# **Reduced Basis Methods:** From Key Ingredients to 4DVar

Martin Grepl





Forschungsseminar Numerik/Angewandte Mathematik/Statistik Universität Potsdam July 12, 2023

#### Acknowledgments

#### **Collaborators:**

- Sébastien Boyaval
- Mark Kärcher
- Karen Veroy

#### Sponsors:

- ▶ Excellence Initiative of the German federal and state governments
- ► German Research Foundation through Grant GSC 111

### Part I

### **A Reduced Basis Primer**



$$a(y(\mu),v;\mu)=f(v;\mu), \hspace{1em}$$
 for all  $v\in Y$ 



$$a(y(\mu),v;\mu)=f(v;\mu), \hspace{1em}$$
 for all  $v\in Y$ 



$$a(y(\mu),v;\mu)=f(v;\mu), \hspace{1em}$$
 for all  $v\in Y$ 



 $a(y(\mu), v; \mu) = f(v; \mu), \quad \text{for all } v \in Y$ 



$$Y_N = ext{span} \left\{ egin{array}{c} y(\mu_i) \,, \; i=1,\ldots,N \end{array} 
ight\}$$



 $a(y(\mu), v; \mu) = f(v; \mu), \text{ for all } v \in Y$ 



$$a(y_N(\mu),v;\mu)=f(v;\mu), \hspace{1em} ext{for all } v\in Y_N.$$





$$a(w,v;\mu) = \sum_{q=1}^{Q}$$

$$\underbrace{\theta^q(\mu)}_{\mu}$$

 $\mu$ -DEPENDENT COEFFICIENTS

 $a^q(w,v),$ 

μ-INDEPENDENT BILINEAR FORMS

 $\forall w, v \in Y$ 



### **Problem Statement**

Given  $\mu \in \mathcal{D}$ , PARAMETER PARAMETER DOMAIN

### **Problem Statement**



$$s(\mu) = \ell(y(\mu);\mu)$$
 output

### **Problem Statement**

Given 
$$\underset{\text{PARAMETER}}{\mu} \in \underset{\text{DOMAIN}}{\mathcal{D}}$$
 evaluate  
 $s(\mu) = \ell(y(\mu); \mu)$  OUTPUT  
where  $\underset{\text{VARIABLE}}{y(\mu)} \in \underset{\text{FE SPACE}}{Y}$  satisfies  
 $a(y, v; \mu) = f(v; \mu), \text{ for all } v \in Y, \quad \text{PDE}_{\mathcal{N}}(\mu)$   
and  
 $f(v; \mu), \ell(v; \mu) \quad \text{are bounded linear functionals}$   
 $a(\cdot, \cdot; \mu) : Y \times Y \to \mathbb{R}$  is continuous and coercive  
for all  $\mu \in \mathcal{D}.$ 

Given  $\mu \in \mathcal{D}$ , evaluate



OUTPUT

OUTPUT VECTOR

Given  $\mu \in \mathcal{D}$ , evaluate



VECTOR

where  $\mathbf{y}(\mu) \in \mathbb{R}^{\mathcal{N}}$  satisfies

Given  $\mu \in \mathcal{D}$ , evaluate



where  $\mathbf{y}(\mu) \in \mathbb{R}^\mathcal{N}$  satisfies

 $\underbrace{A(\mu)}$   $\underline{\mathbf{y}}(\mu) = \underbrace{F(\mu)}$ 

LINEAR OPERATOR LOADING/ CONTROL

Given  $\mu \in \mathcal{D}$ , evaluate



where  $\underline{\mathrm{y}}(\mu) \in \mathbb{R}^\mathcal{N}$  satisfies

$$\underbrace{A(\mu)}_{\text{LINEAR}} \quad \underline{\mathbf{y}}(\mu) = \underbrace{F(\mu)}_{\text{LOADING/}}$$

#### **Difficulties:**

- Need to solve  $\mathsf{PDE}_{\mathcal{N}}(\mu)$  numerous times at different values of  $\mu$
- $\blacktriangleright$  Finite element space Y has large dimension  ${\cal N}$

# (1) Approximation

We let

$$Y_N = ext{span} ig\{ egin{array}{c} y(\mu_i) \ , \ i=1,\ldots,N \end{array} ig\}$$

**SNAPSHOTS** 

and compute our approximation as

$$s_{\scriptscriptstyle N}(\mu) = \ell(y_{\scriptscriptstyle N}(\mu);\mu)$$

where  $y_N(\mu) \in Y_N$  satisfies

 $a(y_N,v;\mu)=f(v;\mu), \hspace{1em} ext{for all } v\in Y_N. \hspace{1em} ext{ROM}_N(\mu)$ 

# (1) Approximation (Algebraic Formulation)

We let

$$Z_N = \begin{bmatrix} \zeta_1 & \zeta_2 & \dots & \zeta_N \end{bmatrix}$$
 s.t.  $y_N(\mu) = Z_N \underline{y}_N(\mu)$ 

Y-ORTHONORMAL SNAPSHOTS  $\zeta_i$  "="  $y(\mu_i)$ 

# (1) Approximation (Algebraic Formulation)

We let

$$Z_N = \begin{bmatrix} \zeta_1 & \zeta_2 & \dots & \zeta_N \end{bmatrix} \text{ s.t. } y_N(\mu) = Z_N \underline{y}_N(\mu)$$
  
Y-ORTHONORMAL SNAPSHOTS  $\zeta_i = y(\mu_i)$ 

and compute our approximation as

$$egin{array}{rcl} s_{\scriptscriptstyle N}(\mu) &=& \underbrace{L(\mu)^T Z_{\scriptscriptstyle N}}_{L_{\scriptscriptstyle N}^T(\mu)} & \underbrace{{
m y}_{\scriptscriptstyle N}(\mu) &}_{=& L_{\scriptscriptstyle N}^T(\mu)} & \underbrace{{
m y}_{\scriptscriptstyle N}(\mu) &} \end{array}$$

where  $\underline{\mathbf{y}}_{_{N}}(\mu) \in \mathbb{R}^{N}$  satisfies

# (1) Approximation (Algebraic Formulation)

We let

$$Z_N = \begin{bmatrix} \zeta_1 & \zeta_2 & \dots & \zeta_N \end{bmatrix}$$
 s.t.  $y_N(\mu) = Z_N \underline{y}_N(\mu)$   
Y-ORTHONORMAL SNAPSHOTS  $\zeta_i$  "="  $y(\mu_i)$ 

and compute our approximation as

where  $\underline{\mathbf{y}}_{_{N}}(\mu) \in \mathbb{R}^{N}$  satisfies

How do we quantify the error?

Let  $lpha(\mu)$  be the **coercivity constant** of a

$$lpha(\mu):=\inf_{v\in Y}rac{a(v,v;\mu)}{\|v\|_Y^2}$$

and define residual  $r_{\scriptscriptstyle N}(v;\mu):=f(v;\mu)-a(y_{\scriptscriptstyle N},v;\mu),\, \forall v\in Y.$ 

Let  $lpha(\mu)$  be the **coercivity constant** of a

$$lpha(\mu):=\inf_{v\in Y}rac{a(v,v;\mu)}{\|v\|_Y^2}$$

and define residual  $r_{\scriptscriptstyle N}(v;\mu):=f(v;\mu)-a(y_{\scriptscriptstyle N},v;\mu),\, orall v\in Y.$ 

The **error**, 
$$e_N(\mu):=y(\mu)-y_N(\mu)$$
, then satisfies $a(e_N,v;\mu)=r_N(v;\mu), \quad orall v\in Y,$ 

Let  $lpha(\mu)$  be the **coercivity constant** of a

$$lpha(\mu):=\inf_{v\in Y}rac{a(v,v;\mu)}{\|v\|_Y^2}$$

and define residual  $r_{\scriptscriptstyle N}(v;\mu):=f(v;\mu)-a(y_{\scriptscriptstyle N},v;\mu),\, orall v\in Y.$ 

