

Machine Learning in the context of drift

Barbara Hammer

Machine Learning Group, Bielefeld University

Colloquium Talk at Potsdam University, 2022

Given training data $D = \{(x^{1}, y^{1}), ..., (x^{n}, y^{n})\} \subset X \times Y$ sampled i.i.d. w.r.t. probability measure $P = P_{X \times Y}$ where $X = \mathbb{R}^{d}$, $Y = \{1,2\}$, we aim for a classification prescription $f_{\theta} : X \to Y$ minimizing $E_{P}(l(f_{\theta}(x), y))$ with 0-1-loss $l: Y^{2} \to \mathbb{R}, (y', y) \mapsto 1 - \delta_{y',y} = \begin{cases} 0 & y' = y \\ 1 & y' \neq y \end{cases}$

GMLVQ - function

GMLVQ (generalized matrix learning vector quantization) – **function**:

Prototypes $(w^1, l^1), ..., (w^p, l^p) \in X \times Y$ and weight matrix $\Omega \in \mathbb{R}^{d \times d}$ induce a winnertakes-it-all classification

 $f_{W,\Omega}: x \mapsto l^{I(x)}$ with winner $I(x) = \operatorname{argmin}_{i} d_{\Omega}(x, w^{i})$ and distance $d_{\Omega}(x, w) = |\Omega(x - w)|^{2}$

Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12): 3532-3561 (2009), code available at https://github.com/si-cim/prototorch, https://github.com/si-cim/protoflow

GMLVQ - training

GMLVQ – training:

Given a training set, optimize an **approximation of the empirical loss** w.r.t. parameters W, Ω with det $\Omega = 1$

$$E_{GMLVQ} \coloneqq \sum_{i} \Phi\left(\frac{d_{\Omega}(x^{i},w^{+}) - d_{\Omega}(x^{i},w^{-})}{d_{\Omega}(x^{i},w^{+}) + d_{\Omega}(x^{i},w^{-})}\right)$$

 Φ is a monotonic function, w^{\pm} is the closest prototype with correct / incorrect label, and the **sample margin** is

$$M(x^i) := d_{\Omega}(x^i, w^-) - d_{\Omega}(x^i, w^+)$$

Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12): 3532-3561 (2009), code available at https://github.com/si-cim/prototorch, https://github.com/si-cim/protoflow

GMLVQ - training

GMLVQ – training:

Given a training set, optimize an **approximation of the empirical loss** w.r.t. parameters W, Ω with det $\Omega = 1$

$$E_{GMLVQ} \coloneqq \sum_{i} \Phi\left(\frac{d_{\Omega}(x^{i},w^{+}) - d_{\Omega}(x^{i},w^{-})}{d_{\Omega}(x^{i},w^{+}) + d_{\Omega}(x^{i},w^{-})}\right)$$

 Φ is a monotonic function, w^{\pm} is the closest prototype with correct / incorrect label, and the **sample margin** is

$$M(x^i) := d_{\Omega}(x^i, w^-) - d_{\Omega}(x^i, w^+)$$

Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12): 3532-3561 (2009), code available at https://github.com/si-cim/prototorch, https://github.com/si-cim/protoflow

GMLVQ - guarantees

GMLVQ – generalization ability:

Assume data is bounded by B , consider the margin loss function with parameter ρ

$$L_{\rho}: \mathbb{R} \to \mathbb{R}, t \mapsto \begin{cases} 1 & t \leq 0\\ 1 - t/\rho & 0 \leq t \leq \rho\\ 0 & t \geq \rho \end{cases}$$

and the **empirical margin loss** $\widehat{E_{n}^{\rho}} \coloneqq \sum_{i} L_{\rho}(M(x^{i}))/n$
With probability δ the expected loss is bounded by
 $E_{P}\left(l(f_{W,\Omega}(x), y)\right) \leq \widehat{E_{n}^{\rho}} + \frac{1}{\sqrt{n}}\mathcal{O}\left(\frac{p^{\frac{3}{2}B^{3}}}{\rho} + \frac{\sqrt{\ln(\frac{1}{\delta})}}{\min\{1,\rho\}}\right)$

Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12): 3532-3561 (2009)

GMLVQ - interpretability

e.g. Arlt/Stewart, PCT/GB2010/000274: Assay for detection of adrenal tumor

GMLVQ - applications

Viktor Losing, Barbara Hammer, Heiko Wersing: Interactive online learning for obstacle classification on a mobile robot. IJCNN 2015: 1-8

