

Multilevel Monte Carlo Methods for Parametric Expectations: Distribution and Robustness Measures

Sebastian Krumscheid (sebastian.krumscheid@kit.edu) | September 11, 2023

joint work with: Q. Ayoul-Guilmard, S. Ganesh, and F. Nobile

Uncertainty Quantification

Mathematical models describing real-word phenomena are affected by uncertainties and incomplete knowledge.

Aerodynamic design

Rough contact mechanics (Lotus effect, rubber on concrete, ...)

Karlsruhe Institute of Technology

From models to data and back

Reliably using the models requires the study of the impact of all forms of error and uncertainty in models.

Karlsruhe Institute of Technology

From models to data and back

Reliably using the models requires the study of the impact of all forms of error and uncertainty in models.

Model-based (forward) Analysis

Today's focus: Forward Uncertainty Quantification — quantifying the effects of uncertainties on model predictions induced by model/input uncertainties

Forward Propagation of Uncertainties

Random input parameters $\boldsymbol{\xi}$, possibly infinite dimensional

• Model: for ξ given, find u s.t. $\mathcal{M}_{\xi}(u) = 0 \rightsquigarrow$ Quantity of interest: $Q(\xi) = Q(u(\xi))$

Forward Propagation of Uncertainties

Random input parameters $\boldsymbol{\xi}$, possibly infinite dimensional

• Model: for ξ given, find u s.t. $\mathcal{M}_{\xi}(u) = 0 \rightsquigarrow$ Quantity of interest: $Q(\xi) = Q(u(\xi))$

• Goal: compute statistical quantities of *Q* with minimal regularity assumptions.

Forward Propagation of Uncertainties

- **Random input parameters** $\boldsymbol{\xi}$, possibly infinite dimensional
- Model: for ξ given, find u s.t. $\mathcal{M}_{\xi}(u) = 0 \rightsquigarrow$ Quantity of interest: $Q(\xi) = Q(u(\xi))$

• Goal: compute statistical quantities of *Q* with minimal regularity assumptions.

- General purpose method to approximate moments of *Q_h* for *given discretization h*:
 - generate sample of *N* i.i.d. realizations $\boldsymbol{\xi}^{(1)}, \dots, \boldsymbol{\xi}^{(N)} \sim \mathbb{P}_{\boldsymbol{\xi}}$
 - compute corresponding model outputs $Q_h(\boldsymbol{\xi}^{(i)}), i = 1, ..., N$
 - approximate expectation of Q_h by sample average:

$$\mathbb{E}(Q) \approx \mathbb{E}(Q_h) \approx E_N(Q_h) := \frac{1}{N} \sum_{i=1}^N Q_h^{(i)}, \quad Q_h^{(i)} \equiv Q_h(\boldsymbol{\xi}^{(i)}) \text{ i.i.d. realizations}$$

- General purpose method to approximate moments of *Q_h* for *given discretization h*:
 - generate sample of *N* i.i.d. realizations $\boldsymbol{\xi}^{(1)}, \dots, \boldsymbol{\xi}^{(N)} \sim \mathbb{P}_{\boldsymbol{\xi}}$
 - compute corresponding model outputs $Q_h(\boldsymbol{\xi}^{(i)}), i = 1, ..., N$
 - approximate expectation of Q_h by sample average:

$$\mathbb{E}(Q) \approx \mathbb{E}(Q_h) \approx E_N(Q_h) := \frac{1}{N} \sum_{i=1}^N Q_h^{(i)}, \quad Q_h^{(i)} \equiv Q_h(\boldsymbol{\xi}^{(i)}) \text{ i.i.d. realizations}$$

Question: How should we select h and N to ensure a certain accuracy at minimal cost?

- General purpose method to approximate moments of *Q_h* for *given discretization h*:
 - generate sample of *N* i.i.d. realizations $\boldsymbol{\xi}^{(1)}, \dots, \boldsymbol{\xi}^{(N)} \sim \mathbb{P}_{\boldsymbol{\xi}}$
 - compute corresponding model outputs $Q_h(\boldsymbol{\xi}^{(i)}), i = 1, ..., N$
 - approximate expectation of Q_h by sample average:

$$\mathbb{E}(Q) \approx \mathbb{E}(Q_h) \approx E_N(Q_h) := \frac{1}{N} \sum_{i=1}^N Q_h^{(i)}, \quad Q_h^{(i)} \equiv Q_h(\boldsymbol{\xi}^{(i)}) \text{ i.i.d. realizations}$$

Question: How should we select *h* and *N* to ensure a certain *accuracy* at *minimal cost*?
 Mean squared error (MSE) accuracy of Monte Carlo method:

$$\mathsf{MSE} := \mathbb{E}\Big(\big|\mathbb{E}(Q) - E_N(Q_h)\big|^2\Big) = \underbrace{\big(\mathbb{E}(Q) - \mathbb{E}(Q_h)\big)^2}_{\text{squared bias}} + \underbrace{\frac{\mathsf{Var}(Q_h)}{N}_{\text{stat. error}}}_{\text{stat. error}}$$

- General purpose method to approximate moments of *Q_h* for *given discretization h*:
 - generate sample of *N* i.i.d. realizations $\boldsymbol{\xi}^{(1)}, \ldots, \boldsymbol{\xi}^{(N)} \sim \mathbb{P}_{\boldsymbol{\xi}}$
 - compute corresponding model outputs $Q_h(\boldsymbol{\xi}^{(i)}), i = 1, ..., N$
 - approximate expectation of Q_h by sample average:

$$\mathbb{E}(Q) \approx \mathbb{E}(Q_h) \approx E_N(Q_h) := \frac{1}{N} \sum_{i=1}^N Q_h^{(i)}, \quad Q_h^{(i)} \equiv Q_h(\boldsymbol{\xi}^{(i)}) \text{ i.i.d. realizations}$$

Question: How should we select h and N to ensure a certain accuracy at minimal cost?

Mean squared error (MSE) accuracy of Monte Carlo method:

$$\mathsf{MSE} := \mathbb{E}\Big(\big|\mathbb{E}(Q) - E_N(Q_h)\big|^2\Big) = \underbrace{\big(\mathbb{E}(Q) - \mathbb{E}(Q_h)\big)^2}_{\mathsf{squared bias}} + \underbrace{\frac{\mathsf{Var}(Q_h)}{N}_{\mathsf{stat. error}}}_{\mathsf{stat. error}}$$

- That is, the parameters are implied by MSE tolerance with:
 - h dictated by the bias = discretization error of approximate model
 - sample size N given by the statistical error

Monte Carlo: cost vs. accuracy

Lemma: MSE complexity analysis MC (error vs. cost)

Suppose that:

•
$$|\mathbb{E}(Q - Q_h)| = \mathcal{O}(h^{\alpha}),$$

• $\operatorname{Var}(Q_h) = \mathcal{O}(1),$
• $\operatorname{cost}(Q_h^{(i)}) = \mathcal{O}(h^{-\gamma}).$

Achieving MSE $\leq \varepsilon^2$ requires $N = \mathcal{O}(\varepsilon^{-2})$ and $h = \mathcal{O}(\varepsilon^{1/\alpha})$, resulting in

comp. cost MC =
$$N \operatorname{cost}(Q_h) = \mathcal{O}(\varepsilon^{-(2+\gamma/\alpha)})$$
.

