =
1

ϵ2
L(X (t))dt +

1

ϵ
B(X (t),X (t))dt +

1

ϵ
Σ dWt , X ϵ(0) = x ,

where X (t) = (R1(t),R2(t),U(t)) ∈ R3 and

L(x) = −

0
0
u

 , B(x , x) =

A1r2u
A2r1u
A3r1r2

 , Σ =

0
0
λ

 ,

Here 0 < ϵ≪ 1, the coefficients A1,A2,A3 with A1 + A2 + A3 = 0 are fixed, and

λ ∈ [σ, σ]

denotes the unknown diffusion coefficient.

[Majda, Timofeyev & Vanden-Eijnden, PNAS, 1999]



Coarse-grained triad interaction model

Homogenised limit equation

dR(t) = b(R(t);λ)dt+σ(R(t);λ)dWt , R(0) = r ,

for climate variables r = (r1, r2) as ϵ→ 0, with

b =

(
A1r1(A3r

2
2 + λ2

2 A2)

A2r2(A3r
2
1 + λ2

2 A1)

)
, σ =

λ

γ

(
A1r2
A2r1

)
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Using Itô’s formula, it readily follows that

I (r1, r2) = A1r
2
2 − A2r

2
1

is a conserved quantity for both the reduced and the original system.



Qualitative behaviour of invariant manifolds and equilibria

Equilbria: The origin is an unstable hyperbolic
equilibrium. The rays that connect the origin with
any of the four equilibria

r∗±,± =

(
±λ
√

A1

2|A3|
, ±λ

√
A2

2|A3|

)
, A1, A2 > 0 .

are (locally hyperbolically unstable) invariant sets.
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Independent realisations for different λ ∈ [1, 2]
and fixed T = 0.5, all starting from the same

initial value r = (1,−2).

Observation: The invariant manifolds are independent of λ, but the dynamics on the
invariant manifolds changes as λ is varied.



QoI and worst-case parameter

Quantity of interest (QoI):

v ϵ = Ê[X1(T )|X (t) = x ] , v̄ = Ê[R1(T )|R(t) = r ]

Example 1: A1 = A2 = 1, A3 = −2, λ ∈ [0.8, 1.2],
T = 0.1, ϵ = 0.2, x = (r , u) = (1,−2,−2)T :

v ϵ(0, x) = 0.9291 , v(0, r) = 0.9326

Example 2: A1 = 1,A2 = 2,A3 = −3,
λ ∈ [0.6, 1.2], T = 0.5, ϵ and x as before:

v ϵ(0, x) = 1.3202 , v(0, r) = 1.3549
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Parameter λ∗ that maximises the nonlinear
generator G over the noise coefficient λ ∈ [1, 2].

[Beck, E & Jentzen, J Nonl Sci, 2019]



Outlook: variational parameter estimation

Given an observation time series R̂ = {R̂t : t ∈ [0,T ]}, we may use the stochastic
control ansatz to minimise a tracking-type functional

J(θ; r , u, t) = E
[∫ T

0
|Rs − R̂s |2 + |θs |2ds

∣∣∣Rt = r , Ut = u

]
over the unknown θ. Ideally there will be a unique value function

v(r , u, t) = inf
θ
J(θ; r , u, t)

solving an HJB equation, with θ becoming a time-dependent feedback control

θs = c(Xs ,Ys , s)

that can be expressed in terms of v (starting point for systematic approximations).

[de Wiljes, Majda & Horenko, SIAM MMS, 2013], [Boyko, Krumscheid, Vercauteren, arXiv2102.12395, 2021]



Take-home message

▶ The sublinear expectation and related G -Brownian framework is a versatile tool
for goal-oriented coarse-graining with worst-case scenarios.

▶ The worst-case scenario may not correspond to a single parameter value.

▶ The underlying nonlinear PDEs can be efficiently solved using the regression-type
approximation schemes of Beck, E & Jentzen for second-order BSDEs .

▶ Open problems: strong convergence in sublinear expectation, multiplicative
noise, infinite time horizon, . . .



Thank you for your attention!
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