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Learning without drift

Given training data
𝐷 = 𝑥!, 𝑦! , … , 𝑥", 𝑦" ⊂ 𝑋 × 𝑌
sampled i.i.d. w.r.t. probability measure 𝑃 = 𝑃#×%
where 𝑋 = ℝ&, 𝑌 = {1,2}, 
we aim for a classification prescription
𝑓' : 𝑋 → 𝑌
minimizing 𝐸( 𝑙 𝑓' 𝑥 , 𝑦 with 0-1-loss

𝑙: 𝑌) →ℝ, 𝑦′, 𝑦 ↦ 1 − 𝛿*+,* = :0 𝑦′ = 𝑦
1 𝑦′ ≠ 𝑦



GMLVQ - function

GMLVQ (generalized matrix learning vector 
quantization) – function:
Prototypes 𝑤!, 𝑙! , … , 𝑤-, 𝑙- ∈ 𝑋×𝑌 and 
weight matrix Ω ∈ ℝ&×& induce a winner-
takes-it-all classification

𝑓.,/ : 𝑥 ↦ 𝑙0(2) with 

winner 𝐼 𝑥 = argmin4 𝑑/(𝑥,𝑤5) and
distance 𝑑/ 𝑥,𝑤 = Ω 𝑥 −𝑤 )

Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning 
Vector Quantization. Neural Computation 21(12): 3532-3561 (2009), code available at
https://github.com/si-cim/prototorch, https://github.com/si-cim/protoflow

https://github.com/si-cim/prototorch
https://github.com/si-cim/protoflow


GMLVQ - training

GMLVQ – training:
Given a training set, optimize an 
approximation of the empirical loss w.r.t. 
parameters𝑊,Ωwith detΩ = 1

𝐸6789: ≔ ∑5Φ
&! 2",;# <&! 2",;$

&! 2",;# =&! 2",;$

Φ is a monotonic function, 𝑤± is the closest 
prototype with correct / incorrect label, and 
the  sample margin is

𝑀 𝑥5 : = 𝑑/ 𝑥5, 𝑤< - 𝑑/ 𝑥5, 𝑤=

Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning 
Vector Quantization. Neural Computation 21(12): 3532-3561 (2009), code available at
https://github.com/si-cim/prototorch, https://github.com/si-cim/protoflow
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GMLVQ - guarantees

training data GMLVQ – generalization ability:
Assume data is bounded by 𝐵, consider the margin loss 
function with parameter 𝜌

𝐿?: ℝ →ℝ, 𝑡 ↦ V
1 𝑡 ≤ 0

1 − 𝑡/𝜌 0 ≤ 𝑡 ≤ 𝜌
0 𝑡 ≥ 𝜌

and the empirical margin loss Z𝐸"
? ≔ ∑5 𝐿?(𝑀 𝑥5 )/𝑛

With probability 𝛿 the expected loss is bounded by

𝐸( 𝑙 𝑓.,/ 𝑥 , 𝑦 ≤ Z𝐸"
? + !
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Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12): 3532-3561 (2009)



GMLVQ - interpretability

GMLVQ constitutes a natively  interpretable 
model by inspecting prototypes 𝑊 and 
relevance terms diag(ΩGΩ).

e.g. Arlt/Stewart, PCT/GB2010/000274: Assay for detection of adrenal tumor



Viktor Losing, Barbara Hammer, Heiko 
Wersing: Interactive online learning for 
obstacle classification on a mobile robot. 
IJCNN 2015: 1-8

GMLVQ - applications

Benjamin Paaßen, Bassam Mokbel, 
Barbara Hammer: Adaptive structure 
metrics for automated feedback provision 
in intelligent tutoring systems. 
Neurocomputing 192: 3-13 (2016)

Johannes Brinkrolf, Barbara Hammer: 
Time integration and reject options for 
probabilistic output of pairwise LVQ. 
Neural Comput. Appl. 32(24): 18009-
18022 (2020)

