Challenges of data driven modelling in cardiac dynamics

Ulrich Parlitz

- Research Group Biomedical Physics Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany
 - **Institute for the Dynamics of Complex Systems** University of Göttingen, Germany

4

Transitions to Cardiac Arrhythmias

Normal Rhythm ------

plane waves

Tachycardia — Fibrillation

electrical excitation waves

spiral waves

chaos

simulations: P. Bittihn

Challenges for diagnosis and therapy

- develop tools for observing the dynamics of arrhythmias (e.g., novel measurement modalities and advanced methods for data analysis)
- understand conditions for the onset of cardiac arrhythmias and characterise their dynamical features
- devise minimal invasive methods for terminating (lethal) states of arrhythmias like ventricular fibrillation (avoiding strong shocks with high local currents)

Potential contributions from dynamical systems theory and data driven modelling?

Characterization of Cardiac Arrhythmias

The heart: A Network of Cardiomyocytes

cardiac muscle

mitochondria

provide adenosine triphosphate (ATP) supply of the cell

myofibrils

provide mechanical contraction

cardiac muscle fibers

BruceBlaus - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/ index.php?curid=44969447

cardiac muscle cells

intercalated discs separate cells and consist of gap iunctions that allow ions to propagate to neighbouring cell

© Kornreich & Fenton

Cardiac Dynamics

Excitation-Contraction Coupling

from: M. Scoote et al., *Heart* 89, 371–376 (2003)

→ Commotio Cordis

Excitable Media

- An excitable medium
- is a spatially extended nonlinear dynamical system which has the capacity to propagate excitation waves, and which cannot support the passing of another wave until some time has passed (refractory period/phase)

→ refractory region/zone

The existence of a refractory region means that an excitation wave cannot propagate in any direction but only to the excitable region of the medium.

As a result, rotating waves, also called spiral waves may occur.

The spatiotemporal Fitzhugh-Nagumo model

$$\dot{u} = au(u-b)(1-u) - w +$$

 $\dot{w} = \varepsilon(u - w)$

spatial coupling via diffusion term

spatial domain with no-flux boundary conditions

Depending on initial conditions and specific perturbations plane waves, concentric waves or spiral waves can be generated.

fundamental model describing an excitable medium

Excitable Media

Fitzhugh-Nagumo model $a = 3, b = 0.2, \varepsilon = 0.01, d = 1$

initial local excitation

G. Datseris and U. Parlitz, Nonlinear Dynamics, Springer 2022

t = 400t = 7809

Car (1996) 1.84

Cardiac Modeling

Mathematical Models of Cardiac Dynamics

- continuum models averaging electrical behaviour of many cells
- detailed ionic models: e.g., Luo-Rudy-II (15), Majahan (27), Bondarenko (44), ...
- $\begin{array}{ll} \text{membrane} & \frac{\partial V_m}{\partial t} = \nabla \cdot \underline{\mathbf{D}} \nabla V_m I_{\text{ior}} \\ & \frac{\partial \mathbf{h}}{\partial t} &= \mathbf{H}(V_m, \mathbf{h}) \end{array}$
- generic qualitative models: e.g., Fenton-Karma (3), Beeler-Reuter (8), ... simple qualitative models: e.g., Barkley (2), FitzHugh-Nagumo (2), Aliev-Panfilov (2), ...

$$\underbrace{\mathbf{D}\nabla V_m - I_{\text{ion}}(V_m, \mathbf{h})/C_m}_{I_{\text{ion}}(V_m, \mathbf{h})} = \sum_x I_x(V_m, \mathbf{h}) + I_{\text{injec}}$$
local cell dynamics (15-30 variables, 150 - 300 parameters!)

see Scholarpedia article by F. Fenton and E. Cherry discussing 45 models of cardiac cells

Transient Chaos

11

Transient Chaos

Transient Scroll Wave Dynamics during Ventricular Fibrillation

Experiment Optical mapping of a rabbit heart

Visualisation of membrane voltage using fluorescent dyes

Sebastian Berg Daniel Hornung Marion Kunze

Transient events of fibrillation have also been observed with human patients.

Simulation in a rabbit heart geometry

 $T_{\text{transient}} < T_{\text{survival}}$

12

Transient Chaos

Transient chaos in the Fenton-Karma model

- $\frac{\partial u}{\partial t} = \nabla \cdot \underline{\mathbf{D}} \nabla \cdot \mathbf{D} \nabla \mathbf{D} \mathbf{h}$ $\frac{\partial \mathbf{h}}{\partial t} = \mathbf{g}(u, \mathbf{h})$ $= \nabla \cdot \underline{\mathbf{D}} \nabla u - I_{Ion}(u, \mathbf{h}) / C_m$
- gating variables $\mathbf{h} = (v, w)$

average transient lifetime increases exponentially with system size

T. Lilienkamp et al., Phys. Rev. Lett. 119 (2017) T. Lilienkamp and U. Parlitz, Phys. Rev. Lett. 120 (2018)

Self Termination Episode

Can we predict the end of the chaotic transient?

