

Tipping points

- Risks of collapse or tipping points exist in a wide variety of complex systems. Climate, medical conditions, pandemics, ecosystems, finance, society, you name it...
- Multiple spatial and temporal scales. Incomplete understanding or uncertainty of the dynamics.
- Predictability is limited. Chaotic nature of the system. Limited resolution in observations.
- Assume dynamics beyond the horizon of prediction as being stochastic. Requires well mixing in state space.
- The stochastic models permit a statistical description.

lide 2/22 — Susanne Ditlevsen — Time scales in early warnings: a probabilistic approach — April 29, 2022

ERSITY OF COPENHAGEN

The goal

- Prediction of the probability of tipping/collapse
- Prediction of the time of tipping
- We need Early Warning Signals!

Early Warning Signals

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF MATHEMATICAL SCIENCE

The bifurcation

For a codimension-one bifurcation (depending on one single parameter λ) there are two generic bifurcations:

- **Saddle-node bifurcation.** The largest eigenvalue of the Jacobian of the dynamics changes sign.
- **Hopf-bifurcation.** A set of complex conjugate eigenvalues crosses the imaginary axis and the stable state is replaced by a limit cycle oscillation.

Under the saddle-node bifurcation scenario we ask the question:

Under which conditions is it possible to obtain an early warning of a forthcoming critical transition?

Control parameter λ

A structural change in the dynamics happens by changing a control parameter λ through a critical value λ_c .

The statistically stable state ceases to exist. The system moves to a different statistically stable state.

The system undergoes a *bifurcation*.

ide 6/22 — Susanne Ditlevsen — Time scales in early warnings: a probabilistic approach — April 29, 202

IMPORTANT: For λ sufficiently close to λ_c it can happen in a limited number of ways independent from the details in the governing dynamics.

THEREFORE: Mathematics/stochastics can provide *general* answers valid for *many* systems.

The bifurcation diagram determines the dynamics

A simple generic model

$$dX_t = -(X_t^2 + \lambda)dt + \sigma dB_t$$

- X_t : Representative observable of a system at time t
- λ : Control parameter, $\lambda \leq 0$. Might change over time
- σ : Amplitude of the noise
- B_t : Standard Brownian motion

```
Risk of a critical transition through a saddle-node bifurcation for \lambda = 0.
```


UNIVERSITY OF COPENHAGEN

DEPARTMENT OF MATHEMATICAL SCIENCES

Early warning signals are statistical

- Increased variance in the fluctuations around the steady state
- Increased autocorrelation of the signal (critical slowing down)

The control parameter λ

Assume linear ramping

$$\lambda(t) = \lambda_0 (1 - \mathbf{1}_{\{t > t_0\}}(t - t_0) / \tau_r)$$

- λ_0 : Static value (negative) of control parameter λ
- t_0 : Unknown time when λ starts increasing
- τ_r : Ramping time constant for the change of λ .

Time of bifurcation equals $t_c := t_0 + \tau_r$ and $\lambda(t_c) = 0$. Tipping happens close to t_c (typically before because of stochastic fluctuations).

QUESTION: How to predict when the tipping happens? Prediction must be based solely on observing the state!

Obviously: If λ_0 , t_0 and τ_r are known, the critical transition is perfectly known and predictable.

de 10/22 — Susanne Ditlevsen — Time scales in early warnings: a probabilistic approach — April 29, 2022

SITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Local approximation with Ornstein-Uhlenbeck process

A linear expansion of the drift term around the steady state $x_+(\lambda)$ yields the approximation

$$X_t = -\alpha(\lambda)(X_t - x_+(\lambda))dt + \sigma dB_t$$

where $\alpha(\lambda) = 2\sqrt{|\lambda|}$ is the mean reversion rate and $x_+(\lambda) = \sqrt{|\lambda|}$ is the stable state.