The **error**, 
$$e_N(\mu):=y(\mu)-y_N(\mu)$$
, then satisfies $a(e_N,v;\mu)=r_N(v;\mu), \quad orall \, v\in Y,$ 

and, for any  $\mu\in\mathcal{D}$  and  $lpha_{ ext{\tiny LB}}(\mu)\leqlpha(\mu)$ , we have

$$\|e_N(\mu)\|_Y \leq \underbrace{\frac{\|r_N(\cdot;\mu)\|_{Y'}}{\alpha_{\rm LB}(\mu)}}_{=:\Delta_N^y(\mu)} \quad \text{and} \quad |s-s_N| \leq \underbrace{\|\ell\|_{Y'}\Delta_N^y}_{=:\Delta_N^\ell(\mu)}$$

Let  $lpha(\mu)$  be the **coercivity constant** of a

$$lpha(\mu):=\inf_{v\in Y}rac{a(v,v;\mu)}{\|v\|_Y^2}$$

and define residual  $r_{\scriptscriptstyle N}(v;\mu):=f(v;\mu)-a(y_{\scriptscriptstyle N},v;\mu),\, orall v\in Y.$ 

The **error**, 
$$e_N(\mu):=y(\mu)-y_N(\mu)$$
, then satisfies $a(e_N,v;\mu)=r_N(v;\mu), \quad orall \, v\in Y,$ 

and, for any  $\mu \in \mathcal{D}$  and  $lpha_{ ext{LB}}(\mu) \leq lpha(\mu)$ , we have

$$\|e_N(\mu)\|_Y \leq \underbrace{\frac{\|r_N(\cdot;\mu)\|_{Y'}}{\alpha_{\rm LB}(\mu)}}_{=:\Delta_N^y(\mu)} \quad \text{and} \quad |s-s_N| \leq \underbrace{\|\ell\|_{Y'}\Delta_N^y}_{=:\Delta_N^\ell(\mu)}$$

How do we compute  $y_N, s_N, \Delta_N^y, \Delta_N^\ell$  efficiently?

 $\sim$ 

We assume 
$$a(v,w;\mu) = \sum_{q=1}^{Q}$$

 $\theta^q(\mu)$ 

 $\mu$ -DEPENDENT COEFFICIENTS

 $a^q(v,w)$ 

μ-INDEPENDENT BILINEAR FORMS

**RB-MATRIX** 

We assume 
$$a(v, w; \mu) = \sum_{q=1}^{Q} \underbrace{\theta^{q}(\mu)}_{\mu \text{-DEPENDENT}} \underbrace{a^{q}(v, w)}_{\mu \text{-INDEPENDENT}}$$
  
so that  $A_{N}(\mu) = Z_{N}^{T} A(\mu) Z_{N} =$ 

FE-MATRIX

We assume 
$$a(v, w; \mu) = \sum_{q=1}^{Q} \underbrace{\theta^{q}(\mu)}_{\mu\text{-DEPENDENT}} \underbrace{a^{q}(v, w)}_{\mu\text{-INDEPENDENT}}$$
  
so that  $\underbrace{A_{N}(\mu)}_{\text{RB-MATRIX}} = Z_{N}^{T} \underbrace{A(\mu)}_{\text{FE-MATRIX}} Z_{N} = \sum_{q=1}^{Q} \theta^{q}(\mu) \underbrace{Z_{N}^{T} A^{q} Z_{N}}_{\mu\text{-INDEPENDENT}}$ 

We assume 
$$a(v, w; \mu) = \sum_{q=1}^{Q} \underbrace{\theta^{q}(\mu)}_{\mu\text{-DEPENDENT}} \underbrace{a^{q}(v, w)}_{\mu\text{-INDEPENDENT}}$$
  
so that  $\underbrace{A_{N}(\mu)}_{\text{RB-MATRIX}} = Z_{N}^{T} \underbrace{A(\mu)}_{\text{FE-MATRIX}} Z_{N} = \sum_{q=1}^{Q} \theta^{q}(\mu) \underbrace{Z_{N}^{T} A^{q} Z_{N}}_{\mu\text{-INDEPENDENT}}$ 

Similarly

$$F_N(\mu) \;=\; Z_N^T F(\mu) \;=\; \sum\limits_{q=1}^{Q_f} heta_f^q(\mu) \; Z_N^T F^q$$

and

$$L_N(\mu) = Z_N^T L(\mu) = \sum_{q=1}^{Q_\ell} heta_\ell^q(\mu) Z_N^T L^q$$

# (3) Offline/Online Decomposition – Example

#### Affine Parameter Dependence: Example 1



Parameters:  $\mu = (\underbrace{k^0, k^1, k^2, k^3, k^4}_{ ext{THERMAL}})$ 

THERMAL CONDUCTIVITIES

Governing Equation:

$$-k^i
abla^2 y_i = 0$$

in  $\Omega_i,\;i=0$  to 4

# (3) Offline/Online Decomposition – Example

#### Affine Parameter Dependence: Example 1



Parameters:  $\mu = (\underbrace{k^{0}, k^{1}, k^{2}, k^{3}, k^{4}}_{\text{CONDUCTIVITIES}})$ Governing Equation:

$$-k^i 
abla^2 y_i = 0$$

in  $\Omega_i,\;i=0$  to 4

The matrix  $A(\mu)$  then represents the bilinear form

$$a(v,w;oldsymbol{\mu}) = \sum\limits_{i=0}^4 \underbrace{ egin{smallmatrix} eta_i \ eta_i \$$

# (3) Offline/Online Decomposition – Example

#### Affine Parameter Dependence: Example 2



Bilinear Form on Parameter-Dependent Domain

$$\tilde{a}(\tilde{v},\tilde{w};\boldsymbol{\mu}) = \int_{\tilde{\Omega}(\boldsymbol{\mu})} \underbrace{\left(\frac{\partial \tilde{v}}{\partial \tilde{x}_1} \frac{\partial \tilde{w}}{\partial \tilde{x}_1} + \frac{\partial \tilde{v}}{\partial \tilde{x}_2} \frac{\partial \tilde{w}}{\partial \tilde{x}_2}\right)}_{\tilde{\nabla}\tilde{v}\cdot\tilde{\nabla}\tilde{w}} d\tilde{\Omega}(\boldsymbol{\mu}), \quad \tilde{v},\tilde{w} \in H^1(\tilde{\Omega}(\boldsymbol{\mu}))$$

# (3) Offline/Online Decomposition – Example Affine Parameter Dependence: Example 2





PARAMETRIZED DOMAIN

REFERENCE DOMAIN

Bilinear Form on Parameter-Dependent Domain

$$\tilde{a}(\tilde{v},\tilde{w};\boldsymbol{\mu}) = \int_{\tilde{\Omega}(\boldsymbol{\mu})} \underbrace{\left(\frac{\partial \tilde{v}}{\partial \tilde{x}_1} \frac{\partial \tilde{w}}{\partial \tilde{x}_1} + \frac{\partial \tilde{v}}{\partial \tilde{x}_2} \frac{\partial \tilde{w}}{\partial \tilde{x}_2}\right)}_{\tilde{\nabla} \tilde{v} \cdot \tilde{\nabla} \tilde{w}} d\tilde{\Omega}(\boldsymbol{\mu}), \quad \tilde{v}, \tilde{w} \in H^1(\tilde{\Omega}(\boldsymbol{\mu}))$$

After (Affine) Mapping to a Reference Domain

$$a(v,w;\boldsymbol{\mu}) = \int_{\Omega} \left( \frac{\partial v}{\partial x_1} \frac{\partial w}{\partial x_1} + \frac{1}{\boldsymbol{\mu}^2} \frac{\partial v}{\partial x_2} \frac{\partial w}{\partial x_2} \right) \boldsymbol{\mu} d\Omega, \qquad v,w \in H^1(\Omega)$$
# (3) Offline/Online Decomposition: Approximation

Summary computational cost:

 $(Q = Q_a + Q_f)$ 

Offline — once, parameter independent

- 1. solve for  $\zeta_n$
- 2. form and store:  $A^q_N$ ,  $1 \leq q \leq Q_a$  (same for  $F^q_N$  and  $L^q_N$ )

$$\mathcal{O}(N_{ ext{max}}\mathcal{N}^ullet)$$
 $\mathcal{O}(QN^2\mathcal{N})$ 

# (3) Offline/Online Decomposition: Approximation

Summary computational cost:  $(Q = Q_a + Q_f)$ **Offline** — once, parameter *independent*  $\mathcal{O}(N_{\max}\mathcal{N}^{\bullet})$ 1. solve for  $\zeta_n$ 2. form and store:  $A_{N}^{q}$ ,  $1 \leq q \leq Q_{a}$  $\mathcal{O}(QN^2\mathcal{N})$ (same for  $F_N^q$  and  $L_N^q$ ) **Online** — many times, parameter *dependent* 1. form RB matrices:  $A_N(\mu)$ ,  $F_N(\mu)$ ,  $L_N(\mu)$  $\mathcal{O}(QN^2)$ 2. solve for  $\mathbf{y}_{_N}(\mu)$ :  $\mathbf{A}_N(\mu) \mathbf{y}_{_N}(\mu) = \mathbf{F}_N(\mu)$  $\mathcal{O}(N^3)$ 3. evaluate output:  $s_N(\mu) = L_N^T(\mu) y_N(\mu)$  $\mathcal{O}(N)$ 

Online cost is independent of  $\mathcal{N}$ .

