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MOTIVATION

(1) To develop parametric model order reduction methods that accelerate simulations of 

parametrized microstructures in the multiscale materials setting …

(2) … such that they can be deployed in the context of control, optimization, inverse problems, 

and data assimilation …

with a view towards eventually being able to design and control production processes.
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OUTLINE

In the parametrized PDE setting:

(1) How can we account for the error introduced by the use of a parametric reduced order 

model in a data assimilation framework (EnKI)?

(2) How can we construct efficient (both offline and online) parametric reduced order models 

for data assimilation (EnKF)?

(3) How can we mitigate the effect of using an approximate model on parameter inference 

(via experimental design)? 
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Parametric Model Order Reduction

Linear PDE: Given the parameter , we seek             s.t.     

Approximation:

where

and         is obtained from training snapshots                                                   either via                 

a greedy algorithm (                      )  or singular value decomposition (                       ) 

-dependence omitted
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Parametric Model Order Reduction

Projection-Based Model Order Reduction:
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Parametric Model Order Reduction

Projection-Based Model Order Reduction:

Assume that permits an affine decomposition,                                         , then

and the computation can be decomposed into an (expensive, cost(          )) offline stage

and an (inexpensive, cost(    )) online stage.
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Parametric Model Order Reduction

General Approach:

(1) Reduce the order or dimension of the problem from to

(2) Decompose the computation into an

OFFLINE training phase at cost(         )

ONLINE deployment phase at cost(     ) for any new              .
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Issues: Nonlinearities

Non-affine problems
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Parametric Model Order Reduction

Nonlinear PDE: Given the parameter ,  we seek             s.t.     

At the    -th Newton iteration, given          , find        s.t.  

and update                                  until convergence. 

Issue: In nonlinear (and nonaffine) problems,                        (or           ) 

 does not admit an offline/online computational decomposition.

approximate affine decomposition 

or hyperreduction
11



• Autoencoders   [Lee & Carlberg, ’20], [Fresca, Dede & Manzoni, ’21], [Maulik, Lusch & 

Balapakrash ’21], [Vinuesa, Eivazi, Le Clainche & Hoyas,  ’22], 

[Nikolopoulos, Kalogeris, Papadopoulos, ‘22], [Romor, Stabile & Rozza ’23], …

• Neural Operators  [Lu, Jin, Pang, Zhang, Karniadakis, ’19], [Cai, Wang, Lu, Zaki, Karniadakis, ’21],

[De Hoop, Huang, Qian & Stuart, 21], [Li, Zheng, Kovachki, et al.  ’22], …

Non-intrusive Model Order Reduction

12

• RB/POD + Interpolation [Bui-Thanh, Damodaran & Willcox, ’03], 

[Demo, Tezzele & Rozza, ‘19], …

• RB/POD + Regression [M. Guo & Hesthaven, ’18], 

[M. Guo & Hesthaven, ’19], …

• RB/POD + Neural Networks [Wang, Hesthaven & Ray, ‘19], [Barnett, Farhat & Maday, ‘22], 

[Pichi, Ballarin, Rozza & Hesthaven, ‘23], …

• Physics-Reinforced NN [Chen, Wang, Hesthaven & Zhang, ’19]

Linear Methods: 

Nonlinear Methods: 

Adapted from a slide by Federico Pichi (EPFL; presented at International Workshop on MOR at NUS, Singapore, May 2023)



MOTIVATION

In the parametrized PDE setting:
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model in a data assimilation framework (EnKI)?
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for data assimilation (EnKF)?
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PARAMETER ESTIMATION : UNREGULARIZED VARIATIONAL APPROACH

where:

min
!∈#

ℐ % |' ≔
1

2
' − ,- $!"

