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Collective dynamics in the social
sciences



Collective dynamics

• Refers to the alignment of characteristic features in large interacting

particle/agent systems.

• Leads to the formation of complex states, such as clusters, aggregates, ....

• Often observed in animal flocks as collective motion is more efficient and gives

better protection against predators.

• Social sciences: observed in opinion formation or pedestrian dynamics.
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Mathematical modelling

Microscopic interactions:

• Individual interactions with others and the surrounding: alignment of velocities,

averaging of opinions,....

⇒ interaction potential U

• Common objective or goal: reach a target - for example a food source, an exit, or

the minimum of a function - as fast as possible.

⇒ given potential V

• Explore and wander around - not necessarily at a constant rate in time.

⇒ noise

Coarse graining

microscopic macroscopic/mean-field

particle position Xi
t particle density ρ(x , t)

wrt to the position x
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Microscopic models

Consider N particles characterised by their position Xi
t (t) ∈ Rd , Xt = (X1

t , . . . ,X
N
t ),

First order model: aka over-damped Langevin equations

dXi
t =
√

2σdWi
t −∇Xi

t
U(Xt )dt +∇V (Xi

t )dt,

where Wi
t is an independent Wiener process, V a given potential and particles interact

through the pairwise interactions

U(Xt ) = χ
∑

i≤j<j≤N

u
(

Xi
t ,X

j
t

)
,

where χ and ` represent the strength and the range in space.

Examples:

• Bounded confidence models in opinion formation: Scaling χ = 1
N

, interaction

radius R > 0

u(Xi ,Xj ) = 1|Xi
t−Xj

t |≤R
(Xj

t − Xi
t )

• Attraction-repulsion models
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The Germknödel dispute

(a) The only possible way (b) Just wrong
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Opinion formation models

Let Xi
t ∈ [0, 1] denote the opinion of the i-th agent at time t:

dXi
t =

1

N

∑
j

1|Xi
t−Xj

t |≤R
(Xj

t − Xi
t )dt +

√
2σdWi

t x

Figure 1: Evolution of 50 agents in time, with interaction radius R = 0.25 and σ2 = 0.04
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Opinion formation

Observations:

• Formation of clusters; their number depends on the interaction radius R.

• Averaging within each cluster.

• Noise changes the game completely.

Mean-field limit: the empirical distribution

ρ(x , t) :=
1

N

N∑
j=1

δ
Xj

t (t)
(x)

satisfies the nonlinear conservative equation

∂tρ+∇ · (ρ(∇U ∗ ρ)) = 0,

with U(r) =
∫ r

0 su(s)ds.
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Short range repulsion and long range attraction

Consider N particles with position Xi
t in R2 and an interaction function corresponds to

the Morse potential

U(r) = CR e
− r

`R − CAe
r
`A .

(a) 50 particles (b) 100 particles (c) 200 particles

Literature: Carrillo, Bertozzi, .......
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Nonlinear conservation laws for the density ρ

The corresponding density ρ = ρ(x , t) of many of these microscopic models satisfies a

nonlinear conservation law:

∂tρ = ∇ ·
[
M(ρ)∇

(
E ′ + V + U′ ∗ ρ

)]
,

where E is an energy, V a potential, U an interaction energy and M(ρ) a nonlinear

mobility.

Examples:

• Heat equation: M(ρ) = ρ, E =
∫
ρ log ρ dx , V ≡ 0, U ≡ 0

• Porous medium equation M(ρ) = ρ, E =
∫
ρmdx , V ≡ 0, U ≡ 0

• Fokker-Planck equation: M(ρ) = ρ, E =
∫
ρ log ρ dx , V given, U ≡ 0

For example, if V (x) = x1, then ∇V = e1; everybody is moving to the left.

• Aggregation equations: M(ρ) = ρ, U(r) = ra

a
− rb

b
with a < b, V ≡ 0, E ≡ 0.

What can we say something about the large-time behaviour of these equations?
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Sliding down energy functionals

L2-Wasserstein gradient flow: conservation law can be written as

∂tρ(x, t) = ∇ ·
[

M(ρ)∇
(
δE(ρ)

δρ

)]
,

where M(ρ) is a positive definite operator and the entropy is given by

E(ρ) =

∫
(E(ρ) + ρV (ρ) + ρ (U ∗ ρ)) dx .