**Crucial ingredient:** Dual norm of residual  $||r_N(\cdot; \mu)||_{Y'}$ 

**n** 7

We expand 
$$y_N(\mu) = \sum\limits_{j=1}^N y_{N\,j}(\mu)\,\zeta_j$$

and obtain from the definition of the residual and affine dependence

$$\begin{aligned} r_{N}(v;\mu) &= f(v) - a(y_{N}(\mu),v;\mu) \\ &= f(v) - a\bigg(\sum_{n=1}^{N} y_{Nn}(\mu)\zeta_{n},v;\mu\bigg) \\ &= f(v) - \sum_{n=1}^{N} y_{Nn}(\mu) a(\zeta_{n},v;\mu) \\ &= f(v) - \sum_{n=1}^{N} y_{Nn}(\mu) \sum_{q=1}^{Q_{a}} \theta_{a}^{q}(\mu) a^{q}(\zeta_{n},v) \end{aligned}$$

For simplicity, we assume here that f(v) does not depend on  $\mu$ .

**Riesz representation:** 

$$egin{array}{rl} (\hat{e}(\mu),v)_Y &=& r_N(v;\mu) \ &=& f(v) - \sum\limits_{q=1}^{Q_a} \sum\limits_{n=1}^N { heta_a^q(\mu) y_N }_n(\mu) a^q(\zeta_n,v), \end{array}$$

**Riesz representation:** 

$$(\hat{e}(\mu),v)_Y = r_N(v;\mu)$$

$$= \ f(v) - \sum\limits_{q=1}^{Q_a} \sum\limits_{n=1}^{N} rac{ heta_a^q(\mu) y_{N\,n}(\mu) a^q(\zeta_n,v)}{},$$

#### Linear Superposition:

$$\Rightarrow \hat{e}(\mu) = \mathcal{C} + \sum_{q=1}^{Q_a} \sum_{n=1}^N \theta_a^q(\mu) y_N {}_n(\mu) \mathcal{A}_n^q$$

#### where

$$egin{array}{rcl} (\mathcal{C},v)_Y&=&f(v),&orall v\in Y;\ (\mathcal{A}_n^q,v)_Y&=&-a^q(\zeta_n,v),&orall v\in Y,\ &1\leq n\leq N, 1\leq q\leq Q_a. \end{array}$$

#### Thus

$$\|\hat{e}(\mu)\|_Y^2 = \left(\mathcal{C} + \sum\limits_{q=1}^{Q_a}\sum\limits_{n=1}^N rac{ heta_a^q(\mu)y_{Nn}(\mu)\mathcal{A}_n^q}{h}, \ \cdot \ 
ight)_Y$$

=

#### Thus

$$\begin{split} \|\hat{e}(\mu)\|_{Y}^{2} &= \left(\mathcal{C} + \sum_{q=1}^{Q_{a}} \sum_{n=1}^{N} \theta_{a}^{q}(\mu) y_{Nn}(\mu) \mathcal{A}_{n}^{q}, \cdot\right)_{Y} \\ &= \left(\mathcal{C}, \mathcal{C}\right)_{Y} + \sum_{q=1}^{Q_{a}} \sum_{n=1}^{N} \theta_{a}^{q}(\mu) y_{Nn}(\mu) \left\{ \\ &= 2(\mathcal{C}, \mathcal{A}_{n}^{q})_{Y} + \sum_{q'=1}^{Q_{a}} \sum_{n'=1}^{N} \theta_{a}^{q'}(\mu) y_{Nn'}(\mu) (\mathcal{A}_{n}^{q}, \mathcal{A}_{n'}^{q'})_{Y} \right\} \end{split}$$

Offline: once, parameter independent

ightarrow Compute  $\mathcal{C},\mathcal{A}_n^q,\;1\leq n\leq N_{ ext{max}},\;1\leq q\leq Q_a,$  from

$$egin{aligned} (\mathcal{C},v)_Y &=& f(v), & orall v \in Y; \ (\mathcal{A}_n^q,v)_Y &=& -a^q(\zeta_n,v), & orall v \in Y, \ & 1 \leq n \leq N, 1 \leq q \leq Q_a. \end{aligned}$$

Offline: once, parameter independent

ightarrow Compute  $\mathcal{C},\mathcal{A}_n^q,\;1\leq n\leq N_{ ext{max}},\;1\leq q\leq Q_a,$  from

$$egin{array}{rll} (\mathcal{C},v)_Y&=&f(v),&orall v\in Y;\ (\mathcal{A}_n^q,v)_Y&=&-a^q(\zeta_n,v),&orall v\in Y,\ &1\leq n\leq N, 1\leq q\leq Q_a. \end{array}$$

Form/Store  $(\mathcal{C}, \mathcal{C})_Y$ ,  $(\mathcal{C}, \mathcal{A}_n^q)_Y$ ,  $(\mathcal{A}_n^q, \mathcal{A}_{n'}^{q'})_Y$ ,

 $1 \leq n, n' \leq N_{\max}, 1 \leq q, q' \leq Q_a.$ 

Complexity depends on N,  $Q_a$ , and  $\mathcal{N}$ .

**Online:** many times, for each new  $\mu$ 

(and associated solution  $y_{\scriptscriptstyle N}(\mu))$ 

Evaluate

$$\begin{split} \|\hat{e}(\mu)\|_{Y}^{2} &= (\mathcal{C}, \mathcal{C})_{Y} + \sum_{q=1}^{Q_{a}} \sum_{n=1}^{N} \theta_{a}^{q}(\mu) y_{N n}(\mu) \bigg\{ \\ & 2(\mathcal{C}, \mathcal{A}_{n}^{q})_{Y} + \sum_{q'=1}^{Q_{a}} \sum_{n'=1}^{N} \theta_{a}^{q'}(\mu) y_{N n'}(\mu) (\mathcal{A}_{n}^{q}, \mathcal{A}_{n'}^{q'})_{Y} \bigg\} \\ & - \mathcal{O}(Q_{a}^{2} N^{2}) \end{split}$$

Complexity depends on N,  $Q_a$ , but not  $\mathcal{N}$ .

**Online:** many times, for each new  $\mu$ 

(and associated solution  $y_{\scriptscriptstyle N}(\mu))$ 

Evaluate

$$egin{aligned} \|\hat{e}(\mu)\|_{Y}^{2} &= (\mathcal{C},\mathcal{C})_{Y} + \sum\limits_{q=1}^{Q_{a}} \sum\limits_{n=1}^{N} eta_{a}^{q}(\mu) y_{N\,n}(\mu) iggl\{ &\ &2(\mathcal{C},\mathcal{A}_{n}^{q})_{Y} + \sum\limits_{q'=1}^{Q_{a}} \sum\limits_{n'=1}^{N} eta_{a}^{q'}(\mu) y_{N\,n'}(\mu) (\mathcal{A}_{n}^{q},\mathcal{A}_{n'}^{q'})_{Y} iggr\} &\ &- \mathcal{O}(Q_{a}^{2}N^{2}) \end{aligned}$$

Complexity depends on N,  $Q_a$ , but not  $\mathcal{N}$ .