%

DATA MISFIT WEAK MODEL

ℳ!-, 0 = 0 ∀0 ∈ 5

' = ,-&'() + 7 with noise 7~9(0, Σ)

such that
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ℐ % |' ≔
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%

PARAMETER ESTIMATION : UNREGULARIZED VARIATIONAL APPROACH

where:
DATA MISFIT WEAK MODEL

ℳ!-*, 0 = 0 ∀0 ∈ 5*

' = ,-(%&'()) + 7 with noise 7~9(0, Σ)

such that

>*(%&'()) = ,(-*(%&'()) − -(%&'())) approximated by  >*~9(=>*, Γ*)
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REDUCED BASIS ENSEMBLE KALMAN INVERSION

We sample a particle ensemble of size @ from a prior 

distribution A/ and update their positions as follows:

i)   Compute the model solution for each particle %0
1

:

For B = 0,1, …

-*,0
1
∈ D* such that ℳ

!$
% -*,0

1
, 03 = 0 ∀03 ∈ 5*

Iglesias, Law, and Stuart

“Ensemble Kalman methods 

for inverse problems”

(2013)
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REDUCED BASIS ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size @ from a prior 

distribution A/ and update their positions as follows:

ii) Compute the covariance matrices :

E*,0≔ sum ,-*,0
1

,-*,0
1
− ,H-*,0 ,H-*,0 I (@ − 1)45

J*,0≔ sum %0
1

,-*,0
1
− =%0 ,H-*,0 I (@ − 1)45

⨂

⨂

⨂

⨂

For B = 0,1, …
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We sample a particle ensemble of size @ from a prior 

distribution A/ and update their positions as follows:

For B = 0,1, …

iii) Update each particle %0
1

in the ensemble:

%0,5
(1)

= %0
(1)
+ J*,0 Σ + Γ7 + E*,0

45
' − =>7 − ,-*,0

1

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

where

=>* ≔
5
8
I sum ,(-*,0

1
− -0

1
)

Γ* ≔
5
845

I sum , -*,0
1
− -0

1
, -*,0

1
− -0

1
−=>* =>*⨂ ⨂
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ADVECTION-DISPERSION PROBLEM

K-

KL
− % I ∆- L + N I O- L = 0 on Ω ≔ (−1,+1)% with N =

+sin(AU5)cos(AU%)

−cos(AU5)sin(AU%)

we consider:

• 3 sensor locations

• 40 time-activations per sensor

• L ∈ (0, 2.4)

• % ∈ 1/50, 1/10

- 0 = -/

!!
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ADVECTION-DISPERSION PROBLEM : MODEL ORDER REDUCTION

Employing the weak-greedy-POD approach we

construct a Reduced Basis space of size 42 :

dofs spatial discretization  = 10100     (P2-P2 G)

dofs time discretization r = 241 (P1-P0 PG)

training set size = 81 parameter values

training time = 47s to construct basis (18 evals)

The effectivity of the bound is independent from 

the space dimension and doesn’t exceed a factor 10

21



PARAMETER ESTIMATION  :  ENSEMBLE SIZE

results show a faster convergence to 

the ‘large ensemble behavior’ for the 

reduced basis methods

the adjusted method exhibits a better 

behavior than the biased method

a rapid convergence of the algorithm 

to a stable parameter estimation is 

observed for all cases
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PARAMETER ESTIMATION  :  NOISE MAGNITUDE

results show a linear convergence 

when the exact FO model is employed

the error stagnates when the model 

bias is not corrected in the RB-EnKM 

the adjusted RB-EnKM shows an error 

decay comparable with the FO one
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PARAMETER ESTIMATION  :  REDUCED BASIS SIZE

when the measurements bias is not corrected, 

the relative error is strictly dependent on the 

RB model accuracy

with the bias correction, the performances of 

the method are made independent on the RB.

with 42 bases, one parameter estimation 

takes 8’’ (55’’ considering the offline cost);  

one standard EnKM estimation takes 5’ 58’’
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TRACER TRANSPORT PROBLEM

K[

KL
− ∇ I ]9N N + ]:^ I ∇[ − N I ∇[ = _;

−∇ I `<ℎ∇ℎ = _=

−`<∇ℎ = N=

The EnKM is used to estimate the log-conductivity b,

given the observations of the tracer concentration c, [ :

A POD approximation has been used to efficiently solve

the system of equations. The prior distribution A/ is chosen to be

A/ ≔×3>5
? e(f3

@AB, f3
@CD)

multidimensional 

uniform distribution

c, [

⨂

Conrad, Davis, Marzouk, 

Pillai, Smith. JUQ (2018)
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MODEL ORDER REDUCTION