Monte Carlo: cost vs. accuracy

Lemma: MSE complexity analysis MC (error vs. cost)

Suppose that: • $|\mathbb{E}(Q - Q_h)| = \mathcal{O}(h^{\alpha}),$ • $\operatorname{Var}(Q_h) = \mathcal{O}(1)$. • $\operatorname{cost}(Q_h^{(i)}) = \mathcal{O}(h^{-\gamma}).$

Achieving MSE $< \varepsilon^2$ requires $N = \mathcal{O}(\varepsilon^{-2})$ and $h = \mathcal{O}(\varepsilon^{1/\alpha})$, resulting in

comp. cost MC = $N \operatorname{cost}(Q_h) = \mathcal{O}(\varepsilon^{-(2+\gamma/\alpha)})$.

• Another error criterion is the **probability of failure**: find (h, N) such that

$$\mathbb{P}ig(|\mathbb{E}(\mathcal{Q}) - \mathcal{E}_{\mathcal{N}}(\mathcal{Q}_{h})| \geq 2arepsilonig) \leq au \;, \quad ext{for } arepsilon > 0 ext{ and } au \in (0,1) \;.$$

• For $\varepsilon \ll 1$, the distribution of $E_N(Q_h)$ can be approximated in view of central limit theorem (CLT) as $Var(Q_h)$ is bounded.

Multilevel Monte Carlo for expected values

• Main idea: use a hierarchy of $L \in \mathbb{N}_0$ discretizations $h_0 > h_1 > \cdots > h_L$, instead of just one fine level:

Karlsruhe Institute of Technology

Multilevel Monte Carlo for expected values

• Main idea: use a hierarchy of $L \in \mathbb{N}_0$ discretizations $h_0 > h_1 > \cdots > h_L$, instead of just one fine level:

• The multilevel Monte Carlo (MLMC) estimator of $\mathbb{E}(Q)$ then is $(Q_{\ell} \equiv Q_{h_{\ell}})$:

$$\mathbb{E}(Q) \approx \mathbb{E}(Q_L) = \mathbb{E}(Q_0) + \sum_{\ell=1}^{L} \mathbb{E}(Q_\ell - Q_{\ell-1}) \approx E_{N_0}(Q_0) + \sum_{\ell=1}^{L} E_{N_\ell}(Q_\ell - Q_{\ell-1}) =: \hat{Q}_{N,L}$$

Karlsruhe Institute of Technology

Multilevel Monte Carlo for expected values

• Main idea: use a hierarchy of $L \in \mathbb{N}_0$ discretizations $h_0 > h_1 > \cdots > h_L$, instead of just one fine level:

• The multilevel Monte Carlo (MLMC) estimator of $\mathbb{E}(Q)$ then is $(Q_{\ell} \equiv Q_{h_{\ell}})$:

$$\mathbb{E}(Q) \approx \mathbb{E}(Q_L) = \mathbb{E}(Q_0) + \sum_{\ell=1}^{L} \mathbb{E}(Q_\ell - Q_{\ell-1}) \approx E_{N_0}(Q_0) + \sum_{\ell=1}^{L} E_{N_\ell}(Q_\ell - Q_{\ell-1}) =: \hat{Q}_{N,L}$$

MSE accuracy of multilevel Monte Carlo method is

$$\mathsf{MSE} \equiv \mathbb{E}\left(\left|\mathbb{E}(Q) - \hat{Q}_{\mathsf{N},L}\right|^{2}\right) = \underbrace{\left(\mathbb{E}(Q) - \mathbb{E}(Q_{L})\right)^{2}}_{\text{squared bias}} + \underbrace{\sum_{\ell=0}^{L} \frac{\mathsf{Var}(Q_{\ell} - Q_{\ell-1})}{N_{\ell}}}_{\text{statistical error}}, \quad Q_{-1} \equiv \mathbf{Q}_{\mathsf{N},L}$$

- Select parameters $L \in \mathbb{N}_0$ and $N \equiv (N_0, N_1, \dots, N_L)^T \in \mathbb{N}^{L+1}$ s.t. MSE criterion is met at minimal cost.
- Optimal parameters by balancing errors:
 - bias = discretization error $\rightsquigarrow L$,
 - determine N_{ℓ} by minimizing $\sum_{\ell=1}^{L} N_{\ell} C_{\ell}$ subject to MSE $\leq \varepsilon^2$,
 - where $C_{\ell} = \text{cost for each}(Q_{\ell}^{(i,\ell)}, Q_{\ell-1}^{(i,\ell)}).$

- Select parameters $L \in \mathbb{N}_0$ and $N \equiv (N_0, N_1, \dots, N_L)^T \in \mathbb{N}^{L+1}$ s.t. MSE criterion is met at minimal cost.
- Optimal parameters by balancing errors:
 - bias = discretization error $\rightsquigarrow L$,
 - determine N_{ℓ} by minimizing $\sum_{\ell=1}^{L} N_{\ell} C_{\ell}$ subject to MSE $\leq \varepsilon^2$,
 - where $C_{\ell} = \text{cost for each}(Q_{\ell}^{(i,\ell)}, Q_{\ell-1}^{(i,\ell)}).$

Theorem: Complexity analysis MLMC for $h_{\ell-1}/h_{\ell} = s > 1$

[Giles, 2008; Cliffe et al., 2011]

Suppose that: • $|\mathbb{E}(Q - Q_{\ell})| = \mathcal{O}(h_{\ell}^{\alpha}),$

•
$$\operatorname{Var}(Q_{\ell} - Q_{\ell-1}) = \mathcal{O}(h_{\ell}^{\beta}),$$

•
$$C_\ell = \mathcal{O}({h_\ell}^{-\gamma}).$$

If $2\alpha \geq \min\{\beta, \gamma\}$, then there exists an MLMC estimator $\hat{Q}_{N,L}$ that satisfies MSE $\leq \varepsilon^2$ with

$$\text{comp. cost MLMC} = \sum_{\ell=1}^{L} N_{\ell} C_{\ell} \lesssim \begin{cases} \varepsilon^{-2} , & \beta > \gamma ,\\ \varepsilon^{-2} \ln(\varepsilon)^{2} , & \beta = \gamma ,\\ \varepsilon^{-\left(2 + \frac{\gamma - \beta}{\alpha}\right)} , & \beta < \gamma . \end{cases}$$

Other error criteria are possible, e.g., tuning MLMC for probability of failure is possible thanks to CLT [Collier et al. 2015], [Hoel, K. 2019].