How do we choose the snapshots?

Given  $Y_2 = \operatorname{span}\{y(\mu_1), y(\mu_2)\}$ , how do we choose  $\mu_3$ ?

Given  $Y_2 = \operatorname{span}\{y(\mu_1), y(\mu_2)\}$ , how do we choose  $\mu_3$ ?



Given  $Y_2 = \operatorname{span}\{y(\mu_1), y(\mu_2)\}$ , how do we choose  $\mu_3$ ?



Given  $Y_2 = \operatorname{span}\{y(\mu_1), y(\mu_2)\}$ , how do we choose  $\mu_3$ ?



$$\mu_3 \;\; = \;\; rg \max_{\mu \in \mathcal{D}_{
m s}} rac{\Delta_2(\mu)}{\|y_2(\mu)\|_Y}$$

where  $\mathcal{D}_{\rm s} \subset \mathcal{D}$  is a finite train sample

Given  $Y_2 = \operatorname{span}\{y(\mu_1), y(\mu_2)\}$ , how do we choose  $\mu_3$ ?



$$\mu_3 \hspace{0.1 cm} = \hspace{0.1 cm} rg \max_{\mu \in \mathcal{D}_{\mathrm{s}}} rac{\Delta_2(\mu)}{\|y_2(\mu)\|_Y}$$

where  $\mathcal{D}_{\rm s} \subset \mathcal{D}$  is a finite train sample

 $Y_3 = \operatorname{span}\{y(\mu_1) \ y(\mu_2) \ y(\mu_3)\}$ 

Given  $Y_2 = \operatorname{span}\{y(\mu_1), y(\mu_2)\}$ , how do we choose  $\mu_3$ ?



$$\mu_3 \hspace{0.1 cm} = \hspace{0.1 cm} rg \max_{\mu \in \mathcal{D}_{\mathrm{s}}} rac{\Delta_2(\mu)}{\|y_2(\mu)\|_Y}$$

where  $\mathcal{D}_{\rm s} \subset \mathcal{D}$  is a finite train sample

 $Y_3 = \operatorname{span}\{y(\mu_1) \ y(\mu_2) \ y(\mu_3)\}$ 

Given  $Y_2 = \operatorname{span}\{y(\mu_1), y(\mu_2)\}$ , how do we choose  $\mu_3$ ?



$$\mu_3 = rg \max_{\mu \in \mathcal{D}_{\mathrm{s}}} rac{\Delta_2(\mu)}{\|y_2(\mu)\|_Y}$$

where  $\mathcal{D}_{\rm s} \subset \mathcal{D}$  is a finite train sample

 $Y_3 = \operatorname{span}\{y(\mu_1) \ y(\mu_2) \ y(\mu_3)\}$ 

### Key points:

- $\Delta_n(\mu)$  is sharp and inexpensive to compute (online)
- Error bounds enable choice of good approximation spaces

We wish to compute, for any  $\mu \in \mathcal{D}$ ,  $t \in (0, t_f]$ 

$$s(t;\mu)=\ell(y(t;\mu))$$

where  $y(t;\mu)\in \mathcal{Y}$ , satisfies  $y(0;\mu)=0$ 

$$m(y_t(t;\mu),v)+a(y(t;\mu),v;\mu)=f(v)g(t), \ orall v\in \mathcal{Y}.$$

for given  $g(\cdot)\in L^2(0,t_f)$  and

 $f(v), \ \ell(v)$  are bounded linear functionals

$$m(\cdot, \cdot): Y imes Y o \mathbb{R}$$
 is continuous and coercive

$$a(\cdot,\cdot;\mu):Y imes Y o\mathbb{R}$$
 is continuous and coercive

for all  $\mu \in \mathcal{D}$ .

We wish to compute, for any  $\mu \in \mathcal{D}$ ,  $t \in (0, t_f]$ 

$$s(t;\mu)=\ell(y(t;\mu))$$

where  $y(t;\mu)\in\mathcal{Y}$ , satisfies

$$y(0;\mu)=0$$

 $m(y_t(t;\mu),v) + a(y(t;\mu),v;\mu) = f(v)g(t), \ \forall v \in \mathcal{Y}.$ 

We wish to compute, for any  $\mu \in \mathcal{D}$ ,  $t \in (0, t_f]$ 

$$s(t;\mu)=\ell(y(t;\mu))$$

where  $y(t;\mu)\in\mathcal{Y}$ , satisfies

$$y(0;\mu)=0$$

 $m(y_t(t;\mu),v)+a(y(t;\mu),v;\mu)=f(v)g(t), \ orall v\in \mathcal{Y}.$ 

- FE-space  $\boldsymbol{Y}$
- time grid  $t^k = k\,\Delta t,\, 0 \leq k \leq K,\, K = t_f/\Delta t$

We wish to compute, for any  $\mu \in \mathcal{D}$ ,  $1 \leq k \leq K$ 

$$s(t^k;\mu)=\ell(y^k(\mu))$$

where  $y^k(\mu) = y(t^k;\mu) \in Y$ , satisfies  $y^0(\mu) = 0$  $rac{1}{\Delta t}m(y^k(\mu) - y^{k-1}(\mu),v) + a(y^k(\mu),v;\mu) = f(v)g(t^k), \ \forall v \in Y.$ 

- ▶ FE[x]-FD[t] truth approximation:
  - FE-space Y
  - time grid  $t^k = k\,\Delta t,\, 0 \leq k \leq K,\, K = t_f/\Delta t$

We wish to compute, for any  $\mu \in \mathcal{D}$ ,  $1 \leq k \leq K$ 

$$s(t^k;\mu)=\ell(y^k(\mu))$$

where  $y^k(\mu) = y(t^k;\mu) \in Y$ , satisfies  $y^0(\mu) = 0$  $\frac{1}{\Lambda^4}m(y^k(\mu) - y^{k-1}(\mu), v) + a(y^k(\mu), v;\mu) = f(v)g(t^k), \ \forall v \in Y.$ 

- FE-space Y
- time grid  $t^k = k\,\Delta t,\, 0 \leq k \leq K,\, K = t_f/\Delta t$
- POD/Greedy algorithm to construct  $Y_N \subset Y$

We wish to compute, for any  $\mu \in \mathcal{D}$ ,  $1 \leq k \leq K$ 

$$s_{\scriptscriptstyle N}(t^k;\mu)=\ell(y^k_{\scriptscriptstyle N}(\mu))$$

where  $y_{_N}^k(\mu) = y_{_N}(t^k;\mu) \in Y_{_N}$ , satisfies  $y_{_N}^0(\mu) = 0$ 

$$rac{1}{\Delta t}m(y_N^k(\mu)-y_N^{k-1}(\mu),v)+a(y_N^k(\mu),v;\mu)=f(v)g(t^k), \ orall v\in oldsymbol{Y_N}.$$

- FE-space Y
- time grid  $t^k = k\,\Delta t,\, 0 \leq k \leq K,\, K = t_f/\Delta t$
- $\blacktriangleright$  POD/Greedy algorithm to construct  $Y_N \subset Y$

We wish to compute, for any  $\mu \in \mathcal{D}$ ,  $1 \leq k \leq K$ 

$$s_{\scriptscriptstyle N}(t^k;\mu)=\ell(y^k_{\scriptscriptstyle N}(\mu))$$

where  $y_N^k(\mu) = y_N(t^k;\mu) \in {Y_N}$ , satisfies  $y_N^0(\mu) = 0$ 

$$rac{1}{\Delta t}m(y_N^k(\mu)-y_N^{k-1}(\mu),v)+a(y_N^k(\mu),v;\mu)=f(v)g(t^k), \ orall v\in oldsymbol{Y_N}.$$

- FE-space  $\boldsymbol{Y}$
- time grid  $t^k = k\,\Delta t,\, 0 \leq k \leq K,\, K = t_f/\Delta t$
- POD/Greedy algorithm to construct  $Y_N \subset Y$
- Error bound for space-time energy norm

We wish to compute, for any  $\mu \in \mathcal{D}$ ,  $1 \leq k \leq K$ 

$$s_{\scriptscriptstyle N}(t^k;\mu) = \ell(y^k_{\scriptscriptstyle N}(\mu))$$

where  $y_N^k(\mu) = y_N(t^k;\mu) \in {Y_N}$ , satisfies  $y_N^0(\mu) = 0$ 

$$rac{1}{\Delta t}m(y_N^k(\mu)-y_N^{k-1}(\mu),v)+a(y_N^k(\mu),v;\mu)=f(v)g(t^k), \ orall v\in oldsymbol{Y_N}.$$

Key Ingredients:

- FE-space Y
- time grid  $t^k = k\,\Delta t,\, 0 \leq k \leq K,\, K = t_f/\Delta t$
- POD/Greedy algorithm to construct  $Y_N \subset Y$
- Error bound for space-time energy norm
- Online cost:  $\mathcal{O}(QN^2 + N^3 + KN^2)$  plus  $\mathcal{O}(KQ^2N^2)$ .

