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Tipping points

• Risks of collapse or tipping points exist in a wide
variety of complex systems. Climate, medical conditions,

pandemics, ecosystems, finance, society, you name it...

• Multiple spatial and temporal scales. Incomplete

understanding or uncertainty of the dynamics.

• Predictability is limited. Chaotic nature of the system.

Limited resolution in observations.

• Assume dynamics beyond the horizon of prediction
as being stochastic. Requires well mixing in state space.

• The stochastic models permit a statistical
description.
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Tipping points
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The goal

• Prediction of the probability of tipping/collapse

• Prediction of the time of tipping

• We need Early Warning Signals!
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Early Warning Signals
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Control parameter λ

A structural change in the dynamics happens by changing
a control parameter λ through a critical value λc .

The statistically stable state ceases to exist. The system
moves to a different statistically stable state.

The system undergoes a bifurcation.

IMPORTANT: For λ sufficiently close to λc it can
happen in a limited number of ways independent from
the details in the governing dynamics.

THEREFORE: Mathematics/stochastics can provide
general answers valid for many systems.
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The bifurcation

For a codimension-one bifurcation (depending on one
single parameter λ) there are two generic bifurcations:

• Saddle-node bifurcation. The largest eigenvalue
of the Jacobian of the dynamics changes sign.

• Hopf-bifurcation. A set of complex conjugate
eigenvalues crosses the imaginary axis and the stable
state is replaced by a limit cycle oscillation.

Under the saddle-node bifurcation scenario we ask the
question:

Under which conditions is it possible to obtain an early
warning of a forthcoming critical transition?
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The bifurcation diagram determines the

dynamics
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A simple generic model

dXt = −(X 2
t + λ)dt + σdBt

Xt : Representative observable of a system at time t

λ : Control parameter, λ ≤ 0. Might change over time

σ : Amplitude of the noise

Bt : Standard Brownian motion

Risk of a critical transition through a saddle-node
bifurcation for λ = 0.
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The control parameter λ

Assume linear ramping

λ(t) = λ0(1− 1{t>t0}(t − t0)/τr )

λ0 : Static value (negative) of control parameter λ

t0 : Unknown time when λ starts increasing

τr : Ramping time constant for the change of λ.

Time of bifurcation equals tc := t0 + τr and λ(tc) = 0.
Tipping happens close to tc (typically before because of
stochastic fluctuations).

QUESTION: How to predict when the tipping happens?
Prediction must be based solely on observing the state!

Obviously: If λ0, t0 and τr are known, the critical
transition is perfectly known and predictable.
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Early warning signals are statistical

• Increased variance in the fluctuations around the
steady state

• Increased autocorrelation of the signal (critical
slowing down)
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Local approximation with

Ornstein-Uhlenbeck process

A linear expansion of the drift term around the steady
state x+(λ) yields the approximation

Xt = −α(λ)(Xt − x+(λ))dt + σdBt

where α(λ) = 2
√

|λ| is the mean reversion rate and

x+(λ) =
√

|λ| is the stable state.

It has variance

γ2 = σ2/2α(λ) = σ2/4
√

|λ|
and autocorrelation

ρ(t) = exp(−α(λ)|t|) = exp(−2
√

|λ||t|).
Fixed λ: can be estimated by maximum likelihood.
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Detection from data

Real time observations of Xt .

A certain observational time window Twin is required to
detect a significant change in the (quasi-stationary)
statistics.

Maximum likelihood theory provides precise estimates.
For variance,

Twin > 2q2

(

α(t)/
√
α0 + α0/

√

α(t)

α0 − α(t)

)2

,

and for autocorrelation,

Twin > 2q2

(√
α0 +

√

α(t)

α0 − α(t)

)2

ρ−2
0 .
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Detections
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The time scales involved
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Can we predict?

ROC curves: variance (solid) or autocorrelation (dashed)
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Blue/red/orange curves are for times 0.3/0.5/0.7 τr .

Panel a: slow ramping, τr = 500.
Panel b: fast ramping, τr = 100.
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Estimation of the tipping point

The variance at time t is:

γ2
t =

σ2

2αt

=
σ2

4
√
λt

=
σ2

4
√

|λ0|(1− t/τr )

We have estimates γ̂2
t at times t, τr is unknown.

Define (linear in t!)

Yt =
1

(γ2
t )2

; Ŷt =
1

(γ̂2
t )2

.

Yt =
4α2

t

σ4
=

16|λ0|
σ4

− 16|λ0|
σ4τr

t = β0 + β1t

Then

τr = −β0

β1

; τ̂r = − β̂0

β̂1

is (an estimator of) the time of tipping.
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Estimation of the tipping point
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Estimation of the tipping point

τ̂r =
β̂0

β̂1

where β̂0, β̂1 are estimates obtained by a weighted linear
regression of Ŷt on time.

The variance of Ŷt depends on α(t) (therefore weighted).

PROBLEM: Ŷti and Ŷtj are not independent, the usual
standard errors are not valid.

Use only time points ti = Twin(i − 1/2), i = 1, . . . , k to
compute more realistic standard errors.
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Estimation of the tipping point

τ̂r =
β̂0

β̂1

ANOTHER PROBLEM: Statistically, the ratio is very
unstable...

SOLUTION: Make the inverse regression: time on
1/(γ̂2

t )
2. Then the intercept is an estimate of τr . Good

statistical properties!
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Estimation of the tipping point

True tipping (bifurcation) point: τr = 1000

Average 95% confidence limits: (796, 1128). Coverage: 76%

Average 5% risk of tipping: 823. Coverage: 96%
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Sea Surface Temperature anomaly,

subpolar gyre area in the North Atlantic
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