Assessing the distribution beyond moments

Expectation is a good starting point, but we would like more: assessing the distribution

Assessing the distribution beyond moments

Expectation is a good starting point, but we would like more: assessing the distribution

One could estimate central moments of arbitrary order

$$\mu_{
ho}({\mathcal Q}) := \mathbb{E}ig[ig({\mathcal Q} - \mathbb{E}({\mathcal Q})ig)^{
ho}ig] \ , \quad {oldsymbol p} \in \mathbb{N}$$

with MLMC [Bierig, Chernov. 2016], [K., Nobile, and Pisaroni. 2020]

Assessing the distribution beyond moments

Expectation is a good starting point, but we would like more: assessing the distribution

One could estimate central moments of arbitrary order

 $\mu_{
ho}({\mathcal{Q}}) := \mathbb{E}ig[ig({\mathcal{Q}} - \mathbb{E}({\mathcal{Q}})ig)^{
ho}ig] \ , \quad {oldsymbol
ho} \in \mathbb{N}$

with MLMC [Bierig, Chernov. 2016], [K., Nobile, and Pisaroni. 2020]

However, some applications require techniques that systematically go beyond using a few moments: characterization of entire distribution or applications in risk averse optimization, e.g., involving quantiles

$$rgmin_{z\in\mathbb{R}^d}\mathcal{R}(z)\ ,\quad \mathcal{R}(z)\equiv\mathcal{R}(z;\mathbb{P}_Q)\colon$$
 "risk" of design parameter z

Many such distributional assessments are related to parametric expectations of the form

 $\Phi(artheta) := \mathbb{E}ig(\phi(artheta, oldsymbol{Q})ig) \ , \quad artheta \in \Theta$

Many such distributional assessments are related to parametric expectations of the form

$$\Phi(\vartheta) := \mathbb{E} ig(\phi(artheta, oldsymbol{Q}) ig) \ , \quad artheta \in \Theta$$

Examples:

- 1. Mean & variance: $\phi(\vartheta, Q) = (Q \vartheta)^2 \rightsquigarrow \text{Var}(Q) = \min_{\vartheta} \Phi(\vartheta), \mathbb{E}(Q) = \arg\min_{\vartheta} \Phi(\vartheta)$
- 1. Characteristic function of Q: $\phi(\vartheta, Q) = e^{i\vartheta Q} = \cos(\vartheta Q) + i\sin(\vartheta Q)$
- 2. Cumulative distribution function of *Q*: $\phi(\vartheta, Q) = I(Q \le \vartheta)$

Many such distributional assessments are related to parametric expectations of the form

 $\Phi(artheta) := \mathbb{E}ig(\phi(artheta, oldsymbol{Q})ig) \ , \quad artheta \in \Theta$

Examples:

- 1. Mean & variance: $\phi(\vartheta, Q) = (Q \vartheta)^2 \rightsquigarrow \text{Var}(Q) = \min_{\vartheta} \Phi(\vartheta), \mathbb{E}(Q) = \arg\min_{\vartheta} \Phi(\vartheta)$
- 1. Characteristic function of Q: $\phi(\vartheta, Q) = e^{i\vartheta Q} = \cos(\vartheta Q) + i\sin(\vartheta Q)$
- 2. Cumulative distribution function of *Q*: $\phi(\vartheta, Q) = I(Q \le \vartheta)$

Difficulty for CDF: $\phi(\vartheta, \cdot)$ is **discontinuous**! Consequently, the variance Var $(\phi(\theta_j, Q_\ell) - \phi(\theta_j, Q_{\ell-1}))$ will decay slowly \rightsquigarrow Not much gain in MLMC.

Many such distributional assessments are related to parametric expectations of the form

 $\Phi(artheta) := \mathbb{E}ig(\phi(artheta, oldsymbol{Q})ig) \ , \quad artheta \in \Theta$

Examples:

- 1. Mean & variance: $\phi(\vartheta, Q) = (Q \vartheta)^2 \rightsquigarrow \text{Var}(Q) = \min_{\vartheta} \Phi(\vartheta), \mathbb{E}(Q) = \arg\min_{\vartheta} \Phi(\vartheta)$
- 1. Characteristic function of Q: $\phi(\vartheta, Q) = e^{i\vartheta Q} = \cos(\vartheta Q) + i\sin(\vartheta Q)$
- 2. Cumulative distribution function of *Q*: $\phi(\vartheta, Q) = I(Q \le \vartheta)$

Difficulty for CDF: $\phi(\vartheta, \cdot)$ is **discontinuous**! Consequently, the variance Var $(\phi(\theta_j, Q_\ell) - \phi(\theta_j, Q_{\ell-1}))$ will decay slowly \rightsquigarrow Not much gain in MLMC.

Remedies in the context of MLMC (cf. [Giles. 2023]):

- Regularizing ϕ to yield $\Phi(\vartheta) = \mathbb{E}(\phi(\vartheta, Q)) \approx \mathbb{E}(\phi_{\delta}(\vartheta, Q))$ [Giles, Nagapetyan, Ritter. 2015]
- Approximate CDF (PDF) based on MLMC estimates of moments [Bierig, Chernov. 2016]
- numerical smoothing via conditioning [Bayer, Ben Hammouda, Tempone. 2022]

Remedy for CDF: antiderivative/integration approach [K., Nobile. 2018] Katsuke of Technology

For any $au \in (0, 1)$ define

$$\Phi(artheta) = \mathbb{E}ig(\phi(artheta, oldsymbol{Q})ig) \ , \quad \phi(artheta, oldsymbol{Q}) = artheta + rac{1}{1- au}ig(oldsymbol{Q} - arthetaig)^+ \ .$$

Then

$$F(\vartheta) = (1 - \tau) \Phi'(\vartheta) + \tau \; ,$$

which is the starting point for the MLMC estimator:

 \rightsquigarrow requires effective estimator of Φ and its derivatives.

Remedy for CDF: antiderivative/integration approach [K., Nobile. 2018] Karlsvuh Institute of Technology

For any $au \in (0, 1)$ define

$$\Phi(artheta) = \mathbb{E}ig(\phi(artheta, oldsymbol{Q})ig) \ , \quad \phi(artheta, oldsymbol{Q}) = artheta + rac{1}{1- au}ig(oldsymbol{Q} - arthetaig)^+ \ .$$

Then

$$F(\vartheta) = (1 - \tau) \Phi'(\vartheta) + \tau ,$$

which is the starting point for the MLMC estimator:

 \rightsquigarrow requires effective estimator of Φ and its derivatives.