M. Grepl (RWTH Aachen)

### Summary

The reduced basis method provides

- accurate $y_N \approx y$ (1) APPROXreliable $\Delta_N^y \geq \|y y_N\|_Y$ (2) ERR ESTefficient surrogates $\cot O(N^*)$ (3) DECOMPN small(4) GREEDY
  - to solutions of parametrized PDEs
    - for the many-query, real-time,

and slim-computing contexts.

### **Computational Opportunities**

I. We restrict our attention to the typically smooth and low-dimensional manifold induced by the parametric dependence.

 $\Rightarrow$  Dimension reduction

- II. We accept greatly increased offline cost in exchange for greatly decreased online cost.
  - $\Rightarrow$  Real-time and/or many-query context

### **Computational Opportunities**

I. We restrict our attention to the typically smooth and low-dimensional manifold induced by the parametric dependence.

 $\Rightarrow$  Dimension reduction

- II. We accept greatly increased offline cost in exchange for greatly decreased online cost.
  - $\Rightarrow$  Real-time and/or many-query context

**Note:** Strict offline-online separation not always the best choice  $\Rightarrow$  adaptive or "on-the-fly" training (e.g. trust-region RB)

# Part II

### Data Assimilation: 4D-Var

### **Classical 4D-Var**

$$\min_{u \in U} rac{1}{2} (u - u_{\mathrm{b}})^T B^{-1} (u - u_{\mathrm{b}}) + rac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\mathrm{d}}^k)^T D^{-1} (Hy^k - z_{\mathrm{d}}^k)$$

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
  
 $y^0 = u$ 

### **Classical 4D-Var**

$$\min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) + \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k)$$

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
  
 $y^0 = u$ 

#### **Classical 4D-Var**

 $\min_{u \in U} \frac{1}{2} (u - u_{\mathrm{b}})^T B^{-1} (u - u_{\mathrm{b}}) + \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\mathrm{d}}^k)^T D^{-1} (Hy^k - z_{\mathrm{d}}^k)$ 

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
 $y^0 = u$ 

- *u* initial condition
- $u_{\mathbf{b}}$  prior (background) estimate to the initial condition
- **B** covariance of the background error

#### **Classical 4D-Var**

 $\min_{u \in U} rac{1}{2} (u - u_{\mathrm{b}})^T B^{-1} (u - u_{\mathrm{b}}) + rac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\mathrm{d}}^k)^T D^{-1} (Hy^k - z_{\mathrm{d}}^k)$ 

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
 $y^0 = u$ 

- u initial condition
- $u_{\mathbf{b}}$  prior (background) estimate to the initial condition
- **B** covariance of the background error

#### **Classical 4D-Var**

 $\min_{u \in U} rac{1}{2} (u - u_{\mathrm{b}})^T B^{-1} (u - u_{\mathrm{b}}) + rac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\mathrm{d}}^k)^T D^{-1} (Hy^k - z_{\mathrm{d}}^k)$ 

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
 $y^0 = u$ 

- u initial condition
- $u_{\mathbf{b}}$  prior (background) estimate to the initial condition
- *B* covariance of the background error
- $y^k$  state at time  $k\Delta t$

#### **Classical 4D-Var**

 $\min_{u \in U} rac{1}{2} (u - u_{\mathrm{b}})^T B^{-1} (u - u_{\mathrm{b}}) + rac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\mathrm{d}}^k)^T D^{-1} (Hy^k - z_{\mathrm{d}}^k)$ 

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
 $y^0 = u$ 

- u initial condition
- $u_{\mathbf{b}}$  prior (background) estimate to the initial condition
- *B* covariance of the background error
- $y^k$  state at time  $k\Delta t$
- $z_{\rm d}^k$  data or observations
#### **Classical 4D-Var**

 $\min_{u \in U} rac{1}{2} (u - u_{\mathrm{b}})^T B^{-1} (u - u_{\mathrm{b}}) + rac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\mathrm{d}}^k)^T D^{-1} (Hy^k - z_{\mathrm{d}}^k)$ 

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
 $y^0 = u$ 

- u initial condition
- $u_{\mathbf{b}}$  prior (background) estimate to the initial condition
- *B* covariance of the background error

$$y^k$$
 state at time  $k\Delta t$ 

- $z_{\rm d}^k$  data or observations
- $Hy^k$  predictions of the observations

#### **Classical 4D-Var**

 $\min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) + \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k)$ 

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
 $y^0 = u$ 

- u initial condition
- $u_{\mathbf{b}}$  prior (background) estimate to the initial condition
- **B** covariance of the background error

$$y^k$$
 state at time  $k\Delta t$ 

- $z_{\rm d}^k$  data or observations
- $Hy^k$  predictions of the observations
- $D/\lambda$  covariance of the observation error

#### **Classical 4D-Var**

$$\min_{u \in U} rac{1}{2} (u - u_{\mathrm{b}})^T B^{-1} (u - u_{\mathrm{b}}) + rac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\mathrm{d}}^k)^T D^{-1} (Hy^k - z_{\mathrm{d}}^k)$$

s.t. 
$$y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K$$
 $y^0 = u$ 

- u initial condition
- $u_{
  m b}$  prior (background) estimate to the initial condition
- **B** covariance of the background error

$$y^k$$
 state at time  $k\Delta t$ 

- $z_{
  m d}^{m k}$  data or observations
- $Hy^k$  predictions of the observations
- $D/\lambda$  covariance of the observation error
  - ${\cal M}$  model of the dynamics

## **Classical 4D-Var**

$$\begin{split} \min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) + \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k) \\ \text{s.t.} \quad y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \\ y^0 = u \end{split}$$

## **Classical 4D-Var**

$$\begin{split} \min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) &+ \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k) \\ \text{s.t.} \quad y^k &= \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \\ y^0 &= u \end{split}$$

- Incorporates data in space and time (4D)
- Variational method that maximizes posterior probability

## **Classical 4D-Var**

$$\begin{split} \min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) &+ \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k) \\ \text{s.t.} \quad y^k &= \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \\ y^0 &= u \end{split}$$

- Incorporates data in space and time (4D)
- Variational method that maximizes posterior probability
- Given prior (background) estimate, data, and the model,

find an estimate to the initial condition  $u^*$ .

#### **Classical 4D-Var**

$$\begin{split} \min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) + \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k) \\ \text{s.t.} \quad y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \\ y^0 = u \end{split}$$

- Incorporates data in space and time (4D)
- Variational method that maximizes posterior probability
- Given prior (background) estimate, data, and the model,

find an estimate to the initial condition  $u^*$ .

Related to Bayesian methods, 3D-Var, and optimal control

#### **Classical 4D-Var**

$$\begin{split} \min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) + \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k) \\ \text{s.t.} \quad y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \\ y^0 = u \end{split}$$

- Incorporates data in space and time (4D)
- Variational method that maximizes posterior probability
- Given prior (background) estimate, data, and the model,

find an estimate to the initial condition  $u^*$ .

Related to Bayesian methods, 3D-Var, and optimal control

[LE DIMET 1981], [LEWIS & DERBER 1985], [COURTIER 1985], [LE DIMET & TALAGRAND 1986], ...