It has variance

$$\gamma^2 = \sigma^2/2\alpha(\lambda) = \sigma^2/4\sqrt{|\lambda|}$$

and autocorrelation

$$\rho(t) = \exp(-\alpha(\lambda)|t|) = \exp(-2\sqrt{|\lambda|}|t|).$$

Fixed λ : can be estimated by maximum likelihood.

Detection from data

Real time observations of X_t .

A certain observational time window T_{win} is required to detect a significant change in the (quasi-stationary) statistics.

Maximum likelihood theory provides precise estimates. For variance,

$$T_{win} > 2q^2 \left(rac{lpha(t)/\sqrt{lpha_0} + lpha_0/\sqrt{lpha(t)}}{lpha_0 - lpha(t)}
ight)^2,$$

and for autocorrelation,

lide 13/22 — Susanne Ditlevsen — Time scales in early warnings: a probabilistic approach — April 29, 2022

$$T_{win} > 2q^2 \left(rac{\sqrt{lpha_0} + \sqrt{lpha(t)}}{lpha_0 - lpha(t)}
ight)^2
ho_0^{-2}.$$

The time scales involved Time before t_c 350 (70) 300 (60) 250 (50) 200 (40) 150 (30) 100 (20) 50 (10) 200 Mean n-tipping time 5% risk of n-tipping 180 $T_{win}(var)$ $T_{win}(ac)$ 160 140 120 100 Lim 80 60 40 20 -1.4 -1.2 -0.4 -0.2 0 -1 -0.8 -0.6 Slide 15/22 — Susanne Ditlevsen — Time scales in early warnings: a probabilistic approach — April 29, 2022

Detections

Estimation of the tipping point

The variance at time t is:

$$\gamma_t^2 = \frac{\sigma^2}{2\alpha_t} = \frac{\sigma^2}{4\sqrt{\lambda_t}} = \frac{\sigma^2}{4\sqrt{|\lambda_0|(1 - t/\tau_t)^2}}$$

We have estimates $\hat{\gamma}_t^2$ at times t, τ_r is unknown. Define (linear in t!)

$$Y_t = \frac{1}{(\gamma_t^2)^2}; \quad \hat{Y}_t = \frac{1}{(\hat{\gamma}_t^2)^2}.$$
$$Y_t = \frac{4\alpha_t^2}{\sigma^4} = \frac{16|\lambda_0|}{\sigma^4} - \frac{16|\lambda_0|}{\sigma^4\tau_r}t = \beta_0 + \beta_1 t$$

Then

$$\tau_r = -\frac{\beta_0}{\beta_1}; \quad \hat{\tau}_r = -\frac{\hat{\beta}_0}{\hat{\beta}_1}$$

•

is (an estimator of) the time of tipping.

UNIVERSITY OF COPENHAGE

EPARTMENT OF MATHEMATICAL SCIENC

Estimation of the tipping point

$$\hat{\tau}_{r} = \frac{\hat{\beta}_{0}}{\hat{\beta}_{1}}$$

where $\hat{\beta}_0, \hat{\beta}_1$ are estimates obtained by a weighted linear regression of \hat{Y}_t on time.

The variance of \hat{Y}_t depends on $\alpha(t)$ (therefore weighted).

PROBLEM: \hat{Y}_{t_i} and \hat{Y}_{t_j} are not independent, the usual standard errors are not valid.

Use only time points $t_i = T_{win}(i - 1/2), i = 1, ..., k$ to compute more realistic standard errors.

Estimation of the tipping point

Estimation of the tipping point

$$\hat{\tau}_{r} = \frac{\hat{\beta}_{0}}{\hat{\beta}_{1}}$$

ANOTHER PROBLEM: Statistically, the ratio is very unstable...

SOLUTION: Make the inverse regression: time on $1/(\hat{\gamma}_t^2)^2$. Then the intercept is an estimate of τ_r . Good statistical properties!

lide 20/22 — Susanne Ditlevsen — Time scales in early warnings: a probabilistic approach — April 29, 2022