This approach may also offer approximations for:

- PDF: $f(\vartheta) = F'(\vartheta) = (1 \tau)\Phi''(\vartheta)$
- τ -quantile: $q_{\tau} = \inf\{\vartheta \colon F(\vartheta) \ge \tau\} = \arg\min_{\vartheta \in \mathbb{R}} \Phi(\vartheta)$
- Conditional Value at Risk: $\text{CVaR}_{\tau} = \frac{1}{1-\tau} \int_{q_{\tau}}^{\infty} \vartheta \, dF(\vartheta) = \min_{\vartheta \in \mathbb{R}} \Phi(\vartheta)$

• **Goal:** given ϕ , approximate $\Phi(\vartheta) = \mathbb{E}(\phi(\vartheta, Q))$ and its derivatives uniformly in Θ .

- **Goal:** given ϕ , approximate $\Phi(\vartheta) = \mathbb{E}(\phi(\vartheta, Q))$ and its derivatives uniformly in Θ .
- Idea: extend collection of pointwise estimators in nodes $\theta = (\theta_1, \dots, \theta_n)$ to function:

- **Goal:** given ϕ , approximate $\Phi(\vartheta) = \mathbb{E}(\phi(\vartheta, Q))$ and its derivatives uniformly in Θ .
- **Idea:** extend collection of pointwise estimators in nodes $\theta = (\theta_1, \dots, \theta_n)$ to function:

Interpolation approach (e.g., splines or polynomials):

- introduce grid $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n) \subset \Theta$
- compute MLMC estimate Φ^{MLMC}_L(θ_j) of Φ(θ_j), j = 1,..., n (same samples of Q_ℓ for every θ_j)
- interpolate values $\Phi_{L}^{\text{MLMC}}(\boldsymbol{\theta}) = (\Phi_{L}^{\text{MLMC}}(\theta_{j}))_{j=1}^{n}$: $\hat{\Phi}_{L} = \mathcal{I}_{n}(\Phi_{L}^{\text{MLMC}}(\boldsymbol{\theta}))$

- Goal: given ϕ , approximate $\Phi(\vartheta) = \mathbb{E}(\phi(\vartheta, Q))$ and its derivatives uniformly in Θ .
- Idea: extend collection of pointwise estimators in nodes $\theta = (\theta_1, \dots, \theta_n)$ to function:

Interpolation approach (e.g., splines or polynomials):

- introduce grid $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n) \subset \Theta$
- compute MLMC estimate Φ^{MLMC}_L(θ_j) of Φ(θ_j), j = 1,..., n (same samples of Q_ℓ for every θ_j)
- interpolate values $\Phi_{L}^{\text{MLMC}}(\theta) = (\Phi_{L}^{\text{MLMC}}(\theta_{j}))_{j=1}^{n}$: $\hat{\Phi}_{L} = \mathcal{I}_{n}(\Phi_{L}^{\text{MLMC}}(\theta))$

Exemplary **a-priori properties** for Spline interpolation \mathcal{I}_n :

$$\begin{aligned} & \left\| f^{(m)} - \frac{d^m}{d\vartheta^m} \mathcal{I}_n(f(\theta)) \right\|_{L^{\infty}} \leq c_1 n^{m-(k+1)}, \text{ for any } f \in C^{k+1}(\bar{\Theta}), \, m \leq k \\ & \left\| \mathcal{I}_n(\mathbf{x}) \right\|_{L^{\infty}} \leq c_2 \|\mathbf{x}\|_{\ell^{\infty}}, \text{ for any } \mathbf{x} \in \mathbb{R}^n \\ & \quad \operatorname{cost}(\mathcal{I}_n(\mathbf{x})) \leq c_3 n, \, \mathbf{x} \in \mathbb{R}^n \\ & \quad \left\| \frac{d^m}{d\vartheta^m} \mathcal{I}_n(\mathbf{x}) \right\|_{L^{\infty}} \leq c_5 (n-1)^m \| \mathcal{I}_n(\mathbf{x}) \|_{L^{\infty}}, \, \mathbf{x} \in \mathbb{R}^n, \, m \geq 1 \text{ (inverse inequality)} \end{aligned}$$

Measure accuracy in terms of mean squared error:

$$\mathsf{MSE}(\hat{\Phi}_L^{(m)}) := \mathbb{E}\Big(\left\| \hat{\Phi}_L^{(m)} - \Phi^{(m)} \right\|_{L^\infty}^2 \Big) \;, \quad m \in \mathbb{N}_0 \;, \qquad L^\infty \equiv L^\infty(\Theta)$$

Measure accuracy in terms of mean squared error:

$$\mathsf{MSE}\big(\hat{\Phi}_L^{(m)}\big) := \mathbb{E}\Big(\big\|\hat{\Phi}_L^{(m)} - \Phi^{(m)}\big\|_{L^\infty}^2\Big) \ , \quad m \in \mathbb{N}_0 \ , \qquad L^\infty \equiv L^\infty(\Theta) \ .$$

• Using the notation $\Phi_L = \mathbb{E}(\phi(\cdot, Q_L))$, the MSE can be decomposed as:

$$\mathsf{MSE}(\hat{\Phi}_{L}^{(m)}) \leq 3 \underbrace{\left\| \Phi^{(m)} - \mathcal{I}_{n}^{(m)}(\Phi) \right\|_{L^{\infty}}^{2}}_{squared interpolation error} + 3 \underbrace{\left\| \mathcal{I}_{n}^{(m)}(\Phi - \Phi_{L}) \right\|_{L^{\infty}}^{2}}_{squared bias} + 3 \underbrace{\mathbb{E}\left(\left\| \mathcal{I}_{n}^{(m)}(\Phi_{L} - \Phi_{L}^{\mathsf{MLMC}}) \right\|_{L^{\infty}}^{2} \right)}_{stat. \ error}$$

Measure accuracy in terms of mean squared error:

$$\mathsf{MSE}(\hat{\Phi}_L^{(m)}) := \mathbb{E}\Big(\left\|\hat{\Phi}_L^{(m)} - \Phi^{(m)}\right\|_{L^\infty}^2\Big) , \quad m \in \mathbb{N}_0 , \qquad L^\infty \equiv L^\infty(\Theta) .$$

• Using the notation $\Phi_L = \mathbb{E}(\phi(\cdot, Q_L))$, the MSE can be decomposed as:

$$\mathsf{MSE}(\hat{\Phi}_{L}^{(m)}) \leq 3 \underbrace{\left\| \Phi^{(m)} - \mathcal{I}_{n}^{(m)}(\Phi) \right\|_{L^{\infty}}^{2}}_{squared interpolation error} + 3 \underbrace{\left\| \mathcal{I}_{n}^{(m)}(\Phi - \Phi_{L}) \right\|_{L^{\infty}}^{2}}_{squared bias} + 3 \underbrace{\mathbb{E}\left(\left\| \mathcal{I}_{n}^{(m)}(\Phi_{L} - \Phi_{L}^{\mathsf{MLMC}}) \right\|_{L^{\infty}}^{2} \right)}_{stat. \, error}$$

Parameter selection:

- interpolation error $\rightsquigarrow n$,
- bias $\rightsquigarrow L$,
- cost minimization s.t. variance constraint $\rightsquigarrow N_{\ell}$