No, not yet :-)

But during a period of time close to the end of the transient the system responds differently to external perturbations. *Prediction possible ??* T. Lilienkamp and U. Parlitz, PRL 120 (2018); PRE 98 (2018); PRE 102 (2020)

We can, however, predict the <u>average</u> transient lifetime from observable quantities like:

- dominant frequency
- excitable gap
- (pseudo) ECG
- shape of the action-potential- duration (APD) curve
- no. of phase singularities

M. Aron et al., J. Phys. Complex. 2, 035016 (2021)

Controlling Transient Chaos

Potential Implications of Transient Chaos for Defibrillation Persistent chaos vs. Transient chaos

Perturbations: Desired State: 🗙 Trajectories: -----

control: kick state into basin of another attractor

minimal perturbation strength required

kick state to neighbouring orbit with (much) shorter transient time can be achieved with (very) small perturbations

Controlling Transient Chaos

Terminating spiral wave chaos with few single perturbations

Fenton-Karma model

 $\frac{\partial u}{\partial t} = \nabla \cdot \underline{\mathbf{D}} \nabla u - I_{Ion}(u, \mathbf{h}) / C_m$ $\frac{\partial \mathbf{h}}{\partial t} = \mathbf{g}(u, \mathbf{h})$

gating variables $\mathbf{h} = (v, w)$

 $T_{\rm evo}$ = 500 ms

T. Lilienkamp and U. Parlitz, Chaos 30, 051108 (2020)

S. P. Cornelius et al., Nat. Commun. 4, 2939 (2013)

Time 3st

Measurering Cardiac Dynamics

17

Measuring Cardiac Dynamics

Optical mapping in Langendorff perfusion system

Visualisation of membrane voltage and Ca+ concentration on the surface of the heart using fluorescent dyes

J. Schröder-Schetelig

Ventricular Fibrillation

Simultaneous Optical Mapping and 4D Ultrasound

Visualizing mechanical scroll waves within the heart muscle using highspeed ultrasound

Mechanical Filament

Acuson SC2000 (Siemens Inc.), Transducer 4Z1c, 2.8 MHz, 134 vps, 0.5 mm

Ultrasound imaging of a human heart during by-pass surgery

Motion analysis estimates a **3D displacement vector field** that describes the motion of the tissue

20

60

0

20

Registered volume (non-moving)

registered volume

80

-0

x [mm]

-833

80

60

40

x [mm]

Motion tracking in high-resolution 4D ultrasound resolves mechanical motion during ventricular fibrillation

ultrasound device

First observation of mechanical scroll waves within the heart muscle: J. Christoph et al. Nature 555 (2018)

Challenges and Tasks

Data driven modelling in cardiac research

- prediction of future evolution (e.g., membrane voltages, mechanical motion)
- extraction of relevant features from (noisy) raw data
 classification
- cross estimation of observables that are difficult to measure directly (e.g. electrical activity inside the heart muscle)

Methods for spatio-temporal timeseries:

- nearest neighbours prediction using reconstructed local states J. Isensee et al., J. of Nonlin. Sci. 30, 713–735 (2020)
- echo state networks (reservoir computing) R.S. Zimmermann and U. Parlitz, Chaos 28, 043118 (2018); S. Herzog et al., Frontiers in Appl. Math. and Statistics 6, 616584 (2021)
- convolutional neural networks S. Herzog et al., Front. in Appl. Math. and Stat. 4, 60 (2018); Chaos 29, 123116 (2019); R. Stenger et al., (under review)

Prediction of future evolution of membrane voltage

Data Driven Modeling of Spatio-Temporal Systems

Model to generate training and test data: The Bueno-Orovio-Cherry-Fenton model

A. Bueno-Orovio et al., J. Theor. Biol. 253 (2008)

PDEs describing electrical excitation waves in cardiac tissue

$$\begin{aligned} \frac{\partial u}{\partial t} &= D \cdot \nabla^2 u - (J_{si} + J_{fi} + J_{so}) \end{aligned} \qquad \begin{array}{l} u \text{ membrane p} \\ \text{to be product} \\ \frac{\partial v}{\partial t} &= \frac{1}{\tau_v^-} \left(1 - H(u - \theta_v) \right) (v_\infty - v) - \frac{1}{\tau_v^+} H(u - \theta_v) v \end{aligned} \\ \\ \frac{\partial w}{\partial t} &= \frac{1}{\tau_w^-} (1 - H(u - \theta_w)) (w_\infty - w) - \frac{1}{\tau_w^+} H(u - \theta_w) w \end{aligned} \\ \\ \frac{\partial s}{\partial t} &= \frac{1}{2\tau_s} ((1 + \tanh(k_s(u - u_s))) - 2s) \end{aligned} \qquad \begin{array}{l} J_{si} &= -\frac{1}{2\tau_s} (1 - \operatorname{Met}(u - \theta_v)) (u_\infty - u_s) \end{array}$$