Benjamin Paaßen, Bassam Mokbel, Barbara Hammer: Adaptive structure metrics for automated feedback provision in intelligent tutoring systems. Neurocomputing 192: 3-13 (2016)

Lydia Fischer, Barbara Hammer, Heiko Wersing: Optimal local rejection for classifiers. Neurocomputing 214: 445-457 (2016)

Johannes Brinkrolf, Barbara Hammer: Time integration and reject options for probabilistic output of pairwise LVQ. Neural Comput. Appl. 32(24): 18009-18022 (2020)

- Transfer learning
- Continuous adaptation
- A few thoughts on drift

Transfer learning I

SEMG control of prosthesis

Image of hand taken from Fluctuating EMG signals: Investigating long-term effects of pattern matching algorithms P Kaufmann, K Englehart, M Platzner - 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010

Classification of sEMG data

pronation/supination	0.6%~(0.3%)
flexion/extension	0.5%~(0.5%)
$\mathrm{open/close}$	0.7%~(0.4%)

Benjamin Paaßen, Alexander Schulz, Janne Hahne, Barbara Hammer: Expectation maximization transfer learning and its application for bionic hand prostheses. Neurocomputing 298: 122-133 (2018)

Shift of sensors

Shift of sensors

• Effect of 8mm transversal shift

degree of freedom	original	shift
pronation/supination	0.6%~(0.3%)	36.2% (15.4%)
flexion/extension	0.5%~(0.5%)	10.9%~(3.7%)
open/close	0.7%~(0.4%)	29.1% (6.4%)

Benjamin Paaßen, Alexander Schulz, Janne Hahne, Barbara Hammer: Expectation maximization transfer learning and its application for bionic hand prostheses. Neurocomputing 298: 122-133 (2018)

Supervised transfer learning

Transfer learning:

Given a function $f: X \to Y$

Given (few) samples $(x^i, g(x^i))$ where $g: X' \to Y$ is different from f but shares some structure

Learn g from the given data with the help of f

Metric-based transfer learning

Metric-based transfer learning

LVQ Model:

 $W \leftarrow \operatorname*{argmin}_W E_{\mathrm{GMLVQ}}(W,X)$

Transfer Learning:

$$H_{\mathsf{p}} \leftarrow \operatorname*{argmin}_{H_{\mathsf{p}}} E(W, H_{\mathsf{p}} \cdot \hat{X})$$

<u>Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning</u>, Prahm C, Schulz A, Paaßen B, Schoisswohl J, Kaniusas E, Dorffner G, Hammer B, Aszmann O (2019) IEEE Transactions on Neural Systems and Rehabilitation Engineering 27(5): 956-962.

Metric-based transfer learning

<u>Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning</u>, Prahm C, Schulz A, Paaßen B, Schoisswohl J, Kaniusas E, Dorffner G, Hammer B, Aszmann O (2019) IEEE Transactions on Neural Systems and Rehabilitation Engineering 27(5): 956-962.

Transfer learning for sEMG

degree of freedom	original	\mathbf{shift}	re-calibrated
pronation/supination	0.6%~(0.3%)	36.2%~(15.4%)	3.6%~(2.5%)
flexion/extension	0.5%~(0.5%)	10.9%~(3.7%)	1.3%~(0.9%)
$\operatorname{open/close}$	0.7%~(0.4%)	29.1% (6.4%)	3.8%~(1.0%)

Benjamin Paaßen, Alexander Schulz, Janne Hahne, Barbara Hammer: Expectation maximization transfer learning and its application for bionic hand prostheses. Neurocomputing 298: 122-133 (2018)

Transfer learning for sEMG

<u>Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning</u>, Prahm C, Schulz A, Paaßen B, Schoisswohl J, Kaniusas E, Dorffner G, Hammer B, Aszmann O (2019) IEEE Transactions on Neural Systems and Rehabilitation Engineering 27(5): 956-962.

Transfer learning for sEMG

<u>Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning</u>, Prahm C, Schulz A, Paaßen B, Schoisswohl J, Kaniusas E, Dorffner G, Hammer B, Aszmann O (2019) IEEE Transactions on Neural Systems and Rehabilitation Engineering 27(5): 956-962.