Employing POD to construct RB spaces 

of size 40 (hydr. head) and 320 (conc.) :

dofs spatial discretization  = 44,972

dofs time discretization r = 50

training set size = 2000 x 50

training time      = 75h

An accurate reconstruction of the hydraulic

head field is essential for the concentration
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PARAMETER ESTIMATION  :  ENSEMBLE SIZE

as expected, a lower estimation error 

is reached with the adjusted method 

than with the biased method

the higher dimensional parameter 

space requires larger ensembles if 

compared to the previous study case
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PARAMETER ESTIMATION  :  NOISE MAGNITUDE

the error stagnates when the model 

bias is not corrected in the RB-EnKM

the adjusted RB-EnKM preserves the 

error decay at low noise magnitudes
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PARAMETER ESTIMATION  :  REDUCED BASIS SIZE

the data bias correction is essential 

to reduce the estimation error

the performance of the adjusted method are 

not independent of the RB size

the estimation error - model accuracy 

relationship seems nearly linear in both cases
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MOTIVATION

In the parametrized PDE setting:

(1) How can we account for the error introduced by the use of a parametric reduced order 

model in a data assimilation framework (EnKI)?

(2) How can we construct efficient (both offline and online) parametric reduced order models 

for data assimilation (EnKF)?

(3) How can we mitigate the effect of using an approximate model on parameter inference (via 

experimental design)? 
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DATA ASSIMILATION 

A Multi-Fidelity Ensemble Kalman Filter  - Data Assimilation31

'B,5 = ,- + 7B,5

EXPERIMENTAL

MEASUREMENTS 

-B,5|B = ℳ-B|B

-B,5|B,5

STATE

UPDATE

EnKF

EnKF

DYNAMICAL

MODEL

R. E. Kalman. "A new approach to linear 

filtering and prediction problems". 

(1960)

[Kal60]



THE ENSEMBLE KALMAN FILTER

A Multi-Fidelity Ensemble Kalman Filter  - Ensemble Kalman Filter32

PREDICT : -B,5|B
(F)

= ℳ-B|B
(F)

(j)



THE ENSEMBLE KALMAN FILTER

A Multi-Fidelity Ensemble Kalman Filter  - Ensemble Kalman Filter33

ghB,5|B = cov -B,5|B
(F)

ESTIMATE :

PREDICT : -B,5|B
(F)

= ℳ-B|B
(F)

(j)



THE ENSEMBLE KALMAN FILTER
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ghB,5|B = cov -B,5|B
(F)

ESTIMATE :

ANALYSE : 

PREDICT :

employing the empirical Kalman gain

-B,5|B
(F)

= ℳ-B|B
(F)

-B,5|B,5
(F)

= -B,5|B
(F)

+ jkB,5 ('B,5 − ,-B,5|B
(F)

)

(j)

jkB,5 = ghB,5|B,
∗(, ghB,5|B,

∗ + l)45



THE ENSEMBLE KALMAN FILTER
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THE ENSEMBLE KALMAN FILTER
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A. Popov, et all. "A multifidelity ensemble Kalman 

filter with reduced order control variates." (2021) 

[PMS21]



THE MULTI-FIDELITY ENSEMBLE KALMAN FILTER 

%&|&
())

Principal

Ensemble
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&%&|&,,
())

Ancillary

Ensemble

A. Popov, et all. "A multifidelity ensemble Kalman 

filter with reduced order control variates." (2021) 

[PMS21]
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A. Popov, et all. "A multifidelity ensemble Kalman 

filter with reduced order control variates." (2021) 

[PMS21]
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A. Popov, et all. "A multifidelity ensemble Kalman 

filter with reduced order control variates." (2021) 

[PMS21]
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ℳ&,,

'&

A. Popov, et all. "A multifidelity ensemble Kalman 

filter with reduced order control variates." (2021) 

[PMS21]
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THE MULTI-FIDELITY ENSEMBLE KALMAN FILTER
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Ensemble
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()&-. = +,&-.|&-
∗(- +,&-.|&-

∗ + /)0.
Control

Ensemble

Ancillary
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ℳ&,,
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A. Popov, et all. "A multifidelity ensemble Kalman 

filter with reduced order control variates." (2021) 

[PMS21]
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THE MULTI-FIDELITY ENSEMBLE KALMAN FILTER : SOME COMPLICATION

Principal

Ensemble
ℳ

FORECAST ANALYSIS

()&-.