Lydia Fischer, Barbara Hammer, Heiko 
Wersing: Optimal local rejection for 
classifiers. Neurocomputing 214: 445-457 
(2016)



Learning with drift

• Transfer learning

• Continuous adaptation

• A few thoughts on drift



Transfer learning I



SEMG control of prosthesis

Image of wrist section taken from Anatomie des Menschen, 1921
Image of hand taken from Fluctuating EMG signals: Investigating long-term effects of pattern
matching algorithms P Kaufmann, K Englehart, M Platzner - 2010 Annual International Conference 
of the IEEE Engineering in Medicine and Biology , 2010



Classification of sEMG data

Benjamin Paaßen, Alexander Schulz, Janne Hahne, Barbara Hammer: Expectation maximization transfer learning and its application for
bionic hand prostheses. Neurocomputing 298: 122-133 (2018)



Shift of sensors

Image of wrist section taken from Anatomie des Menschen, 1921



Shift of sensors

• Effect of 8mm transversal shift

Benjamin Paaßen, Alexander Schulz, Janne Hahne, Barbara Hammer: Expectation maximization transfer learning and its application for
bionic hand prostheses. Neurocomputing 298: 122-133 (2018)



Supervised transfer learning

Transfer learning:
Given a function 𝑓:𝑋 → 𝑌
Given (few) samples (𝑥5, 𝑔 𝑥5 ) where 𝑔:𝑋′ → 𝑌 is
different from f but shares some structure

Learn g from the given data with the help of f



Metric-based transfer learning



Metric-based transfer learning

Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning, Prahm C, Schulz A, Paaßen B, Schoisswohl J, 
Kaniusas E, Dorffner G, Hammer B, Aszmann O (2019) IEEE Transactions on Neural Systems and Rehabilitation Engineering 27(5): 956-
962. 

https://pub.uni-bielefeld.de/record/2934458
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Transfer learning for sEMG

Benjamin Paaßen, Alexander Schulz, Janne Hahne, Barbara Hammer: Expectation maximization transfer learning and its application for
bionic hand prostheses. Neurocomputing 298: 122-133 (2018)
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Transfer learning II



Classifying coffee

94% accuracy



Drift in hyperspectral data



Drift in hyperspectral data



Unsupervised transfer learning

Transfer learning:
Given a function 𝑓:𝑋 → 𝑌 which has been learned
based on a probability distribution 𝑃#×%
Given samples (𝑥5) where the distribution of the data 
has changed 𝑃#+ ≠ 𝑃#
Learn a classification g from the given data with the 
help of f



Maximising Minimum discrepancy

Transfer learning by MMD embedding
Assumption: 𝑃#+ ≠ 𝑃# but 𝑃 𝑌+ 𝑋+ = 𝑃(𝑌|𝑋)
Goal: transform 𝑋+ into 𝑋
Given samples, minimize discrepancy based on 
universal kernel embedding

𝑀𝑀𝐷 𝑋,𝑋+ :
= ` 1/𝑛! a

5H!.."'

𝜙 𝑥5 − 1/n) a
5H!.."&

𝜙(𝑥5+) `J
)

Domain adaptation via transfer component analysisSJ Pan, IW Tsang, JT Kwok, Q Yang
IEEE Transactions on Neural Networks 22 (2), 199-210, 2011



Practice: Transfer learning via 
moment matching
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Transfer learning via moment 
matching for hyperspectral data

Valerie Vaquet, Patrick Menz, Udo Seiffert, Barbara Hammer, Investigating Intensity and Transversal Drift in 
Hyperspectral Imaging Data, ESANN2021 



Transfer learning via moment 
matching for hyperspectral data

Valerie Vaquet, Patrick Menz, Udo Seiffert, Barbara Hammer, Investigating Intensity and Transversal Drift in 
Hyperspectral Imaging Data, ESANN2021 



Transfer learning III



Microfluidic single-cell cultivation

Key Technologies, Volume  114, Single-Cell Analysis in Microfluidic Bioreactors, Alexander Manuel Grünberger, Member of the 
Helmholtz Association, 2014