Transfer learning II

Classifying coffee

Drift in hyperspectral data

Drift in hyperspectral data

Unsupervised transfer learning

Transfer learning:

Given a function $f: X \rightarrow Y$ which has been learned based on a probability distribution $P_{X \times Y}$

Given samples (x^i) where the distribution of the data has changed $P_{X'} \neq P_X$

Learn a classification g from the given data with the help of f

Maximising Minimum discrepancy

Domain adaptation via transfer component analysisSJ Pan, IW Tsang, JT Kwok, Q Yang IEEE Transactions on Neural Networks 22 (2), 199-210, 2011

Practice: Transfer learning via moment matching

Practice: Transfer learning via moment matching

	Blue		Orange
$\mathbb{E}[X]$	0	\approx	$-2.6\cdot10^{-16}$

Practice: Transfer learning via moment matching

	Blue		Orange
$\mathbb{E}[X]$	$1.9\cdot 10^{-16}$	\approx	$6.5\cdot10^{-16}$
$\mathbb{E}[X^2]$	25.0	\approx	24.99

Transfer learning via moment matching for hyperspectral data

Valerie Vaquet, Patrick Menz, Udo Seiffert, Barbara Hammer, Investigating Intensity and Transversal Drift in Hyperspectral Imaging Data, ESANN2021

Transfer learning via moment matching for hyperspectral data

Valerie Vaquet, Patrick Menz, Udo Seiffert, Barbara Hammer, Investigating Intensity and Transversal Drift in Hyperspectral Imaging Data, ESANN2021

Transfer learning III

Microfluidic single-cell cultivation

- "Lab on a chip" single-cell cultivation
- observation of single cells over time under controlled conditions
- interesting properties
 - growth rate
 - homogeneity
 - ..

Key Technologies, Volume 114, Single-Cell Analysis in Microfluidic Bioreactors, Alexander Manuel Grünberger, Member of the Helmholtz Association, 2014

Typical data

Bright field microscopy

Phase contrast microscopy

Siamese autoencoder model for domain adaptation

Training objective of twin VAE

 $Twin_{loss}(x, l, t) =$

 $C_{\text{Rec}}^{t} \cdot \text{Rec}(x) + C_{\text{Reg}}^{t,l} \cdot \text{Reg}(x,l) + C_{\mathcal{D}_{\text{KL}}}^{t} \cdot \mathcal{D}_{\text{KL}}(x)$

reconstruction error: squared error or cross-entropy for reconstruction regression error for labeling

KL error of VAE

Training data

bright field:

- ca. 5000
- 1,4% labelled

phase contrast:

- ca 11.000
- 5.9% labelled

artificial:

 on the fly generation for up to 50.000 epochs

Learned representation

Results

Results including transfer learning in between domains

Method	$\mathrm{MAE}~(\mathtt{Syn})\downarrow$	$\mathrm{MRE}~/~\%~(\mathtt{Syn})\downarrow$	Acc. / $\%$ (Syn) \uparrow	$\mathrm{MAE}\;(\mathtt{Nat})\downarrow$	$\mathrm{MRE}~/~\%~(\texttt{Nat})\downarrow$	Acc. / $\%$ (Nat) \uparrow			
PC (phase-contrast microscopy)									
Watershed	0.94	18.00	24.00	1.66	29.00	23.10			
EfficientNet-B0	4.99	79.40	5.00	1.67	25.10	23.40			
EfficientNet-B1	3.53	54.50	8.70	1.78	31.90	19.30			
$\texttt{Twin-VAE} \ (\texttt{Nat} \ \texttt{only})$	n/a	n/a	n/a	1.07	20.10	39.80			
Twin-VAE _{max-acc}	0.09	0.68	68.20	0.60	5.92	57.80			
$Twin-VAE_{min-dev}$	0.14	0.73	62.10	0.59	5.66	57.00			
BiT	n/a	n/a	n/a	2.20	n/a	26.13			
Transfer-Twin-VAE (Nat only)	n/a	n/a	n/a	1.01	14.11	44.20			
Transfer-Twin-VAE	0.15	0.43	85.00	0.81	6.48	53.70			
BF (bright-field microscopy)									
Watershed	1.92	39.00	2.00	2.39	32.00	32.00			
EfficientNet-B0	6.50	67.10	4.50	1.13	17.20	33.90			
EfficientNet-B1	5.25	67.50	4.40	1.21	18.50	29.00			
$\texttt{Twin-VAE} \ (\texttt{Nat} \ \texttt{only})$	n/a	n/a	n/a	0.91	13.30	23.40			
Twin-VAE _{max-acc}	0.48	4.27	60.10	0.68	7.60	53.20			
$\texttt{Twin-VAE}_{\texttt{min-dev}}$	0.52	4.63	58.20	0.63	7.31	51.90			
BiT	n/a	n/a	n/a	1.03	n/a	43.10			
Transfer-Twin-VAE (Nat only)	n/a	n/a	n/a	0.72	7.88	51.36			
Transfer-Twin-VAE	0.40	3.87	66.60	0.52	5.47	60.74			

Learning from data streams

Learning from data streams

Given a stream of training data

 $(x^1,y^1),\ldots,(x^t,y^t),\ldots\in X\times Y$

sampled w.r.t. a family of probability distributions P_t on $X \times Y$

We aim for a **learning scheme which incrementally adapts a model** $h_t: X \to Y$ based on (x^t, y^t) such that the interleaved train-test error

 $E = \sum_{t} l(h_{t-1}(x_t), y_t)$ is minimized.