Measure accuracy in terms of mean squared error:

$$\mathsf{MSE}(\hat{\Phi}_L^{(m)}) := \mathbb{E}\left(\left\|\hat{\Phi}_L^{(m)} - \Phi^{(m)}\right\|_{L^\infty}^2\right), \quad m \in \mathbb{N}_0, \qquad L^\infty \equiv L^\infty(\Theta).$$

• Using the notation $\Phi_L = \mathbb{E}(\phi(\cdot, Q_L))$, the MSE can be decomposed as:

$$\mathsf{MSE}(\hat{\Phi}_{L}^{(m)}) \leq 3 \underbrace{\left\| \Phi^{(m)} - \mathcal{I}_{n}^{(m)}(\Phi) \right\|_{L^{\infty}}^{2}}_{\mathsf{squared interpolation error}} + 3 \underbrace{\left\| \mathcal{I}_{n}^{(m)}(\Phi - \Phi_{L}) \right\|_{L^{\infty}}^{2}}_{\mathsf{squared bias}} + 3 \underbrace{\mathbb{E}\left(\left\| \mathcal{I}_{n}^{(m)}(\Phi_{L} - \Phi_{L}^{\mathsf{MLMC}}) \right\|_{L^{\infty}}^{2} \right)}_{\mathsf{stat. error}}$$

Parameter selection:

- interpolation error $\rightsquigarrow n$,
- bias $\rightsquigarrow L$,
- cost minimization s.t. variance constraint $\rightsquigarrow N_{\ell}$
- Notation: $\operatorname{Var}(\boldsymbol{\xi}) = \mathbb{E}(\|\boldsymbol{\xi} \mathbb{E}(\boldsymbol{\xi})\|_{\ell^{\infty}}^2)$, for any r.v. $\boldsymbol{\xi}$ with values in \mathbb{R}^n
- Useful technical result: let $(\boldsymbol{\xi}^{(1)}, \dots, \boldsymbol{\xi}^{(N)}) \subset \mathbb{R}^n$ independent, then

$$\operatorname{Var}\left(\sum_{i=1}^{N} \boldsymbol{\xi}^{(i)}\right) \leq c \ln(n) \sum_{i=1}^{N} \operatorname{Var}\left(\boldsymbol{\xi}^{(i)}\right)$$

Theorem: A-priori MSE complexity ($h_{\ell-1}/h_{\ell} = s > 1$) for Spline interpolation [K., Nobile. 2018]

Suppose that: • $\sup_{\vartheta \in \Theta} |\Phi(\vartheta) - \mathbb{E}(\phi(\vartheta, Q_l))| = \mathcal{O}(h_l^{\alpha})$

•
$$\mathbb{E}\left(\left\|\phi(\cdot, Q_l) - \phi(\cdot, Q_{l-1})\right\|_{L^{\infty}(\Theta)}^2\right) = \mathcal{O}(h_l^{\beta}),$$

• cost for each $(Q_{\ell}^{(i,\ell)}, Q_{\ell-1}^{(i,\ell)}) = \mathcal{O}(h_{\ell}^{-\gamma})$

Let m = 0. If $\Phi \in C^{k+1}(\Theta)$ and $2\alpha \ge \min\{\beta, \gamma\}$, then there exists an MLMC estimator $\hat{\Phi}_L$ of Φ such that $MSE(\hat{\Phi}_L) = \mathcal{O}(\varepsilon^2)$ with

$$\text{comp. cost} \lesssim \varepsilon^{-\left(2+\frac{1}{k+1}\right)} |\ln(\varepsilon)| + |\ln(\varepsilon)| \begin{cases} \varepsilon^{-2} , & \beta > \gamma , \\ \varepsilon^{-2} \ln(\varepsilon)^2 , & \beta = \gamma , \\ \varepsilon^{-\left(2+\frac{\gamma-\beta}{\alpha}\right)} , & \beta < \gamma . \end{cases}$$

■ NB: first term accounts for cost of computing interpolation: negligible for heavy computational models; systematically removable by n = n_ℓ (different interpolation grid on each level; Cor. 2.3 in [K., Nobile. 2018]).

Theorem: A-priori MSE complexity ($h_{\ell-1}/h_{\ell} = s > 1$) for Spline interpolation [K., Nobile. 2018]

Suppose that: • $\sup_{\vartheta \in \Theta} |\Phi(\vartheta) - \mathbb{E}(\phi(\vartheta, Q_l))| = \mathcal{O}(h_l^{\alpha})$

•
$$\mathbb{E}\left(\left\|\phi(\cdot, Q_l) - \phi(\cdot, Q_{l-1})\right\|_{L^{\infty}(\Theta)}^2\right) = \mathcal{O}(h_l^{\beta}),$$

• cost for each $(Q_{\ell}^{(i,\ell)}, Q_{\ell-1}^{(i,\ell)}) = \mathcal{O}(h_{\ell}^{-\gamma})$

Let m = 0. If $\Phi \in C^{k+1}(\Theta)$ and $2\alpha \ge \min\{\beta, \gamma\}$, then there exists an MLMC estimator $\hat{\Phi}_L$ of Φ such that $MSE(\hat{\Phi}_L) = \mathcal{O}(\varepsilon^2)$ with

$$\begin{array}{l} \mathsf{comp. cost} \lesssim \varepsilon^{-\left(2+\frac{1}{k+1}\right)} |\mathsf{ln}(\varepsilon)| + |\mathsf{ln}(\varepsilon)| \begin{cases} \varepsilon^{-2} \ , & \beta > \gamma \ , \\ \varepsilon^{-2} \, \mathsf{ln}(\varepsilon)^2 \ , & \beta = \gamma \ , \\ \varepsilon^{-\left(2+\frac{\gamma-\beta}{\alpha}\right)} \ , & \beta < \gamma \ . \end{cases} \end{array}$$

- **NB:** first term accounts for cost of computing interpolation: negligible for heavy computational models; systematically removable by $n = n_{\ell}$ (different interpolation grid on each level; Cor. 2.3 in [K., Nobile. 2018]).
- Neglecting first term: complexity is the same as for expectations, up to extra log factor.