'&
()&-.

Control

Ensemble

Ancillary

Ensemble

DATA

%&-.|&-.
())

= %&-.|&
())

+ ()&-.(0&-.
())

−2%&-.|&
)

)

&%
&-.|&-.,,

())
= &%

&-.|&,,

())
+'&

()&-.(0&-.
())

−2&%
&-.|&,,

())
)
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THE MULTI-FIDELITY ENSEMBLE KALMAN FILTER

n=0 n=1 n=2 n =…
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ℳ

'&

ℳ1,,

I%
#

A. Popov, et all. "A multifidelity ensemble Kalman 

filter with reduced order control variates." (2021) 

[PMS21]



A Multi-Fidelity Ensemble Kalman Filter  - MF-EnKF Adaptivity46

THE MULTI-FIDELITY ENSEMBLE KALMAN FILTER
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#

A. Popov, et all. "A multifidelity ensemble Kalman 

filter with reduced order control variates." (2021) 

[PMS21]
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RB MODEL CONSTRUCTION  :  [PMS21]

n=0 n=1 n=2 n =…

tℳ,

one long trajectory is used to 

build offline a global RB model

ℳ, ℳ,

POD

ℳ ℳ ℳ
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RB MODEL CONSTRUCTION  : [PMS21]

n=0 n=1 n=2 n =…
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I"
#

I$
#

I%
#

ℳ,ℳ,

ℳ ℳ ℳ one long trajectory is used to 

build offline a global RB model



A Multi-Fidelity Ensemble Kalman Filter  - MF-EnKF Adaptivity49

RB MODEL CONSTRUCTION  : [PMS21]

n=0 n=1 n=2 n =…
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#

I"
#

I%
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ℳ ℳ ℳ one long trajectory is used to 

build offline a global RB model
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RB MODEL CONSTRUCTION  : [PMS21]

ℳ,

I"
#

one long trajectory is used to 

build offline a global RB model

PROs:

- easy to implement

- can incorporate steady states

CONs:

- suffers initial uncertainty

- leads to large RB models

- might introduce biases

I$
#

I%
#

ℳ, ℳ,

ℳ ℳ ℳ

n=0 n=1 n=2 n =…

t
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n=0 n=1 n=2 n =…

t

ℳ1,,

RB MODEL CONSTRUCTION  : [DY22]

POD

ℳ
I%
#

I"
#

the principal trajectories are used 

to build RB models on-the-fly 

G. Donoghue and M. Yano. "A multi-

fidelity ensemble Kalman filter with 

hyperreduced reduced-order models“. 

(2022)

[DY22]
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n=0 n=1 n=2 n =…
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ℳ1,,

RB MODEL CONSTRUCTION  : [DY22]

POD

ℳ

I"
#

ℳ

ℳ.,,

POD

I$
#

I%
#

the principal trajectories are used 

to build RB models on-the-fly 

G. Donoghue and M. Yano. "A multi-

fidelity ensemble Kalman filter with 

hyperreduced reduced-order models“. 

(2022)

[DY22]
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ℳ1,,

RB MODEL CONSTRUCTION  : [DY22]

the principal trajectories are used 

to build RB models on-the-fly 

PROs:

- leads to small RB models

- doesn’t introduce biases

CONs:

- requires constant retraining

- too little information extracted

(poor accuracy for the RB model)

POD

ℳ

I"
#

ℳ

ℳ2,,

POD

I$
#

I%
#

n=0 n=1 n=2 n =…

t

ℳ

ℳ.,,

POD

[DY22]
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n=0 n=1 n=2 n =…

t

ℳ

RB MODEL CONSTRUCTION  :  PROPOSED APPROACH

I$
#

I"
#

I&
#

I%
#

ℳ,
1

POD

principal and legacy trajectories are 

used to build RB models on-the-fly
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n=0 n=1 n=2 n =…

t

RB MODEL CONSTRUCTION  :  PROPOSED APPROACH

I&
#

I%
#

ℳ

ℳ,
1

ℳ,
.

