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Inverse problems play a central role in diverse disciplines:
• Geophysics

• Oceanography

• Atmospheric science

• Medical imaging

with critical applications for humanity’s future, 

e.g., in climate and earth resource modeling.
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Bayesian inference views the inverse problem through a 
probabilistic lens:

• Uncertain model parameters ! ∈ ℝ! are endowed with a prior 
probability distribution

• Measured data, $ ∈ ℝ!!"#, are obtained by applying a forward map, 
%:ℝ! → ℝ!!"#, polluted by additive measurement noise (

• This measurement model defines a likelihood distribution for $|!

m = G(p) + ✏
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Bayesian inference views the inverse problem through a 
probabilistic lens:

• After data $ are obtained, Bayes’ theorem is used to compute a 
posterior distribution for !|$

• The posterior reflects our updated view of the probability of the 
parameters conditioned on the measurements

P(p|m) ∝ P(m|p)P(p)
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In application, computational challenges to the use of Bayesian 
inference are posed by

• high dimensional parameter !

• expensive forward model %

For example: 
• ! is the initial condition of a spatially discretized time-dependent PDE, 

• measurements are obtained at times *" > 0, so that

• evaluating % requires simulating the PDE



Inference problem formulation:
linear dynamical system

Unknown parameter is initial state:

Measurements at ! times "!, … , "" > 0:

where ' ∈ ℝ#×# and * ∈ ℝ#!"#×#
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ẋ(t) = Ax(t), x(0) = p

mi = Cx(ti) + ✏i, ✏i ∼ N (0,Γout)



Inference problem formulation: 
prior, forward model, likelihood

We assume a Gaussian prior: +~- 0, Γ%&

For ! measurements at times "!, … , "", we have:

/ =
*1'($

⋮

*1'(%
, 3)*+ =

Γ),-
⋱

Γ),-

The likelihood is Gaussian: 5|+~- /+, Γ)*+
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Inference problem solution: the posterior

Gaussian prior: +~- 0, Γ%&

Gaussian likelihood: 5|+~- /+, Γ)*+
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Gaussian posterior: +|5~- 7%)+, Γ%)+

where -#$% = Γ#$%%
&Γ$'%

()$, Γ#$% = 0+ Γ#*
() ()

, and 0 = %&Γ$'%
()%.
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Gaussian posterior: +|5~- 7%)+, Γ%)+

where -#$% = Γ#$%%
&Γ$'%

()$, Γ#$% = 0+ Γ#*
() ()

, and 0 = %&Γ$'%
()%.

Challenge: computing the posterior is expensive when

• 8 is high-dimensional (9 is large) and 

• / is only implicitly available through evolving the high-

dimensional dynamical system.

Solution: reduce dimension of 8 and / via 

Balanced truncation for Bayesian inference



Preview
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Balanced truncation can be naturally adapted to Bayesian 

inference for linear dynamics.

We also make connections between

• established system-theoretic model reduction analysis and

• theoretical linear inference results from [Spantini et al. SISC 2015]

to show that, in certain settings, the resulting reduced model 
• is balanced, stable, has a computable error bound, 

• and recovers an optimal posterior covariance approximation.



Background
1. Balanced truncation for linear time-invariant systems

2. Optimal posterior approximation for linear Gaussian inference
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Linear time-invariant (LTI) systems

The system with input : " ∈ ℝ#&',

has infinite reachability and observability Gramians: 
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ẋ(t) = Ax+Bu(t)

y(t) = Fx(t)

P =

Z
1

0

e
AtBB>

e
A

>
t
dt, Q =

Z
1

0

e
A

>
tF>FeAt

dt



Reachability and observability energies

;,< define reachability and observability energies:

• low reachability energy = easy to reach from the origin 
(requiring only small controls)

• high observability energy = easy to observe 
(large contribution to the output)

Goal: retain rank-= subspace of directions that are both easy to 
observe and easy to reach.

13

kxk2P−1 = x>P�1x, kxk2Q = x>Qx



The balanced truncation subspace

The state directions retained by balanced truncation maximize 
the Rayleigh quotient, 

These are the generalized eigenvectors of the pencil <, ;.! :

The > are the Hankel singular values of the LTI system.
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x>Qx

x>P�1x
=

kxk2Q
kxk2

P−1

Qv = δ
2P−1v



Balanced truncation: the reduced model

Balanced truncation obtains a reduced model of size =, 

by transforming to the balanced (generalized eigenvector) basis 
and truncating to the leading = states, so that 
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ẋr(t) = Arxr +Bru(t)

yr(t) = Frx(t)

Ar ∈ R
r×r

, Br ∈ R
r×din

, Fr ∈ R
dout×r



Properties of balanced truncation models

If the original LTI system is linearly stable and minimal, then:

1. The reduced model is balanced: its infinite reachability and 
observability gramians are diagonal and equal.

2. The reduced model is linearly stable.

3. The reduced output error is bounded by:
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ky(t)� yr(t)kL2(R)  2

dX

j=r+1

δjku(t)kL2(R)
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Balanced truncation exploits low-dimensional structure in the 

input-output map of an LTI system to reduce its state dimension.