with ionic currents:

otential edicted

$$J_{si} = -\frac{1}{\tau_{si}} H(u - \theta_w) ws$$
$$J_{fi} = -\frac{1}{\tau_{fi}} v H(u - \theta_v) (u - \theta_v) (u_u - u)$$
$$J_{so} = \frac{1}{\tau_o} (u - u_o) (1 - H(u - \theta_w)) + \frac{1}{\tau_{so}} H(u - \theta_w)$$

Convolutional Auto-Encoder

conditional probability distribution describing temporal evolution in feature space (Conditional Random Field)

Prediction

S. Herzog et al., Chaos 29, 123116 (2019)

output

layer

sequence of features

estimated future feature $\hat{y}_{t+1} = \arg\max_{\bar{y}} P(\bar{y} \mid Y) \longrightarrow$

 $\boldsymbol{\wedge}$

Convolutional Auto-Encoder

Iterated Forecasting of u(t)

true u - BOCF simulation u - network forecast

good for 5 spiral rotations

forecast

difference u - absolute difference

S. Herzog et al., Frontiers in Appl. Math. and Statistics 4, 60 (2018)

Convolutional Auto-Encoder

Prediction of Kuramoto-Sivashinsky Dynamics

200

 $\bigcirc 100$

 $\rightarrow 200$

 $\bigtriangleup x$

$$\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^4 u}{\partial x^4} + \left|\frac{\partial u}{\partial x}\right|^2 = \mu \cos(\frac{2\pi x}{\lambda}) \begin{bmatrix} 0\\ 100 \end{bmatrix}$$
$$\mu = 0.01$$

largest Lyapunov exponent

$$\Lambda_{max} = 0.09$$

Lyapunov time

$$T_L = \frac{1}{\Lambda_{max}} = 11.1$$

J. Pathak et al., Phys. Rev. Lett. 120 (2018)

L = 120 : $\approx 4\Lambda t$

11.1 100 $22.2 t/T_L$ 8) 200 200_0 $22.2 t/T_L$ 250 t N = 500000S. Herzog et al. Chaos 29, 123116 (2019)

Data Driven Modeling in Cardiac Dynamics

Cross estimation tasks:

- recovering complex wave patterns from impaired observations (e.g. noise) cross-predicting electrical excitation from mechanical contraction predicting electrical excitation waves inside the heart muscle from
- observations on the *surface*

Data Driven Modeling of Spatio-Temporal Systems

Recovering Complex Wave Patterns From Impaired Observations

Reconstruct original data from noisy, blurred or undersampled data.

CAE = convolutional autoencoder

S. Herzog et al., Frontiers in Appl. Math. and Statistics 6, 616584 (2021)

noisy:

Electrical excitation from mechanical deformation

mechanical deformation

Data generated by a conceptual electro-mechanical model (BOCF model driving a mass-spring system) Convolutional Auto-encoder; Reservoir Computing S. Herzog et al., Frontiers Appl. Math. Stat. 6 (2021) ; J. Christoph and J. Lebert, Chaos 30 (2020)

electrical excitation

From the surface into the depth

optical mapping using voltage sensitive dyes provides electrical excitation waves only on the surface of the heart

simulation of a 3D excitable medium

predict activity in deeper layers using **Convolutional Neural Network**

From Surface To Depth

3D Barkley model

$$\frac{du}{dt} = D\nabla^2 u + \frac{1}{\varepsilon}u(1-u)\left(u - \frac{v+b}{a}\right)$$
$$\frac{dv}{dt} = u^3 - v$$

a = 0.75 b = 0.06 $\varepsilon = 0.08$ D = 0.02

grid: $120 \times 120 \times 120$

predict deeper layers from data at surface using convolutional neural networks: Auto-Encoder, Spatio-Temporal LSTM, Diffusion Model

From the surface into the depth

Reconstruction using Autoencoder with different input lengths $T \in \{1, 8, 32\}$

R. Stenger et al., (under review, Chaos, 2022)

0.6

0.8

From the surface into the depth

Reconstruction using diffusion model with different input lengths of T \in {1, 8, 32}

0.2

0.0

0.4

R. Stenger et al., (under review, Chaos, 2022)

Defibrillation

Principle: Reset electrical activity of all cells by synchronous excitation

internal

wikimedia.org

1000 V 20 A 12ms → 240 J

Severe side effects: tissue damage - traumatic pain G.P. Walcott et al., Resuscitation 59 (2003)

400 V 8 A 12 ms → 40J

Conduction heterogeneities act as virtual electrodes blood vessels, scars, fatty tissue, ...