L2-Wasserstein space: Let (M, d) be a complete separable metric space, define

P2(M) = {µ ∈ P(M) :

∫
d(x , x0)2dµ(x) <∞}

and define the so-called Wasserstein distance

dW (µ0, µ1) = inf
π∈Π

[∫
M×M

d2(x , y)dπ(x , y)

] 1
2

where Π denotes the set of admissible transportation plans satisfying

(PX )#π = µ0 and (PY )#π = µ1.
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Connection to optimal transport

11



Dynamic formulation of OT
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Trend to equilibrium

The linear Fokker-Planck equation

∂tρ = ∇ · (∇ρ+ ρ∇V )

= ∇ ·
(
ρ∇
(
δE
δρ

))
,

for the entropy E =
∫

[ρ log ρ+ ρV ]dx .

Equilibrium solution ρ∞ is a minimiser of the entropy E

log ρ∞ + V = c⇒ ρ∞ ∝ e−V .

Relative entropy or Kullback-Leibler divergence:

E(ρ|ρ∞) = E(ρ)− E(ρ∞).

Evolution of the entropy

d

dt
E =

∫
∂tρ [log ρ+ V ] + ρ∇ [log ρ+ V ] dx

= −
∫
ρ∇|log ρ+ V |2dx

:= −I(ρ) ⇐ Entropy production or Fisher-information
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Trend to equilibrium

Entropy method or Bakry-Emery strategy:

d

dt
I = −λI −R(t),

with λ > 0 and R(t) ≥ 0 then

d

dt
E =

1

λ

(
dI
dt

+R(t)

)
for some λ ≥ 0.

Since R is positive

dI
dt
≤ λI ⇒ I(ρ) ≤ e−λtI(ρ0)

and therefore

E(ρ)− E(ρ∞) ≤
1

λ
I(ρ0).

Using that dE
dt

= −I we obtain

d (E(ρ(t))− E(ρ∞))

dt
≤

1

λ
(E(ρ(t))− E(ρ∞)) .

⇒ Exponential convergence in entropy towards equilibrium.
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Geodesic convexity

Geodesic or displacement convexity: let (X , d) be a geodesic space and let λ ∈ R+. A

functional E : X → R ∪ {∞} is called λ-geodesically convex, if for every two points

x0, x1 ∈ X there exists a constant speed geodesic γ connecting γ(0) = x0 to γ(1) = x1

and

E(γ(t)) ≤ (1− t)E(x0) + tE(x1)− λ
t(1− t)

2
d2(x0, x1) ∀t ∈ [0, 1].

• The λ-geodesic convexity of a functional guarantees the existence of the gradient

flow in Wasserstein space, and determines the rate of convergence to equilibrium.

• Convergence in entropy also implies convergence in the Wasserstein distance

(Talgrand inequality).

• Choosing different metrics (adapted to the problem considered) can improve

convergence to equilibrium.
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Collective dynamics in the data
sciences



Collective dynamics: social vs. data sciences

Social sciences

• Complex individual interactions

• Very large number of individuals

• Finite size effects

• Second order microscopic models

Data sciences

• Mostly first order schemes

• Interactions less complex

• Goal is to sample from a distribution

or find its minimum

• High dimensional setting

• What’s the best metric?
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Bayesian inverse problems

The inverse problem: Given observations y ∈ RK infer x ∈ Rd based on noisy

evaluations of G(x):

y = G(x) + ξ.

• Assumption: noise ξ ∼ N (0, Γ), with strictly positive-definite covariance

Γ ∈ RK×K .

Bayes rule: Imposing a Gaussian prior x ∼ N (m,Σ), the posterior distribution is given

by

π(x) ∝ e−V (x),

V (x) :=
1

2
|y − G(x)|2Γ +

1

2
|x −m|2Σ.

Goal: Sample or maximise negative log-likelihood.
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Particle methods

Let’s consider N particles with position Xi
t .

Gradient based sampler: particles evolve according to over-damped Langevin equations

dXi
t = −C(Xt )∇V (Xi

t )dt +
√

2C(Xt )dWi
t ,

where C(Xt ) is a positive definite matrix.

Examples: Ensemble Langevin Sampler (ELS), Stochastic Stein Variational Gradient

Descent (SVGD),....