POD

I$
#

I"
#

principal and auxiliary ancillary 

trajectories are used to build RB 

models on-the-fly
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n=0 n=1 n=2 n =…

t

RB MODEL CONSTRUCTION  :  PROPOSED APPROACH

I%
#

ℳ

ℳ,
.

ℳ,
2

POD

principal and auxiliary ancillary 

trajectories are used to build RB 

models on-the-fly 

PROs:

- retains past model’s information 

- achieves good accuracy

CONs:

- first step is significantly expensive

- large range of RB model sizes

I$
#

I"
#

I&
#



7 x, y, t = 0,

QUASI-GEOSTROPHIC EQUATIONS

A Multi-Fidelity Ensemble Kalman Filter  - Quasi-Geostrophic Equations57

<37 = Ro J 7, @ + <4@ +
56
57
Δ7 + F, 0Δ@ + 7 = 0

find 7 = 7 x, y, t , @ = @ x, y, t such that

given the boundary and initial conditions

(x, y) ∈ <Ω@ x, y, t = 0,

7 x, y, 0 = 71 , (x, y) ∈ Ω

<4@1 +
56
57
Δ71 + F = 0,0Δ@1 + 71 = 0

and

J 7, @ = <4@<87 − <4@<87

Ω

<Ω

0

1

0 1

F = sin(π(y − 1))

x

y

C. Mou, Z. Wang, D. Wells, X. Xie and T. Iliescu. 

"Reduced order models for the quasi-

geostrophic equations: A brief survey." (2020)

[MWW20]

(x, y) ∈ <Ω



QUASI-GEOSTROPHIC EQUATIONS

A Multi-Fidelity Ensemble Kalman Filter  - Quasi-Geostrophic Equations60

high-fidelity physical model constructed considering:

- fully implicit mid-point discretization in time dt = 0.1

- P1 finite elements discretization in space (4225 dofs)

measurement model constructed considering:

- evenly spaced sensor positions (19x19)

- data collection every 10 time-steps

probabilistic model assumes:

- homoscedastic noise P&-.~ R 0, σ2T (σ = 1009)

- normal initial sample distribution 71|1 ~ R 0, ∆0. σ
'
(∆

(
)
)

# eigen

200 400 600 800

10()

10('

10(*

10(+

10(,

<Ω

0

1

0 1

x

y
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#W: ∶ YZ

#W; ∶ YZZ

62



REFERENCES

[Cal+18]          

.

[Kär+18]     

.

[Hec12]

[ILS13]    

. 

[PMQ16] 

.

[SEB10]        

.

M. A. Iglesias, K. J. H. Law, and A. M. Stuart. “Ensemble Kalman methods for inverse 

problems”. In: Inverse Problems 29.4 (2013)

S. Pagani, A. Manzoni, and A. Quarteroni. “A reduced basis ensemble Kalman filter for 

state/parameter identification in large-scale nonlinear dynamical systems” (2016)

P. Sakov, G. Evensen, and L. Bertino. “Asynchronous data assimilation with the EnKF” (2010)

D. Calvetti et al. “Accounting for model error due to unresolved scales within ensemble 

Kalman filtering”. In: Quarterly Journal of the Royal Met. Society (2018)

M. Kärcher et al. “Reduced basis approximation and a posteriori error bounds for 4D-Var 

data assimilation”, In: Optim. Eng. (2018)

F. Hecht. “New development in freefem++”. In: J. Numer. Math (2012)

63



REFERENCES

[DM22] G. Donoghue and M. Yano. "A multi-fidelity ensemble Kalman filter with hyperreduced

reduced-order models“. (2022)

A. Popov, C. Mou, A. Sandu, and T. Iliescu. "A multifidelity ensemble Kalman filter with 

reduced order control variates." (2021) 

C. Mou, Z. Wang, D. Wells, X. Xie and T. Iliescu. "Reduced order models for the quasi-

geostrophic equations: A brief survey." (2020)

M. Strazzullo, F. Ballarin, R. Mosetti, and G. Rozza. "Model Reduction for Parametrized 

Optimal Control Problems in Environmental Marine Sciences and Engineering“ (2018) 

G. Evensen. "The ensemble Kalman filter: Theoretical formulation and practical 

implementation". (2003)

R. E. Kalman. "A new approach to linear filtering and prediction problems". (1960)

. .