Theorem: A-priori MSE complexity ($h_{\ell-1}/h_{\ell} = s > 1$) for Spline interpolation [K., Nobile. 2018]

Suppose that: • $\sup_{\vartheta \in \Theta} |\Phi(\vartheta) - \mathbb{E}(\phi(\vartheta, Q_l))| = \mathcal{O}(h_l^{\alpha})$

•
$$\mathbb{E}\left(\left\|\phi(\cdot, Q_l) - \phi(\cdot, Q_{l-1})\right\|_{L^{\infty}(\Theta)}^2\right) = \mathcal{O}(h_l^{\beta}),$$

• cost for each $(Q_{\ell}^{(i,\ell)}, Q_{\ell-1}^{(i,\ell)}) = \mathcal{O}(h_{\ell}^{-\gamma})$

Let m = 0. If $\Phi \in C^{k+1}(\Theta)$ and $2\alpha \ge \min\{\beta, \gamma\}$, then there exists an MLMC estimator $\hat{\Phi}_L$ of Φ such that $MSE(\hat{\Phi}_L) = \mathcal{O}(\varepsilon^2)$ with

$$\text{comp. cost} \lesssim \varepsilon^{-\left(2+\frac{1}{k+1}\right)} |\ln(\varepsilon)| + |\ln(\varepsilon)| \begin{cases} \varepsilon^{-2} , & \beta > \gamma , \\ \varepsilon^{-2} \ln(\varepsilon)^2 , & \beta = \gamma , \\ \varepsilon^{-\left(2+\frac{\gamma-\beta}{\alpha}\right)} , & \beta < \gamma . \end{cases}$$

- **NB:** first term accounts for cost of computing interpolation: negligible for heavy computational models; systematically removable by $n = n_{\ell}$ (different interpolation grid on each level; Cor. 2.3 in [K., Nobile. 2018]).
- Neglecting first term: complexity is the same as for expectations, up to extra log factor.
- Similar complexity for Φ analytic and using an interpolation in global polynomials:

$$\begin{array}{ll} {\rm comp.\ cost} \lesssim \varepsilon^{-2} |\ln(\varepsilon)|^4 + |\ln(\varepsilon)|^3 \begin{cases} \varepsilon^{-2} \ , & \beta > \gamma \ , \\ \varepsilon^{-2} \ln(\varepsilon)^2 \ , & \beta = \gamma \ , \\ \varepsilon^{-(2+\frac{\gamma-\beta}{\alpha})} |\ln(\varepsilon)|^{\frac{\gamma-\beta}{\alpha}} \ , & \beta < \gamma \ . \end{cases}$$

Theorem (cont.)

If $\Phi \in C^{k+1}(\Theta)$ and $m \leq k$, then there exists $\hat{\Phi}_L$ such that $MSE(\hat{\Phi}_L^{(m)}) = \mathcal{O}(\varepsilon^2)$:

$$\begin{array}{ll} \text{comp. cost (no interp. cost)} \lesssim |\ln(\varepsilon)| \begin{cases} \varepsilon^{-2\frac{k+1}{k+1-m}}, & \beta > \gamma \ , \\ \varepsilon^{-2\frac{k+1}{k+1-m}} \ln(\varepsilon)^2 \ , & \beta = \gamma \ , \\ \varepsilon^{-\left(2+\frac{\gamma-\beta}{\alpha}\right)\frac{k+1}{k+1-m}}, & \beta < \gamma \ . \end{cases}$$

• Result applies to the approximation of CDF, quantiles and CVaR with m = 1, and with m = 2 for the PDF.

Theorem (cont.)

If $\Phi \in C^{k+1}(\Theta)$ and $m \leq k$, then there exists $\hat{\Phi}_L$ such that $MSE(\hat{\Phi}_L^{(m)}) = \mathcal{O}(\varepsilon^2)$:

$$\begin{array}{ll} \text{comp. cost (no interp. cost)} \lesssim |\text{In}(\varepsilon)| \begin{cases} \varepsilon^{-2\frac{k+1}{k+1-m}}, & \beta > \gamma \ , \\ \varepsilon^{-2\frac{k+1}{k+1-m}} \ln(\varepsilon)^2 \ , & \beta = \gamma \ , \\ \varepsilon^{-\left(2+\frac{\gamma-\beta}{\alpha}\right)\frac{k+1}{k+1-m}}, & \beta < \gamma \ . \end{cases}$$

Result applies to the approximation of CDF, quantiles and CVaR with *m* = 1, and with *m* = 2 for the PDF.
 Again, a similar complexity result is available for Φ analytic:

$$\begin{array}{l} \operatorname{comp. cost} \lesssim \varepsilon^{-2} |\ln(\varepsilon)|^{4(1+m)} + |\ln(\varepsilon)|^{3+4m} \begin{cases} \varepsilon^{-2} , & \beta > \gamma , \\ \varepsilon^{-2} \ln(\varepsilon)^2 , & \beta = \gamma , \\ \varepsilon^{-\left(2 + \frac{\gamma - \beta}{\alpha}\right)} |\ln(\varepsilon)|^{\frac{\gamma - \beta}{\alpha}} (1 + 2m) , & \beta < \gamma . \end{cases}$$

MLMC for CDF, quantile, and CVaR: error control

Recall that key quantities such as the CDF, quantile, and CVaR are all derived from the function

$$\Phi(\vartheta) = \mathbb{E}ig(\phi(artheta, oldsymbol{Q})ig) \quad ext{for} \quad \phi(artheta, oldsymbol{Q}) = artheta + rac{1}{1- au}(oldsymbol{Q} - artheta)^+.$$

However, complexity result with m = 1 applies directly only to Φ'. In fact, it "only" guarantees that MSE(Â[']) = O(ε²). What about these other derived quantities?

MLMC for CDF, quantile, and CVaR: error control

Recall that key quantities such as the CDF, quantile, and CVaR are all derived from the function

$$\Phi(\vartheta) = \mathbb{E} ig(\phi(artheta, oldsymbol{Q}) ig) \quad ext{for} \quad \phi(artheta, oldsymbol{Q}) = artheta + rac{1}{1- au} (oldsymbol{Q} - artheta)^+.$$

However, complexity result with m = 1 applies directly only to Φ'. In fact, it "only" guarantees that MSE(Φ̂') = O(ε²). What about these other derived quantities?

Corollary

For $\tau \in (0, 1)$, let $\hat{\Phi}$ be the MLMC estimator of $\Phi \in C^{k+1}(\Theta)$, $k \ge 1 = m$, so that $MSE(\hat{\Phi}') = \mathcal{O}(\varepsilon^2)$. If the true τ -quantile is an interior point of Θ , then

max{quantile MSE, CVaR MSE, unif. CDF MSE} = $\mathcal{O}(\varepsilon^2)$,

at a cost dominated by $cost(\hat{\Phi}') = cost(CDF \text{ est.}).$

Corollary provides an all-at-once approach for the simultaneous approximation of CDF, quantiles, and CVaR.

Toy example: the characteristic function

Let's consider the toy model to describe a European call option again, i.e., asset follows

$$dS = rS dt + \sigma S dW$$
, $S(0) = S_0$,

• Quantity of interest is the discounted "payoff": $Q := e^{-rT} \max(S(T) - K, 0)$

Toy example: the characteristic function

Let's consider the toy model to describe a European call option again, i.e., asset follows

 $dS = rS dt + \sigma S dW , \quad S(0) = S_0 ,$

- Quantity of interest is the discounted "payoff": $Q := e^{-rT} \max(S(T) K, 0)$
- **But**: *Q* has a *mixed distribution*, in the sense that $\mathbb{P}(Q = 0) > 0$.
- Consequently, its CDF $F_Q := \mathbb{E}(I(Q \le \cdot))$ has a jump discontinuity at the origin:

 \rightsquigarrow we **cannot** guarantee a uniformly accurate MLMC CDF-approximation, if $0 \in \Theta$.