## **Classical 4D-Var**

$$\begin{split} \min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) + \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k) \\ \text{s.t.} \quad y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \\ y^0 = u \end{split}$$

- Incorporates data in space and time (4D)
- Variational method that maximizes posterior probability
- Given prior (background) estimate, data, and the model,

find an estimate to the initial condition  $u^*$ .

Related to Bayesian methods, 3D-Var, and optimal control

[LE DIMET 1981], [LEWIS & DERBER 1985], [COURTIER 1985], [LE DIMET & TALAGRAND 1986], ... [LAW & STUART 2015], [REICH 2015]

#### 4D-Var

$$\begin{split} \min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) &+ \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k) \\ \text{s.t.} \quad y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \end{split}$$

$$y^0 = u$$

#### 4D-Var

$$\begin{split} \min_{u \in U} \frac{1}{2} (u - u_{\rm b})^T B^{-1} (u - u_{\rm b}) &+ \frac{\lambda}{2} \sum_{k=1}^K \Delta t (Hy^k - z_{\rm d}^k)^T D^{-1} (Hy^k - z_{\rm d}^k) \\ \text{s.t.} \quad y^k = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \\ y^0 = u \end{split}$$

## 4D-Var

$$\begin{split} \min_{u \in U} \;\; \frac{1}{2} \| u - u_{\rm b} \|_U^2 + \frac{\lambda}{2} \sum_{k=1}^K \Delta t \| H y^k - z_{\rm d}^k \|_D^2 \\ \text{s.t.} \;\; y^k &= \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \end{split}$$

$$y^0 = u$$

#### 4D-Var

$$\begin{split} \min_{u \in U} \; \frac{1}{2} \| u - u_{\rm b} \|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \| Hy^{k} - z_{\rm d}^{k} \|_{D}^{2} \\ \text{s.t.} \quad y^{k} = \mathcal{M}(y^{k-1}), \quad k = 1, \dots, K \end{split}$$

$$y^0 = u$$

Consider an FE model approximating a parabolic PDE

#### 4D-Var

$$\begin{split} \min_{u \in U} \;\; \frac{1}{2} \|u - u_{\mathrm{b}}\|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \|Hy^{k} - z_{\mathrm{d}}^{k}\|_{D}^{2} \\ \text{s.t.} \;\; m(y^{k}, v) = m(y^{k-1}, v) - \Delta ta(y^{k}, v; \mu) + \Delta tf(v), \\ &\qquad \qquad \forall \; v \in Y, \; 1 \leq k \leq K \\ y^{0} = u \end{split}$$

Consider an FE model approximating a parabolic PDE

 $4\text{D-Var}(\mu)$ 

$$\begin{split} \min_{u \in U} & \frac{1}{2} \|u - u_{\rm b}\|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \|Hy^{k} - z_{\rm d}^{k}\|_{D}^{2} \\ \text{s.t.} & m(y^{k}, v) = m(y^{k-1}, v) - \Delta ta(y^{k}, v; \mu) + \Delta tf(v), \\ & \forall v \in Y, \ 1 \le k \le K \\ & y^{0} = u \end{split}$$

Assume B and D are positive-definite

Consider an FE model approximating a parabolic PDE

that depends on an unknown parameter  $\mu$ 

4D-Var $(\mu)$ 

Solve  

$$\begin{split} & \min_{\mu \in \mathcal{D}} \min_{u \in U} \frac{1}{2} \|u - u_{\mathrm{b}}\|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \|Hy^{k} - z_{\mathrm{d}}^{k}\|_{D}^{2} \\ & \text{s.t.} \quad m(y^{k}, v) = m(y^{k-1}, v) - \Delta ta(y^{k}, v; \mu) + \Delta tf(v), \\ & \qquad \forall v \in Y, \ 1 \leq k \leq K \\ & y^{0} = u \end{split}$$

for  $\mu^*$  and the corresponding  $(u^*(\mu^*), y^*(\mu^*))$ .

- Assume B and D are positive-definite
- Consider an FE model approximating a parabolic PDE

that depends on an unknown parameter  $\mu$ 

4D-Var $(\mu)$ 

Solve  

$$\begin{split} & \min_{\mu \in \mathcal{D}} \min_{u \in U} \frac{1}{2} \|u - u_{\mathrm{b}}\|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \|Hy^{k} - z_{\mathrm{d}}^{k}\|_{D}^{2} \\ & \text{s.t.} \quad m(y^{k}, v) = m(y^{k-1}, v) - \Delta ta(y^{k}, v; \mu) + \Delta tf(v), \\ & \qquad \qquad \forall v \in Y, \ 1 \leq k \leq K \\ & y^{0} = u \end{split}$$

for  $\mu^*$  and the corresponding  $(u^*(\mu^*), y^*(\mu^*))$ .

- Assume B and D are positive-definite
- Consider an FE model approximating a parabolic PDE

that depends on an unknown parameter  $\mu$ 

Two-level optimization problem

4D-Var $(\mu)$ 

Solve

$$\begin{split} \min_{\mu \in \mathcal{D}} & \min_{u \in U} \frac{1}{2} \| u(\mu) - u_{\mathrm{b}} \|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \| Hy^{k}(\mu) - z_{\mathrm{d}}^{k} \|_{D}^{2} \\ \text{s.t.} \quad & m(y^{k}, v) = m(y^{k-1}, v) - \Delta ta(y^{k}, v; \mu) + \Delta t f(v), \\ & \forall v \in Y, \ 1 \leq k \leq K \\ y^{0} = u \end{split}$$

for  $\mu^*$  and the estimate  $(u^*(\mu^*),y^*(\mu^*)).$ 

 $\textbf{4D-Var}(\mu)$ 

Solve

$$\begin{split} \min_{\mu \in \mathcal{D}} & \min_{u \in U} \frac{1}{2} \| u(\mu) - u_{\mathrm{b}} \|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \| Hy^{k}(\mu) - z_{\mathrm{d}}^{k} \|_{D}^{2} \\ \text{s.t.} \quad & m(y^{k}, v) = m(y^{k-1}, v) - \Delta ta(y^{k}, v; \mu) + \Delta t f(v), \\ & \forall v \in Y, \ 1 \leq k \leq K \\ y^{0} = u \end{split}$$

for  $\mu^*$  and the estimate  $(u^*(\mu^*), y^*(\mu^*))$ .

Order Reduction for:

- PDE governing model dynamics:  $Y_N \subset Y$
- Optimization space:  $U_N \subset U$  ... with Greedy Algorithm

## Reduced-Order 4D-Var( $\mu$ )

Solve

$$\begin{split} \min_{\mu \in \mathcal{D}} \min_{u_N \in U_N} \frac{1}{2} \| u_N(\mu) - u_{\mathrm{b}} \|_U^2 + \frac{\lambda}{2} \sum_{k=1}^K \Delta t \| Hy_N^k(\mu) - z_{\mathrm{d}}^k \|_D^2 \\ \text{s.t.} \quad m(y_N^k, v) = m(y_N^{k-1}, v) - \Delta ta(y_N^k, v; \mu) + \Delta t f(v), \\ \quad \forall v \in Y_N, \ 1 \le k \le K \\ y_N^0 = u_N \end{split}$$

for  $\mu_N^*$  and the estimate  $(u_N^*(\mu_N^*), y_N^*(\mu_N^*)).$ 

Order Reduction for:

- PDE governing model dynamics:  $Y_N \subset Y$
- ▶ Optimization space:  $U_N \subset U$  ... with Greedy Algorithm

## Reduced-Order 4D-Var( $\mu$ )

Solve

$$\begin{split} \min_{\mu \in \mathcal{D}} & \min_{u_N \in U_N} \frac{1}{2} \| u_N(\mu) - u_{\mathrm{b}} \|_U^2 + \frac{\lambda}{2} \sum_{k=1}^K \Delta t \| Hy_N^k(\mu) - z_{\mathrm{d}}^k \|_D^2 \\ \text{s.t.} & m(y_N^k, v) = m(y_N^{k-1}, v) - \Delta t a(y_N^k, v; \mu) + \Delta t f(v), \\ & \forall v \in Y_N, \ 1 \le k \le K \\ & y_N^0 = u_N \end{split}$$

for  $\mu_N^*$  and the estimate  $(u_N^*(\mu_N^*), y_N^*(\mu_N^*))$ .