A different low-dimensional structure arises in many Bayesian 

inference problems: 

• because measured data are only informative in a low-rank 

subspace of the parameter space. 



Background
1. Balanced truncation for linear time-invariant systems

2. Optimal posterior approximation for linear Gaussian inference
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Exploiting low-rank informativeness

Prior: +~- 0, Γ%&

Posterior: +|5~- 7%)+, Γ%)+

Note: Γ%)+ = ?+ Γ%&
.! .!

Thus: Γ%)+ ≼ Γ%&

Γ%)+ shrinks relative to Γ%&
only in directions where data 

is informative

Motivates approximating Γ%)+
by

BΓ%)+ = Γ%& − DD
/

where D is low-rank
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Posterior covariance approximation 

From Spantini et al. SISC 2015:

Seek !Γ!"# in class of rank-# negative semidefinite updates to Γ!$:

Measure approximation quality using Förstner distance for symmetric 
positive definite matrices:

where $% are the generalized eigenvalues of %, ' satisfying 

20

Mr = {Γpr −KK
> : rank(K) ≤ r}

dF (A,B) =
dX

i=1

ln2(σi)

Avi = σiBvi



Posterior covariance approximation 

From Spantini et al. SISC 2015:
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Mr = {Γpr −KK
> : rank(K) ≤ r}

min
M2Mr

dF (Γpos,M) ≡ Γ̂pos = Γpr −K⇤K
>
⇤

Hvi = τ
2
i
Γ
−1
pr vi

Seek !Γ!"# in class of rank-# negative semidefinite updates to Γ!$:

Optimal approximation

determined by generalized eigenvalue problem of (, Γ!$
&' :



Posterior covariance approximation 

From Spantini et al. SISC 2015:
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min
M2Mr

dF (Γpos,M) ≡ Γ̂pos = Γpr −K⇤K
>
⇤

Hvi = τ
2
i
Γ
−1
pr vi

Optimal approximation

determined by generalized eigenvalue problem of (, Γ!$
&' :

Main result (Spantini): optimal covariance update directions of 

D∗ are the dominant eigendirections of the above pencil.



Key connections

Balanced truncation for LTI 
systems:

• Generalized eigenvalue 
problem for 2, 4()

Optimal posterior covariance 
approximation:[Spantini 2015]

• Generalized eigenvalue 
problem for 0, Γ#*

()
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We identify natural analogies between:
• Reachability Gramian 4 and prior covariance Γ#*
• Observability Gramian 2 and Fisher information matrix 0

… to propose a balanced truncation approach for 

Bayesian inverse problems for LTI systems.



Balanced truncation for 
Bayesian inference
Uniting system-theoretic model reduction with linear inference results
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Reachability and the prior covariance

Recall our inference setting:

Suppose we ‘spin up’ the 
system from " = −∞ with 
white noise:

Then, a natural prior is the 
stationary distribution at " = 0:

leading to 

25

ẋ(t) = Ax(t), x(0) = p

dx =

(

Ax dt+B dW(t), t < 0,

Ax dt, t ≥ 0

E[x(0)] = 0,

E[x(0)x>(0)] =

Z
1

0

e
Aτ

BB
>
e
A

>
τ dτ

µpr = 0, Γpr = P



Prior covariance compatibility

Spin-up process can be done for any arbitrary F that we choose.

Can any prior covariance be interpreted this way? No.

Definition: A prior covariance is compatible with the linear 
system dynamics if 

Compatibility allows the prior covariance to be interpreted as a 
reachability Gramian without explicitly defining F.
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AΓpr + ΓprA
>
� 0.



Observability and the Fisher information

Recall our measurement model: $ = %! + ( , (~6 0, Γ$'%

% =
78+,$

⋮

78+,%
, :$'% =

Γ$-.
⋱

Γ$-.