Super-threshold depolarization leads to wave emission if a short rectangular electric field pulse is applied.

A. Pumir and V. Krinsky, J. Theor. Biol. 199 (1999); P. Bittihn et al., Phys. Rev. Lett. 109 (2012)

Conventional defibrillation: termination with a single electrical pulse

Defibrillation success versus shock voltage for 273 shocks in 23 hearts

sigmoid dose-response curve

from: K.F. Kwaku and S.M. Dillon, Circulation Research 79, 957–973 (1996)

Pulse timing matters

Strong temporal fluctuations in termination success rate

J. Steyer et al., to appear in: Frontiers in Network Physiology (2022)

Predictable ??

39

Low-energy Anti-fibrillation Pacing

Terminating Cardiac Arrhythmias (Defibrillation) avoiding strong shocks

Experiments:

S. Luther, F. Fenton et al., Nature 475 (2011) H. Janardhan et al., J. of the American College of Cardiology 63 (2014).

Simulations: P. Buran et al., Chaos 27 (2017)

• • • •

Sequences of weak pulses (LEAP)

Recruiting Virtual Electrodes for Terminating Cardiac Arrhythmias

sequence of electrical pulses

heterogeneities

 \boldsymbol{E}

Animation: T. Lilienkamp

41

Low-Energy Anti-Fibrillation Pacing (LEAP)

Pulse Generator Power Amplifier

Membrane Potential mV -80 20

N = 5 low energy pulses E = 1.4 V/cmdt = 90 ms

S. Luther et al., Nature 475, 235 (2011)

Impact of Pulse Sequences

What does the dose-response curve look like for sequences of pulses?

Four model systems investigated

T. Lilienkamp et al., Scientific Reports 12 (2022)

Termination Success Rate

Termination success rate vs. pacing amplitude and pacing frequency

Non-monotonous Dose-Response Curve

Proper choice of pacing parameters is crucial

Non-equidistant Pulses

Use non-equidistant pulse sequences to cover a frequency range

→ deceleration pacing

Linearly Increasing Inter-pulse Intervals

Dose-response curves

Need for a robust, model-independent protocol that is practical to use

similar results for other models

BOCF

Adaptive Deceleration Pacing

Adaptive deceleration pacing (ADP)

Fourier spectrum (e.g., ECG)

frequencies $f_k \rightarrow$ pulse intervals $\tau_k = 1/f_k$

- ADP pacing sequences are highly adaptable to the specific characteristics of the dynamics
- only two free parameters: cut-off frequency & no. of pulses
- easy to implement experimentally

Adaptive Deceleration Pacing

Adaptive deceleration pacing (ADP)

- Ventricular fibrillation (VF) is a lethal state which requires immediate treatment: defibrillation using strong electrical shocks with side effects
- VF is closely connected to spiral wave chaos in excitable media
- data driven modelling is a promising approach to predict excitable cardiac dynamics and to reconstruct quantities that are difficult observe directly
- complex dynamics in excitable media can be governed by transient chaos with immediate consequence for its controllability
- pulse sequences of low energy may provide an alternative for defibrillation avoiding strong shocks with adverse side effects
- a novel and very promising approach employs adaptive deceleration pacing where pacing is slowed down in a systematic manner

Acknowledgement

Collaboration and support of Stefan Luther, Thomas Lilienkamp, Sebastian Herzog, Alexander Schlemmer, all members of the Research Group Biomedical Physics at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, our clinical partners at the University Medical Center Göttingen (UMG), and many other colleagues and friends is gratefully acknowledged.

T. Lilienkamp et al., Chaos (2022)

- T. Lilienkamp et al., Scientific Reports 12 (2022)
- S. Herzog et al., Frontiers Appl. Math. Stat. 6 (2021)
- T. Lilienkamp and U. Parlitz, Chaos 30, 051108 (2020)
- J. Christoph et al. Nature 555 (2018)

Thank you!

)21) 2020) G. Datseris and U. Parlitz, Nonlinear Dynamics, Chap. 11, Springer (2022)

