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Parametric multiscale problems in science and engineering

Stochastic turbulence models
» atmosphere ocean interaction

» combustion models

Modelling of lipid bilayers (source: Luigi Delle Site) © a @ @
Atomistic-to-continuum models °
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» large biomolecular systems

Flame front propagation (source: Michael Oevermann)

» coarse grain models of materials



Parametric multiscale problems in science and engineering, cont'd

» microscale model not fully parametrised (e.g. due to unobservable DOFs)

P coarse-graining technique may be sensitive to parameter uncertainties

> macroscale model may exhibit parameter-dependent regime changes
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Sequence-dependent mechanical stiffness of coarse-grained B-DNA models (source: John Maddocks)



Diffusions with uncertain diffusion (coefficient)
Goal-oriented coarse-graining using nonlinear expectations

Numerical illustration: triad model of homogeneous turbulence



Diffusions with uncertain diffusion (coefficient)



lllustrative example |: opinion dynamics

Cobb suggested the following Wright-Fisher-type diffusion model
dXt :()é(/,L—Xt)dt+0 Xt(]-_Xt) de_—, Xo =X
for the political opinion X; € [0, 1] of an individual at time t > 0 where

» 0 and 1 represent the extreme ends of the political spectrum
» 1 € (0,1) denotes the average (“mainstream”) opinion

» « > 0 is the rate at which the average opinion becomes mainstream, i.e.
E[Xt] — p = (x — ) exp(—at)
> 0 > 0 is the strength of the random perturbations around the average opinion.

[Cobb, Behav Sci, 1978]; cf. [Higham & Mantzaris, Chaos, 2020]



lllustrative example |, cont'd

Here is again the opinion dynamics model,

dX: = a(p — X¢)dt + 0

and the resulting ODE for the average opinion: m’ = a(u — m).

Observations:

» fluctuations are smaller for people
holding extreme views, since

o(x) = vx(1—x)

vanishes at x =0 and x =1

» there is no fixed point for ¢ > 0
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lllustrative example |, cont'd

Stationary long-term opinion distribution (approached exponentially fast)

m(x) = CuaxtA7H1 - x)E=W/ATL (N = 62/a)
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Remark: Don't try to simulate the SDE with Euler-Maruyama.

[Furioli et al, Ann Inst Henri Poincare C, 2019]; cf. [Jenkins & Sand, Ann Appl Probab, 2017]



lllustrative example Il: slow-fast system

Now consider the 2-dimensional slow-fast system

dR; = (Re — U3)dt, Ro=r

1 /126
dUt: *(Rt— Ut)dt+ ?th, U[): u.
€

with unknown 6 € [0, 1]. Here are some realisations for ¢ = 0.01:

15 0=0.1
—=0.2
1F 0=0.4

time x105



[llustrative example I, cont'd

The fast dynamics conditional on Ry = r,
dU; = (r — U{)dt + v20dW,, Uy =u.
has the unique invariant measure

_JN(r,0), 0¢€(0,1]
Fr=1s, . 6=0.

By the averaging principle, Iir’rgJ Eg[||R: — Relljo,77] = O, where R solves the ODE
€E—

R — _ _
%:—R3+R(1—30), R(0) = r.

[Freidlin & Wentzell, Springer, 1998], [Kifer, Cambridge University Press, 2004]



[llustrative example I, cont'd

For 0 < 0 <1 fixed, the averaged dynamics undergoes a supercritical pitchfork
bifurcation at § = 1/3 (see green dotted curve of right panel):
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By construction, the averaged dynamics R is the best approximation of R as ¢ — 0.
Even though the limit dynamics continuously depends on 6, the notion of a best
approximation remains ambigous, since very little is known about 6.



Intermediate summary

» From the perspective of SDE parameter estimation, estimating diffusion
coefficients is more difficult than estimating the drift.

» The mean of an SDE solution (or any stochastic process) may be misleading, and
you better know the diffusion coefficient.

» Asymptotic properties (e.g. t — oo or ¢ — 0) and the convergence rates can
sensitively depend on unobservable and unknown parameters of the underlying
dynamics; in some cases these parameters may fluctuate (e.g. in diffusing
diffusivity or Heston-type models used in physics and finance).

» If macroscopic quantities (e.g. moments, etc.) depend on unknown parameters, it
makes sense to consider a worst-case scenario for some functional ¢(-), e.g.

Eflo(R) = ¢(R)I] == sup{Eg[l¢(R) — ¢(R)|]: 0 < 6 < 1}






Related work (non-exhaustive)

Model reduction of parametric systems

>

>

Parametric model order reduction (Gramians, moment-matching, ...)

Baur & Benner; Bond & Daniel; Drohmann, Haasdonk & Ohlberger; Rowley & Marsden; Willcox; ...

Surrogate modelling (regression, interpolation, response surfaces, . ..)

Box & Wilson; Draper; Constantine & Wang; Hardin & Sloane; Simpson & Mistree; ...

Equation-free modelling (projective integration, gap-tooth schemes, ...)

