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Tipping points

® Risks of collapse or tipping points exist in a wide
variety of complex systems. Climate, medical conditions,

pandemics, ecosystems, finance, society, you name it...

® Multiple spatial and temporal scales. Incomplete
understanding or uncertainty of the dynamics.

® Predictability is limited. Chaotic nature of the system.
Limited resolution in observations.

® Assume dynamics beyond the horizon of prediction
as being stochastic. Requires well mixing in state space.

® The stochastic models permit a statistical
description.
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Tipping points
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The goal
e Prediction of the probability of tipping/collapse
® Prediction of the time of tipping

® We need Early Warning Signals!
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Early Warning Signals
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Control parameter A

A structural change in the dynamics happens by changing
a control parameter \ through a critical value ..

The statistically stable state ceases to exist. The system
moves to a different statistically stable state.

The system undergoes a bifurcation.

IMPORTANT: For X sufficiently close to A. it can
happen in a limited number of ways independent from
the details in the governing dynamics.

THEREFORE: Mathematics/stochastics can provide
general answers valid for many systems.
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The bifurcation

For a codimension-one bifurcation (depending on one
single parameter \) there are two generic bifurcations:

¢ Saddle-node bifurcation. The largest eigenvalue
of the Jacobian of the dynamics changes sign.

® Hopf-bifurcation. A set of complex conjugate
eigenvalues crosses the imaginary axis and the stable
state is replaced by a limit cycle oscillation.

Under the saddle-node bifurcation scenario we ask the
question:

Under which conditions is it possible to obtain an early
warning of a forthcoming critical transition?

DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITY OF COPENHAGEN

The bifurcation diagram determines the

dynamics
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A simple generic model
dX: = —(XZ + \)dt + odB,

X: : Representative observable of a system at time t

A : Control parameter, A < 0. Might change over time
o : Amplitude of the noise

B; : Standard Brownian motion

Risk of a critical transition through a saddle-node
bifurcation for A = 0.
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The control parameter A

Assume linear ramping
A(t) = Ao(1 = Liesroy(t — 1) /7))

Ao : Static value (negative) of control parameter A
to © Unknown time when A starts increasing
7, - Ramping time constant for the change of \.

Time of bifurcation equals t. := ty + 7, and A(t.) = 0.

Tipping happens close to t. (typically before because of
stochastic fluctuations).

QUESTION: How to predict when the tipping happens?
Prediction must be based solely on observing the state!

Obviously: If Ag, ty and 7, are known, the critical
transition is perfectly known and predictable.
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Early warning signals are statistical

® |ncreased variance in the fluctuations around the
steady state

® Increased autocorrelation of the signal (critical
slowing down)
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Local approximation with
Ornstein-Uhlenbeck process

A linear expansion of the drift term around the steady
state x, () yields the approximation

X = —a(A)(Xe — x4 (N\))dt + odB;

where a(\) = 24/|A| is the mean reversion rate and
x4 (A) = /|| is the stable state.

It has variance

7V =0 2a() = 0*/4/A|

and autocorrelation

p(t) = exp(—a(N)]t]) = exp(=2v/]A]]¢]).

Fixed A\: can be estimated by maximum likelihood.
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Detection from data
Real time observations of X;.

A certain observational time window T, is required to
detect a significant change in the (quasi-stationary)
statistics.

Maximum likelihood theory provides precise estimates.
For variance,

o(t)/ /a5 + a0/ /a() |
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and for autocorrelation,
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Detections
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The time scales involved

Time before t.
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Time scales
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Can we predict?

ROC curves: variance (solid) or autocorrelation (dashed)
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Blue/red/orange curves are for times 0.3/0.5/0.7 7,.

Panel a: slow ramping, 7, = 500.
Panel b: fast ramping, 7, = 100.
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Estimation of the tipping point

The variance at time t is:
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We have estimates 42 at times t, 7, is unknown.

Define (linear in t!)
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is (an estimator of) the time of tipping.

Yt -

Then
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Estimation of the tipping point
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Estimation of the tipping point

. _ Do

" A
where BO, ﬂAl are estimates obtained by a weighted linear
regression of Y; on time.
The variance of Y; depends on «(t) (therefore weighted).

PROBLEM: \A/t,. and \A/tj are not independent, the usual
standard errors are not valid.

Use only time points t; = Tyin(i —1/2),i =1,... k to
compute more realistic standard errors.
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ANOTHER PROBLEM: Statistically, the ratio is very
unstable...

SOLUTION: Make the inverse regression: time on
1/(4?)%. Then the intercept is an estimate of 7,. Good
statistical properties!
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Estimation of the tipping point

time on squared inverse variance

Sea Surface Temperature anomaly,

subpolar gyre area in the North Atlantic
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