Drift

51

k-NN: basic incremental model

Self-adjusting memory (SAM-kNN)

Parameters:

- size of STM
- data points in LTM
- weights of gating

Meta-parameters:

- min size of STM
- max size of STM and LTM
- k of k-NN ٠

Viktor Losing, Barbara Hammer, Heiko Wersing: Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM). Knowl. Inf. Syst. 54(1): 171-201 (2018), code: https://github.com/vlosing/SAMkNN or within RIVER: https://riverml.xyz/latest/ as SAMKNNClassifier

Role of memory

SAM-kNN – example memory

Moving squares time 2300

Viktor Losing, Barbara Hammer, Heiko Wersing: Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM). Knowl. Inf. Syst. 54(1): 171-201 (2018), code: <u>https://github.com/vlosing/SAMkNN</u> or within RIVER: <u>https://riverml.xyz/latest/</u> as SAMKNNClassifier 56

STM adaptation

	STM size 500		Error
			27.12 %
S	STM size 250		
			13.12 %
S	STM size 125		
			7.12 %
	STM size 62		
			0.0 %

LTM

Transfer consistent data to LTM

LTM

Self-adjusting memory ensemble (SAME)

Viktor Losing, Barbara Hammer, Heiko Wersing, Albert Bifet:

Randomizing the Self-Adjusting Memory for Enhanced Handling of Concept Drift. IJCNN 2020: 1-8

Data set	VFDT	SAM	ARF	LVGB	SAM-E
SEA Concepts	15.16	13.22	11.68 ± 0.06	11.68±0.07	12.28 ± 0.07
Rot. Hyperplane	15.02	15.22	17.35 ± 0.15	12.73 ± 0.02	12.49±0.71
Moving RBF	66.27	12.10	34.02 ± 0.17	$45.62{\pm}0.15$	11.86±0.09
Inter. RBF	74.71	3.27	2.68 ±0.04	$10.08 {\pm} 0.94$	$3.30 {\pm} 0.01$
Moving Squares	66.73	2.64	36.84 ± 1.49	$11.74 {\pm} 0.03$	2.47 ±0.25
Transient Chessb.	45.24	11.26	26.30 ± 0.17	$14.69 {\pm} 6.22$	10.30±0.09
Random Tree	10.36	37.05	8.71±1.49	3.93 ±0.09	32.72 ± 0.77
LED-Drift	26.30	45.99	27.39 ± 0.33	$\textbf{26.13}{\pm}0.02$	$35.48 {\pm} 2.61$
Mixed Drift	55.42	12.27	19.87 ± 0.06	$25.97{\pm}0.10$	11.58±0.02
Poker	25.88	16.86	19.23 ± 0.17	$17.93 {\pm} 0.40$	8.79 ±0.44
Artificial Ø	40.11	16.99	20.41	18.05	14.13
Outdoor	42.68	11.58	29.70 ± 2.03	$39.28{\pm}0.25$	9.25±0.29
Weather	26.49	22.31	21.87 ± 0.46	$22.18{\pm}0.08$	21.41 ±0.16
Electricity	29.00	17.58	21.13 ± 0.50	$17.58{\pm}0.18$	16.36±0.19
Rialto	76.19	18.27	24.08 ± 0.10	$40.46{\pm}0.07$	15.80±0.16
Airline	34.94	39.84	34.20 ±0.11	$36.89{\pm}0.02$	$35.51 {\pm} 0.16$
Cover Type	21.85	5.76	8.33±0.03	$8.54 {\pm} 0.06$	4.69 ±0.36
PAMAP	1.22	0.02	0.03 ± 0.00	0.11 ± 0.01	0.02 ±0.00
SPAM	19.09	7.00	8.18±0.42	7.35 ± 0.31	5.61±0.23
KDD99	0.10	0.01	0.03 ± 0.00	$0.03{\pm}0.00$	0.01 ±0.00
Real world \varnothing	27.95	13.60	16.39	19.16	12.07
Overall Ø	34.35	15.38	18.51	18.57	13.15
Overall Ø rank	4.47	2.76	3.00	3.08	1.68