[PMS21]

[MWW20]

[SBM18]

[Eve03]

[Kal60]

64



MOTIVATION

In the parametrized PDE setting:

(1) How can we account for the error introduced by the use of a parametric reduced order 

model in a data assimilation framework?

(2) How can we construct efficient (both offline and online) parametric reduced order models 

for data assimilation?

(3) How can we mitigate the effect of using an approximate model on parameter inference  

(via experimental design)? 
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Setup

Y := O �M†(θ†) + ε

M† : Θ ! U true model

θ† 2 Θ true parameter

M†(θ†) 2 U true state

O : U ! R
n observation operator, linear, continuous

ε ⇠ N (0,Σε) noise

y 2 R
n realisation of Y - data

Bayesian inverse problem: specify prior θ ⇠ µθ and

true misfit

Φ
y ,†(θ0) := 1

2ky �O �M†(θ0)k2
Σ

−1
ε

Using Bayes’ law the true posterior on θ

dµ
y ,†
θ

(θ0) :=
exp(�Φy ,†(θ0))

Z (Φy ,†)
dµθ(θ

0)

3
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Approximate posterior

If M† is unknown or expensive it is approximated by M

δ† := M† �M model error

Y := O �M(θ†) + ε

Given prior θ ⇠ µθ, data y , and approximate misfit

Φ
y ,A(θ0) := 1

2ky �O �M(θ0)k2
Σ

−1
ε

approximate posterior

dµ
y ,A
θ

(θ0) :=
exp(�Φ

y ,A(θ0))

Z (Φy ,A)
dµθ(θ

0)

Approximate posterior corresponds to the assumption that

δ† = 0

Question: Can we mitigate the error propagation to posterior?

4
67



Enhanced noise approach

Y = O �M†(θ†) + ε = O �M(θ†) + (O � δ†(θ†)
| {z }

⇡u

+ε)

Assumption: u ⇠ N (mu,Σu), independent of θ ⇠ µθ and

ε ⇠ N (0,Σε).

Ou+ ε ⇠ N (Omu,Σε +OΣuO
⇤)

Enhanced noise misfit and enhanced noise posterior

Φ
y ,E(θ0) := 1

2ky �O �M(θ0)�Omuk
2
(Σε+OΣuO∗)−1

dµ
y ,E
θ

(θ0) :=
exp(�Φ

y ,E(θ0))

Z (Φy ,E)
dµθ(θ

0)

Note: the only unknown that we aim to infer is θ†

5
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Question: How to mitigate the effect of using an approximate

model on parameter inference?

Hint:

I Analyse distances between µ
y ,†
θ

, µ
y ,A
θ

and µ
y ,E
θ

I Answer in terms of selecting an appropriate observation

operator O

6
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Given µ and Φ 2 L1
µ
(E ;R), define µΦ by

dµΦ

dµ
(x 0) =

exp(�Φ(x 0))

Z (Φ)
, Z (Φ) :=

Z
E

exp(�Φ(x 0))dµ(x 0)

Theorem: (Sprungk 2020)

Let µ, Φ1 2 L1
µ
(E ;R�0), and Φ2 2 L1

µ
(E ;R�0). Then

max{dKL(µΦ1
kµΦ2

), dKL(µΦ2
kµΦ1

)}  CkΦ1 � Φ2kL1
µ

7
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Error of µ
y ,A
θ

with respect to µ
y ,†
θ

Proposition: If Φy ,A
,Φy ,† 2 L1

µθ
(Θ,R≥0), then

max{dKL(µ
y ,A
θ

kµ
y ,†
θ

), dKL(µ
y ,†
θ

kµ
y ,A
θ

)} CkkO � δ†k2

Σ
−1
ε

k
1/2

L1
µθ

Interpretation:

I P(O � δ†(θ) = 0) = 1 =) µ
y ,A
θ

= µ
y ,†
θ

I Let V be linear space and δ
† 2 V ( U then

V ✓ ker(O) =) µ
y ,A
θ

= µ
y ,†
θ

Key message: µ
y ,A
θ

can be as good as µ
y ,†
θ

8
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Error of µ
y ,E
θ

with respect to µ
y ,†
θ

Proposition: If Φy ,E
,Φy ,† 2 L1

µθ
(Θ,R≥0), then

max{dKL(µ
y ,†
θ

kµ
y ,E
θ

),dKL(µ
y ,E
θ

kµ
y ,†
θ

)}

 C
�

kkO � (δ† � mu)k
2
Σ

−1
ε

k
1/2

L1
µθ

+ kky �O �M�Omuk
2
Σ

−1
ε −(Σε+OΣuO∗)−1kL1

µθ

�

Interpretation: µ
y ,E
θ

= µ
y ,†
θ

if

1. δ
† � mu 2 ker(O) µθ � a. s.

2. P
�

y �O �M(θ)�Omu 2 ker
�

Σ−1
ε � (Σε +OΣuO

∗)−1
�

= 1

Special case:

I OΣuO
∗ = 0 is a sufficient condition for the second term to

be zero
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Discrepancy between µ
y ,E
θ

and µ
y ,A
θ

Proposition: If Φy ,A
,Φy ,E 2 L1

µθ
(Θ,R≥0), then

max{dKL(µ
y ,A
θ

kµ
y ,E
θ

),dKL(µ
y ,E
θ

kµ
y ,A
θ

)}

 C
�

kOmukΣ−1
ε

+ kky �O �M�Omuk
2

Σ
−1
ε −(Σε+OΣuO

∗)−1kL1
µθ

�

Interpretation: µ
y ,E
θ

= µ
y ,A
θ

if

1. Omu = 0

2. P
�

y �O �M(θ)�Omu 2 ker
�

Σ−1
ε � (Σε +OΣuO

∗)−1
�

= 1

Key message: If µ
y ,E
θ

= µ
y ,A
θ

using µ
y ,A
θ

should be preferred

10
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Example
Consider the IBVP

(∂t + L)w(x , t) =s(x)θ0(t) (x , t) 2 D ⇥ T (PDE �M†)

rw(x , t) · n(x) =0 (x , t) 2 ∂D ⇥ T (BC)

w(x , 0) =b
† (x , 0) 2 D ⇥ {0} (IC)

with
L := �κ∆+ v ·r

for fixed κ > 0, v : D ! R
2, and fixed nonzero s, b† : D ! R, and

θ0 : T ! R

Define M† as M†(θ0) := w(θ0)

Define M(θ0) as a solution w(θ0) of (PDE �M†) with (BC) and IC:

w(x , 0) = 0 (x , 0) 2 D ⇥ {0}

Since δ† = M†
�M, δ†(θ0) := w for

(∂t + L)w(x , t) =0 (x , t) 2 D ⇥ T (PDE-δ†)

with (BC) and (IC)
11
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Example
Define state space

U := C2,1(D ⇥ T ) \ {w satisfies (BC)},

where

C2,1(D ⇥ T ) := {w | w , ∂tw , ∂
β
x w 2 L∞

, for 0 < |β|  2}

Define observation operator O : U ! R
J

O : w 7! ((∂t + L)w(x̂ , tj))
J
j=1

for some x̂ 2 D and tj 2 T

O is linear and continuous

It holds that

{w | w satisfies (PDE-δ†)} ⇢ ker(O)

Therefore

µ
y ,A
θ = µ

y ,†
θ

12
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Summary

I Analysed common approaches for Bayesian inference in the

presence of model error

I approximate posterior
I enhanced noise posterior

I Derived positive and negative criteria for selection of observation

operator

Drawbacks:

I Designing O is problem specific and challenging

I Good O with respect to δ
† may be bad with respect to θ

Advantages:

I General results: nonlinear models, non-Gaussian priors,

KL-divergence

I Mild assumptions: L1
µθ

misfits

13
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