Toy example: the characteristic function

Let's consider the toy model to describe a European call option again, i.e., asset follows

 $dS = rS dt + \sigma S dW , \quad S(0) = S_0 ,$

- Quantity of interest is the discounted "payoff": $Q := e^{-rT} \max(S(T) K, 0)$
- **But**: *Q* has a *mixed distribution*, in the sense that $\mathbb{P}(Q = 0) > 0$.
- Consequently, its CDF $F_Q := \mathbb{E}(I(Q \le \cdot))$ has a jump discontinuity at the origin:

 \rightsquigarrow we **cannot** guarantee a uniformly accurate MLMC CDF-approximation, if $0 \in \Theta$.

But we can guarantee an accurate MLMC approximation of the characteristic function to characterize probability distribution of Q:

$$\varphi_{Q}(\vartheta) = \mathbb{E}(\underbrace{\cos(\vartheta Q)}_{=:\phi_{1}(\vartheta,Q)}) + i \mathbb{E}(\underbrace{\sin(\vartheta Q)}_{=:\phi_{2}(\vartheta,Q)}) \equiv \Phi_{1}(\vartheta) + i \Phi_{2}(\vartheta) ,$$

NB: functions φ_i are smooth, no derivatives required (i.e., m = 0), moment approximations via post-processing possible [K., Nobile. 2018].

• Milstein scheme with $h_{\ell} = 2^{-\ell}T$; $\Theta = [-1, 1]$, $r = \frac{1}{20}$, $\sigma = \frac{1}{5}$, T = 1, $K = 10 = S_0$.

Karlsruhe Institute of Technology

PDE toy example

Consider a simple Poisson equation

$$-\Delta u = f , \quad \text{in } D = (0,1)^2 ,$$

with homogeneous Dirichlet boundary conditions and random forcing term *f* given by $f(x) = -72\xi(x_1^2 + x_2^2 - x_1 - x_2), \xi \sim \chi_1^2$. Quantity of interest: $Q := \int_D u \, dx = \xi$.

Karlsruhe Institute of Technology

PDE toy example

Consider a simple Poisson equation

$$-\Delta u = f$$
, in $D = (0, 1)^2$,

with homogeneous Dirichlet boundary conditions and random forcing term *f* given by $f(x) = -72\xi(x_1^2 + x_2^2 - x_1 - x_2), \xi \sim \chi_1^2$. Quantity of interest: $Q := \int_D u \, dx = \xi$.

We approximate $\Phi(\vartheta) = \vartheta + \frac{1}{1-\tau}\mathbb{E}[(Q-\vartheta)^+]$ with $\tau = 0.95$ on $\vartheta \in \Theta = [0, 10]$ for $k = 3 \rightsquigarrow$ theory predicts $\cot \theta = \mathcal{O}(\varepsilon^{-2.3} \ln(\varepsilon^{-1}))$, appears to be conservative.

Practical bottleneck: a-priori bounds

Asymptotic complexity analysis is based on a-priori upper bounds for error estimates:

$$\frac{\mathsf{MSE}(\hat{\Phi}_{L}^{(m)})}{3} \leq \left\|\Phi^{(m)} - \mathcal{I}_{n}^{(m)}(\Phi)\right\|_{L^{\infty}}^{2} + \left\|\mathcal{I}_{n}^{(m)}(\Phi - \Phi_{L})\right\|_{L^{\infty}}^{2} + \mathbb{E}\left(\left\|\mathcal{I}_{n}^{(m)}(\Phi_{L} - \Phi_{L}^{\mathsf{MLMC}})\right\|_{L^{\infty}}^{2}\right)$$
$$\leq C_{1}(m)^{2}n^{-2(k+1-m)} + C_{2}(m)^{2}(n-1)^{2m}b_{L}^{2} + C_{2}(m)^{2}(n-1)^{2m}\log(n)\sum_{\ell=0}^{L}\frac{V_{\ell}}{N_{\ell}}$$

where $b_L = \|\Phi(\theta) - \Phi_L(\theta)\|_{\ell^{\infty}}$ and $V_\ell = \operatorname{Var}(\phi(\theta, Q_\ell) - \phi(\theta, Q_{\ell-1}))$.

Practical bottleneck: a-priori bounds

Asymptotic complexity analysis is based on a-priori upper bounds for error estimates:

$$\frac{\mathsf{MSE}(\hat{\Phi}_{L}^{(m)})}{3} \leq \left\|\Phi^{(m)} - \mathcal{I}_{n}^{(m)}(\Phi)\right\|_{L^{\infty}}^{2} + \left\|\mathcal{I}_{n}^{(m)}(\Phi - \Phi_{L})\right\|_{L^{\infty}}^{2} + \mathbb{E}\left(\left\|\mathcal{I}_{n}^{(m)}(\Phi_{L} - \Phi_{L}^{\mathsf{MLMC}})\right\|_{L^{\infty}}^{2}\right)$$
$$\leq C_{1}(m)^{2}n^{-2(k+1-m)} + C_{2}(m)^{2}(n-1)^{2m}b_{L}^{2} + C_{2}(m)^{2}(n-1)^{2m}\log(n)\sum_{\ell=0}^{L}\frac{V_{\ell}}{N_{\ell}}$$

where $b_L = \|\Phi(\theta) - \Phi_L(\theta)\|_{\ell^{\infty}}$ and $V_\ell = \operatorname{Var}(\phi(\theta, Q_\ell) - \phi(\theta, Q_{\ell-1})).$

In particular, the *inverse inequality* makes error bound severely conservative. For example, the bias decay:

Refined a-posterior error estimators I: bias

- Starting point: derive error estimators based on *first error splitting* directly:
- Simplifications: interpolation in cubic Splines

Refined a-posterior error estimators I: bias

- Starting point: derive error estimators based on *first error splitting* directly:
- Simplifications: interpolation in cubic Splines
- Error estimator for bias via bivariate kernel smoothing of empirical measure of (Q_L, Q_{L-1}):

$$\begin{aligned} \left\|\mathcal{I}_{n}^{(m)}(\Phi-\Phi_{L})\right\|_{L^{\infty}}^{2} &\approx \frac{1}{s^{\alpha}-1} \left\|\mathcal{I}_{n}^{(m)}(\mathbb{E}(\phi_{L}-\phi_{L-1}))\right\|_{L^{\infty}} \\ \mathcal{I}_{n}^{(m)}(\mathbb{E}(\phi_{L}-\phi_{L-1}))\right\|_{L^{\infty}} &\approx \left\|\mathcal{I}_{n}^{(m)}(\mathbb{E}^{\mathsf{kde}}(\phi_{L}-\phi_{L-1})))\right\|_{L^{\infty}} \end{aligned}$$

where the *bivariate KDE approximates* the joint PDF of $(Q_{\ell}, Q_{\ell-1})$ using the N_{ℓ} correlated samples.