Order Reduction for:

- PDE governing model dynamics:  $Y_N \subset Y$
- ▶ Optimization space:  $U_N \subset U$  ... with Greedy Algorithm

[Robert, Durbiano, Blayo, Verron, Blum, Le Dimet 2005], [Chen, Navon, Fang 2009] [Dimitriu, Apreutesei, Stefanescu 2010], [Stefanescu, Sandu, Navon 2015]

#### **Reduced-Order 4D-Var**( $\mu$ )

Solve

$$\begin{split} \min_{\mu \in \mathcal{D}} & \min_{u_N \in U_N} \frac{1}{2} \| u_N(\mu) - u_{\rm b} \|_U^2 + \frac{\lambda}{2} \sum_{k=1}^K \Delta t \| Hy_N^k(\mu) - z_{\rm d}^k \|_D^2 \\ \text{s.t.} & m(y_N^k, v) = m(y_N^{k-1}, v) - \Delta ta(y_N^k, v; \mu) + \Delta t f(v), \\ & \forall v \in Y_N, \ 1 \le k \le K \\ & y_N^0 = u_N \end{split}$$

for  $\mu_N^*$  and the estimate  $(u_N^*(\mu_N^*), y_N^*(\mu_N^*)).$ 

#### Reduced-Order 4D-Var( $\mu$ )

Solve

$$\begin{split} \min_{\mu \in \mathcal{D}} & \min_{u_N \in U_N} \frac{1}{2} \| u_N(\mu) - u_{\rm b} \|_U^2 + \frac{\lambda}{2} \sum_{k=1}^K \Delta t \| Hy_N^k(\mu) - z_{\rm d}^k \|_D^2 \\ \text{s.t.} & m(y_N^k, v) = m(y_N^{k-1}, v) - \Delta ta(y_N^k, v; \mu) + \Delta t f(v), \\ & \forall v \in Y_N, \ 1 \le k \le K \\ & y_N^0 = u_N \end{split}$$

for  $\mu_N^*$  and the estimate  $(u_N^*(\mu_N^*), y_N^*(\mu_N^*)).$ 

Can we quantify the error for a given  $\mu$ ?

4D-Var $(\mu)$ 

Solve  

$$\begin{split} & \min_{\mu \in \mathcal{D}} \min_{u \in U} \frac{1}{2} \|u(\mu) - u_{\mathrm{b}}\|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \|Hy^{k}(\mu) - z_{\mathrm{d}}^{k}\|_{D}^{2} \\ & \text{s.t.} \quad m(y^{k+1}, v) = m(y^{k}, v) - \Delta ta(y^{k}, v; \mu) + \Delta tf(v), \\ & \forall v \in Y, \ 1 \le k \le K \end{split}$$

$$y^0 = u$$

for  $\mu^*$  and the corresponding  $(u^*(\mu^*), y^*(\mu^*)).$ 

 $4\text{D-Var}(\mu)$ 

$$\begin{split} & \text{Solve} \\ & \min_{\mu \in \mathcal{D}} \min_{u \in U} \frac{1}{2} \| u(\mu) - u_{\text{b}} \|_{U}^{2} + \frac{\lambda}{2} \sum_{k=1}^{K} \Delta t \| Hy^{k}(\mu) - z_{\text{d}}^{k} \|_{D}^{2} \\ & \text{s.t.} \quad m(y^{k+1}, v) = m(y^{k}, v) - \Delta ta(y^{k}, v; \mu) + \Delta t f(v), \\ & \forall v \in Y, \ 1 \leq k \leq K \end{split}$$

$$y^0 = u$$

for  $\mu^*$  and the corresponding  $(u^*(\mu^*),y^*(\mu^*)).$ 

#### Lagrangian

$$egin{aligned} \mathcal{L}(y,p,u;m{\mu}) &= rac{1}{2} \|u-u_{ ext{b}}\|_{U}^{2} + rac{\lambda}{2} \sum\limits_{k=1}^{K} \Delta t \|Hy^{k}-z_{ ext{d}}^{k}\|_{D}^{2} \ &+ \sum\limits_{k=1}^{K} m(y^{k},p^{k}) - m(y^{k-1},p^{k}) + \Delta ta(y^{k},p^{k}) - \Delta tf(p^{k}), \end{aligned}$$

M. Grepl (RWTH Aachen)

#### **Reduced Optimality Conditions**

$$f(\phi)-a(y_N^k,\phi)-rac{1}{\Delta t}m(y_N^k-y_N^{k-1},\phi) \hspace{0.2cm}=\hspace{0.2cm} 0 \hspace{0.2cm} \mathcal{L}_p$$

$$\lambda(Hy_N^k-z_{\mathrm{d}}^k,Harphi)_D-rac{1}{\Delta t}m(arphi,p_N^k-p_N^{k+1})+a(arphi,p_N^k;\mu) ~=~ 0 ~~ \mathcal{L}_y$$

$$m(\psi,p_N^1)-(u_N-u_{
m b},\psi)_U ~=~ 0 \qquad {\cal L}_u$$

for all  $\phi \in Y_N, \ \varphi \in Y_N, \ \psi \in U_N.$ 

#### **Reduced Optimality Conditions**

$$f(\phi) - a(y_N^k,\phi) - rac{1}{\Delta t}m(y_N^k-y_N^{k-1},\phi) ~=~ 0 ~~ {\cal L}_{\mu}$$

$$\lambda(Hy_N^k-z_{\mathrm{d}}^k,Harphi)_D-rac{1}{\Delta t}m(arphi,p_N^k-p_N^{k+1})+a(arphi,p_N^k;\mu) ~=~ 0 \qquad \mathcal{L}_y$$

$$m(\psi,p_N^1)-(u_N-u_{
m b},\psi)_U ~=~ 0 \qquad \mathcal{L}_u$$

for all 
$$\phi \in Y_N, \ \varphi \in Y_N, \ \psi \in U_N.$$

#### We also require

Lower bound of the *a*-coercivity constant

 $lpha_{a}^{\mathrm{LB}}(\mu) \leq lpha_{a}(\mu), \hspace{1em} orall \mu \in \mathcal{D}$ 

Continuity constant of operator H

$$\gamma_H = \sup_{v \in Y} \frac{\|Hv\|_D}{\|v\|_Y}$$

M. Grepl (RWTH Aachen)

# Error

| STATE   | $e_y^k(\mu) := y^{*k}(\mu) - y_N^{*k}(\mu)$ |
|---------|---------------------------------------------|
| ADJOINT | $e_p^k(\mu) := p^{*k}(\mu) - p_N^{*k}(\mu)$ |
| CONTROL | $e_u(\mu):=u^*(\mu)-u^*_N(\mu)$             |

#### Error

| STATE   | $e_y^k(\mu) := y^{*k}(\mu) - y_N^{*k}(\mu)$ |
|---------|---------------------------------------------|
| ADJOINT | $e_p^k(\mu) := p^{*k}(\mu) - p_N^{*k}(\mu)$ |
| CONTROL | $e_u(\mu):=u^*(\mu)-u^*_N(\mu)$             |

#### **Error-Residual Equations**

STATE 
$$r_y^k(\phi;\mu) = a(e_y^k,\phi) + rac{1}{\Delta t}m(e_y^k-e_y^{k-1},\phi)$$

$$\mathsf{ADJOINT} \qquad r_p^k(\varphi;\mu) = \lambda(He_y^k,H\varphi)_D + \frac{1}{\Delta t}m(\varphi,e_p^k-e_p^{k+1}) + a(\varphi,e_p^k;\mu)$$

CONTROL  $r_u(\psi;\mu)=(e_u,\psi)_U-m(\psi,e_p^1)$ 

#### M. Grepl (RWTH Aachen)

#### **A Posteriori Error Estimation**

We can show that

 $\|u^*(\mu) - u^*_N(\mu)\|_U \le \Delta^u_N = c_1(\mu) + \sqrt{c_1(\mu)^2 + c_2(\mu)}$ 