Nemenyi significance: SAM-E \succ VFDT

Personalized prognosis of motions

time

Viktor Losing, Taizo Yoshikawa, Martina Hasenjäger, Barbara Hammer, Heiko Wersing: Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units. ICRA 2019: 9530-9536

Personalized prognosis of motions

Viktor Losing, Taizo Yoshikawa, Martina Hasenjäger, Barbara Hammer, Heiko Wersing: Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units. ICRA 2019: 9530-9536 6

63

Personalized assistant for crossings

Losing, Hammer, Wersing "Personalized Maneuver Prediction at Intersections", ITSC 2017

1/14/22

Personalized assistant for crossings

Losing, Hammer, Wersing "Personalized Maneuver Prediction at Intersections", ITSC 2017

More on drift

What is drift?

Drift: data are drawn from a probability distribution P_t which is **not constant** with t

... but we cannot observe P_t

Notions of drift

Drift: data are drawn from a probability distribution P_t which is **not constant** with t

Drift as change of (unobservable) distribution

Towards non-parametric drift detection via Dynamic Adapting Window Independence Drift Detection (DAWIDD), Fabian Hinder, André Artelt, Barbara Hammer, ICML2020

Definition

A drift process (p_t, P_T) is a probability measure P_T on [0, 1] together with a collection of probability measures p_t on \mathbb{R}^d for all $t \in [0, 1]$, such that $t \mapsto p_t(A)$ is measurable for every measurable $A \subset \mathbb{R}^d$, i.e. p_t is a Markov kernel.

Let (p_t, P_T) be a drift process. We say that p_t has drift iff $p_t = p_s$ does not hold for P_T -almost all $t, s \in [0, 1]$.

Definition

Let (p_t, P_T) be a drift process and let $(X, T) \sim p_t \otimes P_T$ a pair of random variables. We say that p_t has *dependency drift* iff X and T are statistically dependent, i.e. are not independent random variables.

Definition

We say that a drift process (p_t, P_T) has model drift iff there exists measurable sets $A, B \subset [0, 1]$ with $P_T(A), P_T(B) > 0$, such that $p_A \neq p_B$, with $p_A = P_T(A)^{-1} \int_A p_t(\cdot) P_T(dt)$ and analogous for p_B .

Where is drift?

Where is drift?

Drift segmentation

Find segmentation function $L: X \rightarrow \mathbb{N}$ such that

$$L(x) = L(x') \Rightarrow P(T|X = x) = P(T|X = x')$$

Algorithm:

iteratively split data along the axis into subsets L_i such that the homogeneity within one class is minimized / heterogeneity between classes is maximized

Drift segmentation

Drift localization

cpt	n	Kolmogorov	$k ext{-NN}$	LDD-DSI	kdq-Tree
9	0	$0.87(\pm 0.09)$	$0.86(\pm 0.07)$	$0.60(\pm 0.03)$	$0.78(\pm 0.11)$
9	1	$0.86(\pm 0.11)$	$0.75(\pm 0.07)$	$0.49(\pm 0.06)$	$0.70(\pm 0.09)$
18	0	$0.73(\pm 0.09)$	$0.78(\pm 0.05)$	$0.60(\pm 0.03)$	$0.72(\pm 0.08)$
18	1	$0.74(\pm 0.09)$	$0.69(\pm 0.04)$	$0.48(\pm 0.06)$	$0.66(\pm 0.06)$
18	5	$0.71(\pm 0.10)$	$0.58(\pm 0.01)$	$0.37(\pm 0.02)$	$0.48(\pm 0.05)$

F.Hinder, B.Hammer, Concept drift segmentation via Kolmogorov trees, ESANN21

Conclusions

- GMLVQ → <u>https://github.com/si-cim/prototorch</u>, <u>https://github.com/si-cim/protoflow</u>
- transfer learning, not only for deep networks
- learning with drift → <u>https://riverml.xyz/latest/</u> : SAMkNNclassifier
- drift segmentation and many open challenges

Conclusion

joint with:

Alexander Schulz, Fabian Hinder, Johannes Brinkrolf, Michael Biehl, Petra Schneider, Lydia Fischer, Heiko Wersing, Frank-Michael Schleif, Javier Gonzalez Monroy, Javier González Jiménez, José-Luis Blanco-Claraco, Nicolai Petkov, Viktor Losing, Heiko Wersing, Jan Göpfert, Valerie Vaquet, Fabian Hinder, Andre Artelt, Taozo Yoshikawa, Martina Hasenjäger, Albert Bifet