Gear, Kevrekidis & Samaey; (Tony) Roberts; Dietrich, Reich & Kevrikidis et al.; ...

Variational inference (relative entropy, Bayesian approaches, ...)

Katsoulakis & Plechac; Koumoutsakos; Majda & Harlim; Turkington; Reich & Opper; Freitag et al; ...

Parameter estimation for multiscale systems (MLE, regression-based, . ..)

Abdulle; Crommelin & Vanden-Eijnden; Krumscheid; Pavliotis & Stuart; Spiliopoulos; Timofeyev; ...



Set-up: parametric multiscale diffusions

We consider slow-fast systems of the form

1
dR: = (fo(Rt, Ut) + %ﬂ(Rta Ut)) dt + a(Re, Ur)dW/

1 1
dUs = —g(Re, Uei 0)dt + —=B(Re, Ui 0)dWy

NG
with sufficiently smooth drift and diffusion coefficients, and

» R = R € R" slow variables (resolved)
» U = U € R™ fast variables (unresolved)
» 6 € © unknown parameter (© C RP compact)

Aim: Find a closed equation for the best approximation of R as ¢ — 0.



An worst-case averaging principle

Given the slow-fast system

1
dR; = (fo(Rt, Ue) + %f—l(Rta Ut)) dt + a(Ry, Up)dW/

1 1
dUs = —g(Re, Uei 0)dt + —=B(Re, Ur: )Wy,

NG
for fixed 6 € © and its averaged (or: homogenised) equation

dR = b(R:; 0) dt + o(R¢; 0)dW/

we say that some quantity of interest ¢ = ¢(R) converges to in the sense of sublinear
expectations E[-| := supy Eg[-] if

lim |E[o(R)] — E[p(R)]| =0

e—0



A short excurse . ..



Stochastic calculus under uncertainty: Peng's sublinear expectation

Let H be a space of random variables.

Definition (Peng's sublinear expectation)

The functional E: H — R is called a sublinear expectation if for all X, Y € H:
X > Y implies B[X] > E[Y] (monotonicity)

[[c] = c for all constants ¢ € R (preservation of constants)
E[X + Y] < B[X] + E[Y] (sublinearity)
RE[AX] = AE[X] for all A > 0 (positive homogeneity).

By properties (c)—(d), sublinear expectations are convex and admit the following
characterisation: there exists a family {Ey: 6 € ©}, such that

R[X] = sup{Eg[X]: 0 € ©}, X cH.

[Peng, Springer, 2019]



Stochastic calculus under uncertainty: G-Brownian motion

Recall that any standard Gaussian random variable X ~ N(0, 1) with expectation

Ble(X)] = <= [ ol o, e Lin(®)

for an arbitrary Lipschitz function ¢ can be characterised by E[p(X)] = u(0,1), where
u = u(x, t) is the solution to the heat equation with initial condition u(x,0) = ¢(x).

We can characterise the G-normal distribution N (0, [02,52]) by E[¢(X)] = v(0,1),
where v is the viscosity solution to the G-heat equation

ov H%v
9 = G<8x2> , v(x,0) =p(x),

1
with G(w) = 5 max{cw: o2 < ¢ < 72}.

[Peng, Stochastic Analysis and Applications, 2007]



G-Brownian motion, cont’d

The right hand side of the G-heat equation is the (nonlinear) infinitesimal generator of
a stochastic process B, called G-Brownian motion, with the properties

E[B] =0, E[B] =32 and —E[-B? =2

for any t > 0.

Noting that the G-heat equation can be recast as a Hamilton-Jacobi-Bellman equation
for a diffusion-controlled SDE, the G-Brownian motion B admits the representation

t
B; :/ Cs dWs
0

where W denotes standard Brownian motion and C € [0?, 72] is adapted.
Remark: The generalisation to the multidimensional case is straightforward.

[Peng, Stochastic Analysis and Applications, 2007]; [Denis & Hu, Potential Analysis, 2011]



Back to our problem ...



Goal-oriented coarse-graining of multiscale systems

We consider the nonlinear HJB-type Kolmogorov backward equation

= sup {;ae: V2vE + be va} +YP(x), v(T,x)=q¢(r)

associated with our slow-fast system that we compactly write as
dXt = be(Xt; 9) dt + O'E(Xt; 6’)th
with Xt == (Rt) Ut) and a¢ = O'O'T.

As a our quantity of interest (Qol), we consider the continuous functional

(£, x) = B MT@z}(RS) ds + o(R7)| X = x} .

[Mezdoud, H, Remita & Kebiri, arXiv:2108:06965, 2021]



A worst-case averaging principle, cont'd

Theorem (Bouanani, H & Kebiri, 2021)
Technical details aside, we have

€

ve = v, Vv — Vv

as € — 0 where the convergence of v is uniform on any compact subset of [0, T] x R”
and pointwise for Vve for all (t,x) € [0, T] x R", with n = ns + n¢, and

o, ) = B[ [ w(R) ds + oRr)|Re=1].

denotes the unique classical solution to the nonlinear Kolmogorov backward equation
associated with the averaged (or: homogenised) equation.