• “Lab on a chip” single-cell 
cultivation
• observation of single cells 

over time under 
controlled conditions
• interesting properties

• growth rate
• homogeneity
• …



Typical data

Bright field microscopy Phase contrast microscopy



Siamese autoencoder model for 
domain adaptation

Dominik Stallmann, Jan Philip Göpfert, Julian Schmitz, Alexander Grünberger, Barbara Hammer: Towards an automatic 
analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinform. 37(20): 3632-3639 (2021)



Training objective of twin VAE

reconstruction error:
squared error or cross-entropy 
for reconstruction

regression error 
for labeling

KL error of VAE

Dominik Stallmann, Jan Philip Göpfert, Julian Schmitz, Alexander Grünberger, Barbara Hammer: Towards an automatic 
analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinform. 37(20): 3632-3639 (2021)



Training data
bright field:
• ca. 5000
• 1,4% labelled

phase contrast:
• ca 11.000
• 5.9% labelled

artificial:
• on the fly generation for 

up to 50.000 epochs

Dominik Stallmann, Jan Philip Göpfert, Julian Schmitz, Alexander Grünberger, Barbara Hammer: Towards an automatic 
analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinform. 37(20): 3632-3639 (2021)



Learned representation

Dominik Stallmann, Jan Philip Göpfert, Julian Schmitz, Alexander Grünberger, Barbara Hammer: Towards an automatic 
analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinform. 37(20): 3632-3639 (2021)



Results

Dominik Stallmann, Jan Philip Göpfert, Julian Schmitz, Alexander Grünberger, Barbara Hammer: Towards an automatic 
analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinform. 37(20): 3632-3639 (2021)



Results including transfer learning 
in between domains

Dominik Stallmann, Jan Philip Göpfert, Julian Schmitz, Alexander Grünberger, Barbara Hammer: Towards an automatic 
analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation. Bioinform. 37(20): 3632-3639 (2021)



Learning with drift
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Learning with drift
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Learning from data streams

Given a stream of training data

h0

(x1,y1)

h1 h2

(x2,y2) (x3,y3)

h3

(x4,y4)

h4

(x5,y5) ...

49



Learning from data streams

Given a stream of training data
𝑥!, 𝑦! , … , 𝑥K, 𝑦K , … ∈ 𝑋 × 𝑌

sampled w.r.t. a family of probability distributions 𝑃K on 𝑋×𝑌
We aim for a learning scheme which incrementally adapts a model 
ℎK : 𝑋 → 𝑌 based on 𝑥K, 𝑦K such that the interleaved train-test error
𝐸 = ∑K 𝑙(ℎK<! 𝑥K , 𝑦K) is minimized.

50



Drift

Drift is present if
there exist time 
points 𝑡! ≠ 𝑡)
such that 

𝑃K' ≠ 𝑃L&

51



Drift

52



k-NN: basic incremental model

k-NN for drifting data:
• how much data to store?

53



Self-adjusting memory (SAM-kNN)

use current stream with a length
which optimizes the accuracy

store all data which are still valid but
currently not used

delete data which become
invalid because they
contradict the neighborhood

Viktor Losing, Barbara Hammer, Heiko Wersing: Tackling heterogeneous concept drift with the Self-Adjusting Memory 
(SAM). Knowl. Inf. Syst. 54(1): 171-201 (2018), code: https://github.com/vlosing/SAMkNN or within RIVER: 
https://riverml.xyz/latest/ as SAMKNNClassifier