Refined a-posterior error estimators I: bias

- Starting point: derive error estimators based on first error splitting directly:
- Simplifications: interpolation in cubic Splines
- Error estimator for bias via bivariate kernel smoothing of empirical measure of (Q_L, Q_{L-1}):

$$\begin{aligned} \left\|\mathcal{I}_{n}^{(m)}(\Phi-\Phi_{L})\right\|_{L^{\infty}}^{2} &\approx \frac{1}{s^{\alpha}-1} \left\|\mathcal{I}_{n}^{(m)}(\mathbb{E}(\phi_{L}-\phi_{L-1}))\right\|_{L^{\infty}} \\ \mathcal{I}_{n}^{(m)}(\mathbb{E}(\phi_{L}-\phi_{L-1}))\right\|_{L^{\infty}} &\approx \left\|\mathcal{I}_{n}^{(m)}(\mathbb{E}^{\mathsf{kde}}(\phi_{L}-\phi_{L-1})))\right\|_{L^{\infty}} \end{aligned}$$

where the *bivariate KDE approximates* the joint PDF of $(Q_{\ell}, Q_{\ell-1})$ using the N_{ℓ} correlated samples.

A-posteriori bias error estimation:

Refined a-posterior error estimators II: statistical error

Idea: Statistical error estimator via bootstrapping MLMC estimators:

• "Observation": an MLMC estimator is defined through the hierarchy of samples

$$\left\{\{Q_{\ell}^{(i,\ell)}, Q_{\ell-1}^{(i,\ell)}\}_{i=1}^{N_{\ell}}\right\}_{\ell=0}^{L}$$

• Bootstrap principle: resample $N_{bs} \gg 1$ "new" MLMC estimators Ψ_j

$$\mathbb{E}\big(\big\|\mathcal{I}_n^{(m)}(\Phi_L - \Phi_L^{\texttt{MLMC}})\big\|_{L^\infty}^2\big) \approx \frac{1}{N_{\texttt{bs}}} \sum_{j=1}^{N_{\texttt{bs}}} \big\|\mathcal{I}_n^{(m)}(\Psi_j(\theta) - \bar{\Psi}(\theta)\big\|_{L^\infty}^2$$

A-posteriori statistical error estimation:

Implication for an (adaptive) MLMC implementation

• A-priori bounds yield error estimator that is convenient for an (adaptive) implementation:

$$\mathbb{E}\big(\left\|\mathcal{I}_{n}^{(m)}(\Phi_{L}-\Phi_{L}^{\mathsf{MLMC}})\right\|_{L^{\infty}}^{2}\big) \leq K(n,m)\sum_{\ell=0}^{L}\frac{V_{\ell}}{N_{\ell}} \approx K(n,m)\sum_{\ell=0}^{L}\frac{\hat{V}_{\ell}}{N_{\ell}}$$

The a-posterior error bound does not provide level-wise errors

$$\mathbb{E}\big(\left\|\mathcal{I}_{n}^{(m)}(\Phi_{L}-\Phi_{L}^{\text{MLMC}})\right\|_{L^{\infty}}^{2}\big)\approx\frac{1}{N_{\text{bs}}}\sum_{j=1}^{N_{\text{bs}}}\left\|\mathcal{I}_{n}^{(m)}(\Psi_{j}(\theta)-\bar{\Psi}(\theta)\right\|_{L^{\infty}}^{2}=:\left(\hat{\boldsymbol{e}}_{a-\text{post}}^{(m)}\right)^{2}$$

• Rescaling idea: we aim for redefined levelwise variances \tilde{V}_{ℓ} such that $\left(\hat{e}_{a-post}^{(m)}\right)^2 = \sum_{\ell=0}^{L} \frac{\tilde{V}_{\ell}}{N_{\ell}}$

Lemma

There exist positive constants $\mathfrak{K}_1(n)$ and $\mathfrak{K}_2(n)$: $\mathfrak{K}_1(n) \sum_{\ell=0}^{L} \frac{V_\ell}{N_\ell} \leq \sum_{m=0}^{2} k_m \left(\hat{e}_{exact}^{(m)}\right)^2 \leq \mathfrak{K}_2(n) \sum_{\ell=0}^{L} \frac{V_\ell}{N_\ell}$

1

Rescaling heuristic:
$$\tilde{V}_{\ell} = r_e \hat{V}_{\ell}$$
, $r_e = rac{\sum_{k=0}^{2} k_m \left(\hat{e}_{k\text{-post}}^{(m)} \right)}{\sum_{k=0}^{L} \hat{V}_k / N_k}$

Computational Example

In [Ayoul-Guilmarda, Ganesh, K., Nobile. 2023] we combine these with an adaptive, *continuation MLMC framework* for an efficient implementation (Python library XMC) that can be tuned to target CDF, VaR, or CVaR.

Computational Example

In [Ayoul-Guilmarda, Ganesh, K., Nobile. 2023] we combine these with an adaptive, *continuation MLMC framework* for an efficient implementation (Python library XMC) that can be tuned to target CDF, VaR, or CVaR.

Example: (steady incompressible) Navier-Stokes Flow over a Cylinder in a Channel

Computational Example

In [Ayoul-Guilmarda, Ganesh, K., Nobile. 2023] we combine these with an adaptive, *continuation MLMC framework* for an efficient implementation (Python library XMC) that can be tuned to target CDF, VaR, or CVaR.

Example: (steady incompressible) Navier-Stokes Flow over a Cylinder in a Channel

24/25 DA Days 2023 Sebastian Krumscheid: MLMC for Parametric Expectations

Take home message:

- we introduced a uniformly accurate MLMC estimator for a parametric expectation and its derivatives
- the approach enables approximating the characteristic function as well as CDF, PDF, VaR, and CVaR
- refined, a-posterior error estimates are required for computationally "heavy" problems when derivatives are required.

Take home message:

- we introduced a uniformly accurate MLMC estimator for a parametric expectation and its derivatives
- the approach enables approximating the characteristic function as well as CDF, PDF, VaR, and CVaR
- refined, a-posterior error estimates are required for computationally "heavy" problems when derivatives are required.

Thank you for your attention.

Further details:

SK and F. Nobile. Multilevel Monte Carlo Approximation of Functions. *SIAM/ASA J. Uncertain. Quantif.*, **3**(6):1256–1293, 2018.

Q. Ayoul-Guilmard, S. Ganesh, SK, and F. Nobile. Quantifying uncertain system outputs via the multi-level Monte Carlo method – distribution and robustness measures. *Int. J. Uncertain. Quantif.*, **13**(5):61–98, 2023.