[Bouanani, H & Kebiri, arXiv:2102.04908, 2021]; cf. [Kebiri, Neureither & H, Computation, 2018]




Some remarks

» The proof relies on a G-FBSDE representation of the backward equation.

» It uses a stability result of Zhang & Chen together with Gronwall and BDG-type
estimates for G-Brownian motion, assuming uniform Lipschitz conditions for
the drift coefficients and constant diffusion coefficients (i.e. additive noise).

» We have moreover proved convergence for an optimally controlled SDE, with a
parameter uncertainty that is sitting only in the diffusion coefficient, while the
control is acting on the drift part of the SDE, i.e. we consider

V(£ x) = mlnE[/ O(Rs, e) ds + 6(Ry)

Xt—X:|.

with a controlling the drift. If the control is acting on the uncertain parts of the
SDE, extra saddle-point conditions are necessary.

[Cheridito, Soner, Touzi & Victoir, Commun Pure Appl Math, 2007], [Zhang & Chen, An St Univ Ovidius Constanta Ser Mat, 2011]






A simplified stochastic turbulence model

We consider the bilinear triad interaction model
1 1 1
dX(t) = 5 L(X(¢t))dt + =B(X(t), X(t))dt + ~XdW;, X(0) = x,
€ € €

where X(t) = (Ri(t), Ra(t), U(t)) € R and

0 A1r2u 0
Lix)=—{(0]|, B(x,x)=|Anu], X=1[0],
u A3r1r2 A

Here 0 < € < 1, the coefficients A1, Az, Az with A; + A> + A3 = 0 are fixed, and
A€ [o,T]

denotes the unknown diffusion coefficient.

[Majda, Timofeyev & Vanden-Eijnden, PNAS, 1999]



Coarse-grained triad interaction model

Homogenised limit equation

dR(t) = b(R(t); \)dt+o(R(t); \)dW,, R(0) =r,

for climate variables r = (r1, r2) as € — 0, with

b=

A1r1(A3r22 —+ %QAQ) o — A <A1I‘2>
2 3 .
A2r2(A3r12 + %Al) Y

Axry

Limit vector field b for Ay = Ay = 1 and
Az 2 and different noise parameters A
(invariant manifolds: hyperbola).

Using It6's formula, it readily follows that
I(ri,rn) = A1r22 — A2r12

is a conserved quantity for both the reduced and the original system.



Qualitative behaviour of invariant manifolds and equilibria

Equilbria: The origin is an unstable hyperbolic 9
equilibrium. The rays that connect the origin with 2
any of the four equilibria 21 |

22 feeed i
1.0

iA,/ £/ A AL A 22
( 2|A3 2|A3 > L2 > 0. 24

are (locally hyperbolically unstable) invariant sets.

Independent realisations for different A € [1, 2]
and fixed T 0.5, all starting from the same
initial value r = (1, —2)

Observation: The invariant manifolds are independent of A, but the dynamics on the
invariant manifolds changes as A is varied.



Qol and worst-case parameter

Quantity of interest (Qol):

ve = BIX(T)|X(t) = x], v =R[R(T)|R(t) = r] N
Example 1: Ay = A, =1, A; = —2, A € [0.8, 1.2],
T=01¢=02 x=(r,u)=(1,-2,-2)T: L
ve(0,x) = 0.9291, v(0,r) = 0.9326 1:2
Example 2: A; =1, A, = 2, A3 = —3, A kil |

A €[0.6,1.2], T =0.5, € and x as before:

Parameter A™ that maximises the nonlinear
generator G over the noise coefficient A € [1, 2]

ve(0,x) = 1.3202, v(0, r) = 1.3549

[Beck, E & Jentzen, J Nonl Sci, 2019]



Outlook: variational parameter estimation

Given an observation time series R = {IA?t: t € [0, T]}, we may use the stochastic
control ansatz to minimise a tracking-type functional

J(O;r ut) = E[/OT |Rs — R|? +104|2ds ‘ Re=r, Uy = u}
over the unknown 6. Ideally there will be a unique value function
v(r,u,t) = irgf J(O;r,u,t)
solving an HJB equation, with # becoming a time-dependent feedback control
0s = c(Xs, Ys, s)

that can be expressed in terms of v (starting point for systematic approximations).

[de Wiljes, Majda & Horenko, SIAM MMS, 2013], [Boyko, Krumscheid, Vercauteren, arXiv2102.12395, 2021]



Take-home message

» The sublinear expectation and related G-Brownian framework is a versatile tool
for goal-oriented coarse-graining with worst-case scenarios.

> The worst-case scenario may not correspond to a single parameter value.

» The underlying nonlinear PDEs can be efficiently solved using the regression-type
approximation schemes of Beck, E & Jentzen for second-order BSDEs .

» Open problems: strong convergence in sublinear expectation, multiplicative
noise, infinite time horizon, ...



Thank you for your attention!
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