Gradient free sampling: approximate high-dimensional and possibly very rough

gradient in the Langevin dynamics

dXi
t = −C∇Ṽ (Xt )dt +

√
2C(Xt )dWi

t

Examples: Ensemble Kalman Sampler (EKS), consensus based optimisation (CBO), ...
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Ensemble Langevin Sampler (ELS)

ELS dynamics:

dXi
t = −C(Xt )∇V (Xi

t ) dt +∇xi · C(Xt ) dt +
√

2C(Xt )dWi
t .

Here C : RNd → Rd×d denotes the empirical covariance function.

The mean field limit of the ELS is given by

dxt = −C(ρ)∇V (xt ) +
√

2C(ρ)dWt ,

where function C(·) is the covariance defined for densities.

Then the time-dependent density ρ of the process satisfies

∂tρ = ∇ ·
(
C(ρ) (∇xρ+∇x Vρ)

)
.

= ∇ · (ρ C(ρ)∇(log ρ+ V ))

with C(ρ) =
∫

(x −m(ρ))⊗ (x −m(ρ))ρ(x) dx and m(ρ) =
∫

xρ(x) dx .
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Ensemble Kalman sampler (EKS)

EKS comprises N coupled SDEs in Rd , for X i
t given by

dXi
t = −

(
1

N

N∑
n=1

〈G(Xn
t )− G t ,G(Xi

t )− y〉ΓXn
t

)
dt − Ct Σ−1(Xi

t −m) dt

+
d + 1

N
(Xi

t − Xt ) dt +
√

2Ct dWi
t ;

here the W i are standard independent Brownian motions in Rd and

Xt =
1

N

N∑
n=1

Xn
t , G t =

1

N

N∑
n=1

G(Xn
t ),

Ct =
1

N

N∑
n=1

(
Xn

t − Xt

)
⊗
(

X n
t − Xt

)
.

The mean field equation for the density of the process ρ is

∂tρ = ∇ · (ρ C(ρ)∇ (log ρ+ V )) .
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Covariance modulated OT

Consider covariance modulated FPE:

∂tρ = ∇ · (ρ C(ρ)∇ (log ρ+ V )) .

• Carrillo and Vaes showed the following stability estimate for two solutions ρ1 and

ρ2 in case of a linear mapping G :

dW 2 (ρ1, ρ2) ≤ Cγ(t)dW 2 (ρ1
0, ρ

2
0),

where function γ(t) converges to zero exponentially fast as t →∞.

• Ongoing work by M. Burger, F. Hoffmann, D. Matthes and A. Schlichting ⇒ ask

them for more information!
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Consensus based optimisation (CBO)

Idea: Move towards the particle with the smallest function value.

Particle dynamics:

dXi
t = −λ

(
Xi

t − X̄V

)
Hε(f (Xi )− f (X̄V ))dt + σ|Xi − X̄V |dWi .

where X̄V is the weighted average (wrt to the function V ) of the particles

X̄V =

∑
j Xj

t e−βV (Xj
t )∑

j e−βV (Xj
t )

with λ > 0, β sufficiently large and Hε being a regularisation of the Heaviside function.

Mean field equation for the density of the process:

∂tρ = ∆ (κ[ρ]ρ) +∇ · (µ[ρ]ρ)

with κ[ρ] = σ2 (x − x̄V [ρ])2, µ[ρ] = −λ(x − x̄V [ρ]) and the weighted average

x̄V [ρ] =
1∫

Rd e−βV ρ dy

∫
Rd

ye−βV ρ dy .
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Ashley function

Image from C. Totzeck, Trends in consensus based optimization, Active Crowds 3,

Springer, 2021. 23



CBO variants

Component-wise diffusion:

Consider component-wise geometric Brownian motion

dXi
t = −λ

(
Xi

t − X̄V

)
Hε(f (Xi )− f (X̄V ))dt + σ

d∑
k=1

(
Xi − X̄V

)
k
dWi

k ek .

where ek denotes the k-th unit vector in Rd .

Advantage: If 2λ > σ2, then particles concentrate. In the original version convergence

depended on d .

Random batches:

• Select q random subsets Jθ ⊂ {1 . . .N} of size |Jθ| = M � N and compute the

empirical expectation V (Xθ) for each.