#### **A Posteriori Error Estimation**

We can show that

$$\|u^*(\mu) - u^*_N(\mu)\|_U ~\leq ~\Delta^u_N = c_1(\mu) + \sqrt{c_1(\mu)^2 + c_2(\mu)}$$

with non-negative terms

$$\begin{split} c_1 &:= \quad \frac{1}{2} \left( \|r_u\|_{U'} + \frac{1}{\sqrt{\alpha_a^{\text{LB}}}} R_p \right) \\ c_2 &:= \quad \left( \frac{1 + \sqrt{2}}{\alpha_a^{\text{LB}}} R_y R_p + \frac{\lambda \gamma_H^2}{2(\alpha_a^{\text{LB}})^2} R_y^2 \right) \\ \text{where } R_{y,p} &= \left( \Delta t \sum_{k=1}^K \|r_{y,p}^k\|_{Y'}^2 \right)^{\frac{1}{2}}, \text{ and } r_y^k, r_p^k, r_u \end{split}$$

are the residuals in the state, adjoint, and control equations

M. Grepl (RWTH Aachen)

#### Weak-constraint 4D-Var

[TRÉMOLET 2006]

Solve  

$$\min_{u \in U} \frac{1}{2} \|u^{0} - u_{b}\|_{U}^{2} + \frac{1}{2} \sum_{k=1}^{K} \Delta t \|Cy^{k} - z_{d}^{k}\|_{D}^{2} + \frac{1}{2} \sum_{k=1}^{K} \Delta t \|u^{k}\|_{\Sigma}^{2}$$
s.t.  $m(y^{k+1}, v) = m(y^{k}, v) - \Delta ta(y^{k}, v; \mu)$   
 $+ \Delta t f(v) + \Delta t b(u^{k}, v),$   
 $\forall v \in Y, \ 1 \le k \le K$ 

$$y^0 = u^0$$

Account for inexact model by adding a model error term, where

- $u^k$  the model error in each timestep
- $\Sigma$  covariance of the model error
- Allows to consider longer analysis windows



Convection-diffusion equation w. Taylor-Green vortex velocity field

Parameter  $\mu \in [10, 50]$  (Pe) with  $\mu^{\text{true}} = 30$ Discretization  $\dim(Y) = \dim(U) \approx 13,000$ time interval I = [0, 8] with  $\Delta t = 0.04, K = 400$ 



#### Assumptions

- o "Gaussian" initial condition,  $ar{u}$
- Data generated using "exact" initial condition,  $ar{u}(\mu^{\mathrm{true}})$
- Prior is exact,  $u_{\rm b} = \bar{u}(\mu^{\rm true})$ .
- o Uncertainty due only to noise and "unknown" parameter,  $\mu^{
  m true}.$



#### Assumptions

- o "Gaussian" initial condition,  $ar{u}$
- o Data generated using "exact" initial condition,  $ar{u}(\mu^{\mathrm{true}})$
- Prior is exact,  $u_{\rm b} = \bar{u}(\mu^{\rm true})$ .
- o Uncertainty due only to noise and "unknown" parameter,  $\mu^{\mathrm{true}}$ .



#### Assumptions

- o "Gaussian" initial condition,  $ar{u}$
- o Data generated using "exact" initial condition,  $ar{u}(\mu^{\mathrm{true}})$
- Prior is exact,  $u_{\rm b} = \bar{u}(\mu^{\rm true})$ .
- o Uncertainty due only to noise and "unknown" parameter,  $\mu^{\mathrm{true}}$ .


#### Assumptions

- o "Gaussian" initial condition,  $ar{u}$
- o Data generated using "exact" initial condition,  $ar{u}(\mu^{\mathrm{true}})$
- Prior is exact,  $u_{\rm b} = \bar{u}(\mu^{\rm true})$ .
- o Uncertainty due only to noise and "unknown" parameter,  $\mu^{
  m true}.$



## Data $z_d^k$ ( $1 \le k \le 800$ )

o Uncorrelated Gaussian noise in each entry,  $\eta \sim N(0, 0.05^2)$ .



## Data $z_d^k$ ( $1 \le k \le 800$ )

o Uncorrelated Gaussian noise in each entry,  $\eta \sim N(0, 0.05^2)$ .



## Data $z_d^k$ ( $1 \le k \le 800$ )

• Uncorrelated Gaussian noise in each entry,  $\eta \sim N(0, 0.05^2)$ .

FE solution\*: Preconditioned Newton-CG method

- strong-constraint: 30 54 s (31 56 CG iterations)
- weak-constraint:  $114 189 \,\mathrm{s}$  (81 137 CG iterations)
- \* Matlab, 2.6 GHz Intel Core i7 processor, 16 GB RAM

M. Grepl (RWTH Aachen)



#### **RB** solution

 $^{
m o}$  strong-constraint:  $N_{Y,{
m max}}=2N_{
m max}=160$ ,  $N_{U,{
m max}}^{0}=21$ 

Online times:  $t_{sol} pprox 10 \, {
m ms} - 1.37 \, {
m s}$ ,  $t_\Delta pprox 2.8 - 29 \, {
m ms}$ 

o weak-constraint:  $N_{Y,\max}=2N_{\max}=200$ ,  $N_{U,\max}=N_{\max}=100$ 

Online times:  $t_{sol}pprox 99~{
m ms}-12.6~{
m s}$ ,  $t_{\Delta}pprox 4.8-71~{
m ms}$ M. Grepl (RWTH Aachen)



Note: In the strong-constraint case

- o  $\,\#$  of CG iterations bounded by  $N_U^0$  and thus almost constant over  $\mu$
- o  $\,\#$  of RB-CG iterations <  $\,\#$  of FE-CG iterations even for  $N_{
  m max}$

|   | Maximum relative error in cost and parameter estimate |                                   |                      |                                 |                    |
|---|-------------------------------------------------------|-----------------------------------|----------------------|---------------------------------|--------------------|
| _ | Ν                                                     | $e_{J,N}^{\mathrm{max}}$ (strong) | $e_{\mu,N}$ (strong) | $e_{J,N}^{\mathrm{max}}$ (weak) | $e_{\mu,N}$ (weak) |
|   | 10                                                    | 3.12e-01                          | 4.18e-01             | 2.44e-01                        | 6.02e-02           |
|   | 20                                                    | 7.36e-03                          | 1.30e-01             | 1.70e-02                        | 9.33e-03           |
|   | 30                                                    | 8.22e-04                          | 1.42e-03             | 3.51e-03                        | 1.70e-04           |
|   | 40                                                    | 1.24e-04                          | 4.99e-04             | 6.37e-04                        | 3.26e-04           |
|   | 50                                                    | 1.14e-05                          | 2.98e-05             | 2.05e-04                        | 3.53e-05           |
|   | 60                                                    | 4.36e-06                          | 1.27e-05             | 9.70e-05                        | 3.90e-05           |
|   | 70                                                    | 3.92e-07                          | 4.18e-06             | 3.58e-05                        | 1.93e-05           |
|   | 80                                                    | 8.76e-08                          | 9.71e-08             | 1.05e-05                        | 4.12e-06           |
|   | 90                                                    | -                                 | -                    | 4.17e-06                        | 2.51e-06           |
| 1 | .00                                                   | -                                 | -                    | 1.94e-06                        | 3.09e-06           |

### Maximum relative error in cost and parameter estimate

#### Note:

- $\circ$  strong-constraint:  $\mu^*=29.67$
- o weak-constraint:  $\mu^* = 45.36$

## **Summary & Conclusions**

- A posteriori error bounds for a reduced order approach to strong- and weak-constraint 4D-Var data assimilation
- Offline/online computational procedure for solution and bound
- Key ingredient: analogy to PDE-constrained optimal control

## **Summary & Conclusions**

- A posteriori error bounds for a reduced order approach to strong- and weak-constraint 4D-Var data assimilation
- Offline/online computational procedure for solution and bound
- Key ingredient: analogy to PDE-constrained optimal control
- Cost functional & parameter estimation
  - $\blacktriangleright$  Bound on  $|J^* J^*_N|$  possible based on dual-weighted residual approach
  - ▶ Bound on  $|\mu^* \mu^*_N|$  possible based on cost bound, but (currently) very pessimistic

## Thank you for your attention!

# For questions or comments: grepl@igpm.rwth-aachen.de