The Fisher information matrix is

Compare to the LTI observability Gramian:
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H = G
>
Γ
�1

obs
G =

nX

i=1

e
A

>
tiC

>
Γ
�1

out
Ce

Ati

Q =

Z
1

0

e
A

>
tF>FeAt

dt



Fisher information:

The limit of continuous observations

Observability Gramian:
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Q =

Z
1

0

e
A

>
tF>FeAt

dtH =

nX

i=1

e
A

>
tiC

>
Γ
�1

out
Ce

Ati

Proposition [Q. et al. Journal of Scientific Computing 2022]:

Summary: Suppose ) = Γ"()
&'/+

+ and the measurement times ,% are 

Δ, apart. Then, as . → ∞ and Δ, → 0, an appropriate 

rescaling of 2 converges to 3.

Significance: Directions of higher observability energy correspond to 

directions most informed by data in an idealized 

measurement model. 



Main idea and result

We propose the use of a balanced truncation reduced model 
based on the pencil <, Γ%&

.! , where

• < = Γ$-.
()/0

7 is used to define the infinite observability Gramian

• Γ#* is a compatible prior covariance

Theorem [Q. et al. Journal of Scientific Computing 2022]: 
• This reduced model is stable, balanced, and has an error bound in 

terms of the tail sum of the Hankel singular values. 

• Further, in the limit of infinite observations, the reduced model leads to 
the Spantini optimal posterior covariance approximation.
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Numerical experiments
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Tests for two model reduction 
benchmarks

Both examples downloadable from slicot.org
1. Heat equation in 1D rod

2. ISS1R structural model – flex modes of Zvezna service module

For both problems, we compare the posterior mean and 
covariance approximations obtained via:

1. The Spantini optimal low-rank update approach based on =, Γ#*
()

2. BT-Q: Our proposed balanced truncation approach based on >, Γ#*
()

3. BT-H: A variant of our proposed BT approach based on =, Γ#*
()
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Heat equation problem
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• ? = @ used to define compatible prior

• True initial condition drawn from prior

• Output is temperature at 2/3 rod length

• Measurements made at 
{Δ*, 2Δ*, … , EΔ* ≡ G}

• 10% measurement noise added to output



Heat equation: idealized measurements
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“near continuous and forever” measurements: 
• Δ2 = 10!" measurement spacing, 6 = 50

• Leads to Δ28 ≈ : with 0.1% relative Frobenius norm error

• BT reduction from ; = 200 to = = 20 yields near-optimal posterior approximation



Heat equation: limited measurements
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Limited coarse measurements: 
• Δ2 = 10!# measurement spacing, 6 = 10

• Leads to Δt8 with 15% Frobenius norm error relative to :

• BT reduction from ; = 200 to = = 20 yields sub-optimal posterior approximation



ISS1R problem
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• Provided input port matrix ? corresponds 
to roll/pitch/yaw jets; this is used to define 
compatible prior

• True initial condition drawn from prior

• Outputs are roll/pitch/yaw gyro readings

• Measurements made at 
{Δ*, 2Δ*, … , EΔ* ≡ G}

• 10% measurement noise added to output
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ISS1R: idealized measurements
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“near continuous and forever” measurements: 
• Δ2 = 10!# measurement spacing, 6 = 300

• Leads to Δ28 ≈ : with 1% relative Frobenius norm error

• BT-Q reduction from ; = 270 to = = 50 yields near-optimal posterior approximation



ISS1R: limited measurements
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Limited coarse measurements: 
• Δ2 = 1 measurement spacing, 6 = 10

• Leads to Δ28 ≈ : with 53% relative Frobenius norm error

• BT-Q reduction from ; = 270 to = = 30 yields sub-optimal posterior approximation



Summary

LTI system theory

• A, C!# generalized eigenvalue problem 
defines balanced truncation model

• Reduced model is stable, balanced, 
subject to computable error bound

Linear Gaussian inference:

• D, Γ$%
!# generalized eigenvalue problem 

defines optimal posterior approximation
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Balanced truncation for Bayesian inference:
• A, Γ$%

!# generalized eigenvalue problem defines reduced model

• stable, balanced, and subject to a computable error bound

• recovers the optimal posterior covariance approximation in certain limits

• cheaply computable and gives accurate posterior approximations in practical settings



Future directions

Workhorse algorithms for Bayesian inference typically require 
1000s of simulations 

model reduction is a key enabler.

Many potential directions result from cross-pollination between 
existing system theory and work in Bayesian inference, including:

• Time-limited balanced truncation: see Josie König’s poster later today!

• Nonlinear methods: see [Zahm et al. 2018] on the Bayesian side and 
[Benner & Goyal] for quadratic BT
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