• Calculate the weighted mean using the empirical expectations and update the

particle positions.
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Stein Variational Gradient Descent

Idea: Evaluate the gradient of the function V at positions Xi
t for i = 1, . . .N and

calculate the respective smoothed gradient of the function V using Gaussian process

regression.

SVGD dynamics:

dXi
t =

1

N

N∑
j=1

[
−k(Xi

t ,X
j
t )∇V (Xj

t ) +∇
Xj

t
k(Xi

t ,X
j
t )
]
dt +

N∑
j=1

√
2K(Xt )dWi

t .

where K : RNd → RNd×Nd is given by

K(x) =


K11(x) . . . . . .K1N (x)

...

KN1(x) . . . KNN (x)


with Kij (x) = 1

N
k(xi , xj )1d×d is a sufficiently ’nice’ kernel, such as the Gaussian kernel

k(x , y) = λe
−−|x−y|2

2`2 .
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Stein-Wasserstein gradient flows

As N →∞ the empirical measure converges to the solution of the following

Fokker-Planck type equation

∂tρ = ∇ ·
(
ρ

∫
Rd

k(x , y) [∇ρ(y , t) + ρ(y , t)∇V (y)] dy

)

Stein-Wasserstein gradient flow:

∂tρ(x , t) = ∇ ·
(
ρTk,ρ (∇ log ρ+∇V ()

)
= ∇ ·

(
ρTk,ρ∇

δE
δρ

)
where Tk,ρφ =

∫
Rd k(·, y)φ(y)dρ(y) for all φ ∈ L2(ρ).

For more information on Stein-Wassertstein gradient flows ⇒ talk to A. Duncan, N.

Nüsken and L. Szpruch.
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Ensemble Gaussian process sampler

Idea: Calculate a smooth approximation of the potential V , using the particle

positions and then calculate the gradient.

Approximation of the potential gradient

∇ṼL(x ;σ, λ, l) =
N∑

i,j=1

∇x k(x ,Xi
t , λ, l)K(X;σ, λ, l)−1

ij VL(Xj
t ).

based on the assumption that the data misfit term/potential

VL(x) =
1

2
〈y − G(x), Γ−1(y − G(x))〉 is a Gaussian process.

Ensemble particles evolve according to over-damped Langevin dynamics

dXi
t = −∇ṼL(Xi

t ;σ, λ, l) dt − Σ−1Xi
t dt +

√
2σ dWt .

• Approximate gradient ∇ṼL depends on the hyper-parameters (σ, λ, l), which have

to be updated/trained as the density evolves.

• Similar spirit as the work of Maoutsa et al (2020), who estimate the gradient of

the logarithm of the particle density using a statistical estimator.
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Ensemble Gaussian Process sampler

Mean-field equation for the density of the process:

∂tρ = σ2∆ρ+∇ ·
(
ρ∇
∫

k(x , y)µV (y)ρ(y) dy

)
where µV solves ∫ (

k(x , y) + σ2δxy
)
µV (y)dy = V (x).

We have no idea what to do with this!
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Linear forward model

Forward map Gε of the form, for x = (x1, x2),

Gε(x) = G0(x) + G1(x/ε),

G0(x) = Ax , G1(x) = [sin (2πx1) , sin (2πx2)]> , with A =

(
−1 0

0 2

)
.
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Multi-modal posteriors

We consider a forward map for x = (x1, x2) which is defined by

Gε(x) = G0(x) + G1(x/ε),

G0(x) = (x2
1 − 1)2 + (x2

2 − 1)2, G1(x) = ν(sin(2πx1) + sin(2πx2)),

and where Γ = γ2I .
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Take home message

• Generalised Wasserstein gradient flows are a powerful analytical tool to analyse

and construct interacting particle methods.

• Consensus based optimisation is fun, but doesn’t really fit into the picture yet.

• Lots of recent developments, .... and lots of open questions!
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Take home message

• Generalised Wasserstein gradient flows are a powerful analytical tool to analyse

and construct interacting particle methods.

• Consensus based optimisation is fun, but doesn’t really fit into the picture yet.

• Lots of recent developments, .... and lots of open questions!

• Trust the Austrians and have home-made Germknödel with melted butter and

Graumohn!

Thank you very much for your attention!
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