Parameters:
• size of STM
• data points in LTM
• weights of gating

Meta-parameters:
• min size of STM
• max size of STM 

and LTM
• k of k-NN

weight based on recent
performance

54

https://github.com/vlosing/SAMkNN
https://riverml.xyz/latest/


Role of memory



SAM-kNN – example memory

Viktor Losing, Barbara Hammer, Heiko Wersing: Tackling heterogeneous concept drift with the Self-Adjusting Memory 
(SAM). Knowl. Inf. Syst. 54(1): 171-201 (2018), code: https://github.com/vlosing/SAMkNN or within RIVER: 
https://riverml.xyz/latest/ as SAMKNNClassifier 56

https://github.com/vlosing/SAMkNN
https://riverml.xyz/latest/


STM adaptation

27.12 %

Error

13.12 %

7.12 %

0.0 %



LTM 
Transfer consistent data to LTM

cleaning

STM-consistent data



LTM



Self-adjusting memory ensemble (SAME)

Viktor Losing, Barbara Hammer, Heiko Wersing, Albert Bifet:
Randomizing the Self-Adjusting Memory for Enhanced Handling of Concept Drift. IJCNN 2020: 1-8 60
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Personalized prognosis of motions

Viktor Losing, Taizo Yoshikawa, Martina Hasenjäger, Barbara Hammer, Heiko Wersing:
Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units. ICRA 2019: 9530-9536 62



Personalized prognosis of motions

Viktor Losing, Taizo Yoshikawa, Martina Hasenjäger, Barbara Hammer, Heiko Wersing:
Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units. ICRA 2019: 9530-9536 63



Personalized assistant for crossings

Losing, Hammer, Wersing
“Personalized Maneuver Prediction 
at Intersections”, ITSC 20171/14/22 64



Personalized assistant for crossings

Losing, Hammer, Wersing
“Personalized Maneuver Prediction 
at Intersections”, ITSC 2017

1/14/22 65



More on drift



What is drift?
Drift: data are drawn from a probability distribution 𝑃! which is not constant with 𝑡

… but we cannot observe Pt



Notions of drift
Drift: data are drawn from a probability distribution 𝑃! which is not constant with 𝑡

Drift as change of (unobservable) distribution

Machine Learner’s  drift: optimum model at first 
time window

optimum model at first 
time window≠

Dependency of observations and time: observed data drift 
detectiontime

Towards non-parametric drift detection via Dynamic Adapting Window Independence Drift Detection (DAWIDD), Fabian Hinder, André 
Artelt, Barbara Hammer, ICML2020





Fabian Hinder, André Artelt, Barbara Hammer: A 
probability theoretic approach to drifting data in 
continuous time domains. CoRR abs/1912.01969 (2019)



Where is drift?



Where is 
drift?



Drift segmentation

Find segmentation function 𝐿: 𝑋 → ℕ such that

𝐿 𝑥 = 𝐿 𝑥) ⇒ 𝑃 𝑇 𝑋 = 𝑥 = 𝑃 𝑇 𝑋 = 𝑥)

Algorithm:
iteratively split data along the axis into subsets 𝐿*
such that the homogeneity within one class is 
minimized / heterogeneity between classes is 
maximized



Drift 
segmentation



Drift localization

F.Hinder, B.Hammer, Concept drift 
segmentation via 
Kolmogorov trees, ESANN21



Conclusions

• GMLVQ à https://github.com/si-cim/prototorch, 
https://github.com/si-cim/protoflow
• transfer learning, not only for deep networks
• learning with drift à https://riverml.xyz/latest/ : SAMkNNclassifier
• drift segmentation and many open challenges

https://github.com/si-cim/prototorch
https://github.com/si-cim/protoflow
https://riverml.xyz/latest/


Conclusion

joint with: 

Alexander Schulz, Fabian Hinder, Johannes Brinkrolf, Michael Biehl, Petra 
Schneider, Lydia Fischer, Heiko Wersing, Frank-Michael Schleif, Javier Gonzalez 
Monroy, Javier González Jiménez, José-Luis Blanco-Claraco, Nicolai Petkov, Viktor 
Losing, Heiko Wersing, Jan Göpfert, Valerie Vaquet, Fabian Hinder, Andre Artelt, 
Taozo Yoshikawa, Martina Hasenjäger, Albert Bifet

Happy New Year!
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