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Stein Discrepancy (informal)

A Stein discrepancy is a statistical divergence

DP(π) ≥ 0 with equality if and only if π = P

which can be computed without the normalisation constant of P.

Stein discrepancies are useful addition to the statistical and computational toolkit:

Posterior Approximation Intractable Likelihood

argmin
π

DP(π) argmin
θ

DPθ (Pn)

▶ thinning Markov chain Monte Carlo (MCMC)
output [Riabiz et al., 2022]

▶ importance sampling [Liu and Lee, 2017,
Hodgkinson et al., 2020]

▶ variational inference [Ranganath et al., 2016,
Fisher et al., 2021]

▶ . . .

▶ goodness-of-fit testing [Liu et al., 2016,
Chwialkowski et al., 2016]

▶ parameter estimation [Barp et al., 2019,
Matsubara et al., 2022]

▶ . . .
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Case Study: Stein Importance Sampling

Stein Importance Sampling

1. Generate (x1, . . . , xn) ∼ P.
2. Compute optimal weights

w⋆ ∈ argmin
{
DP

(∑n
i=1 wiδ(xi )

)
: 0 ≤ w , w⊤1 = 1

}
.

3. Return the approximation P⋆
n =

∑n
i=1 w

⋆
i δ(xi ).

Properties:

▶ Consistency DP(P
⋆
n )

L2(P)→ 0 [Hodgkinson et al., 2020] and strong consistency DP(P
⋆
n )

as→ 0 [Riabiz
et al., 2022] when P is Π-invariant MCMC with Π ≈ P.

▶ Remarkable empirical performance on sufficiently nice P (see next slide).

Questions:

▶ How to select P?
▶ I cannot access gradients of P, is this a problem?
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Case Study: Stein Importance Sampling

Figure: A 20-dimensional Gaussian target, with (biased) samples generated from the tamed unadjusted Langevin
algorithm (TULA). Reproduced from Hodgkinson et al. [2020].
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Kernel Stein Discrepancies

For a symmetric positive definite function k : Rd × Rd → R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k).

(e.g. the inverse multi-quadric kernel k(x , y) = (1 + ∥x − y∥2)−1/2)

(e.g.
∑n

i=1 wik(·, xi ) ∈ H(k))
Let Pk(Rd) be the set of P ∈ P(Rd) for which H(k) ⊂ L1(P).

The kernel mean embedding is the map

µ : Pk(Rd) → H(k)

P 7→ µP(·) :=
∫

k(·, x) dP(x)

A kernel is called a Stein (reproducing) kernel for P if µP = 0, and write k ≡ kP to emphasise that.

Definition (Kernel Stein Discrepancy)

Let kP be a Stein kernel for P ∈ P(Rd). The associated kernel Stein discrepancy (KSD) is

DP(Q) = ∥µP(Q)∥H(kP )

for Q ∈ PkP (R
d).
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A kernel is called a Stein (reproducing) kernel for P if µP = 0, and write k ≡ kP to emphasise that.

Definition (Kernel Stein Discrepancy)

Let kP be a Stein kernel for P ∈ P(Rd). The associated kernel Stein discrepancy (KSD) is

DP(Q) = ∥µP(Q)∥H(kP ) = sup

{∫
h dQ : ∥h∥H(kP ) ≤ 1

}
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for Q ∈ PkP (R
d). Computationally convenient.



A Novel Approach to Selecting Π

Problem: The components of w⋆ are strongly inter-dependent.

Solution: Consider weights that are near-optimal and whose components are only weakly dependent.

Self-normalised importance sampling (SNIS) is the approximation

Pn =
n∑

i=1

wiδ(xi ), wi ∝
dP

dΠ
(xi ), x1, . . . , xn

IID∼ Π

satisfies w ≥ 0 and 1⊤w = 1, so that DP(P
⋆
n ) ≤ DP(Pn).

The asymptotic behaviour of SNIS can be characterised:

DP(Pn) =

∥∥∥∥ ξn√
n

∥∥∥∥
H(k)

, ξn :=
√
n

n∑
i=1

wikP(·, xi ) =
1√
n

∑n
i=1

dP
dΠ

(xi )kP(·, xi )
1
n

∑n
i=1

dP
dΠ

(xi )

d→ N (0, CΠ)

where CΠ : H(kP) → H(kP) is the covariance operator defined via

⟨f , CΠg⟩H(kP ) =

∫ 〈
f ,

dP

dΠ
(x)kP(·, x)

〉
H(kP )

〈
g ,

dP

dΠ
(x)kP(·, x)

〉
H(kP )

dΠ(x).
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A Novel Approach to Selecting Π

Idea: Select Π such that tr(CΠ) is minimised.

The variational problem

argmin
Π

tr(CΠ), tr(CΠ) =

∫
dP

dΠ
(x)2kP(x , x) dΠ(x)

has solution (dΠ/dP)(x) ∝
√

kP(x , x). Π can also be sampled using MCMC

Thus Π is adapted to the Stein kernel / KSD:

Figure: Illustrating our choice of Π in 2D.
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A Novel Approach to Selecting Π

Figure: The mean kernel Stein discrepancy (KSD) for computation performed using the Langevin–Stein kernel
(purple), the KGM3–Stein kernel (blue), and the Riemann–Stein kernel (red); in each case, KSD was computed
using the same Stein kernel used to construct Π.



Theoretical Guarantees

Question: Is Stein Π-Importance Sampling consistent?

Idea: Leverage the analysis of SΠIS in Riabiz et al. [2022] and the explicit conditions for ergodicity of
MALA in Durmus and Moulines [2022].

Theorem (Strong consistency of SΠIS-MALA)

Assume that

1. ∇ log p ∈ C 2(Rd) with supx∈Rd ∥∇2 log p(x)∥ < ∞ (bounded second derivative)

2. −∇2 log p(x) ⪰ b1I for all ∥x∥ ≥ B1 (sub-Gaussian tail)
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Performance Assessment with PosteriorDB and BridgeStan

Langevin Kernel Stein Discrepancy KGM3 Kernel Stein Discrepancy

Task d MALA
SIS

-MALA
SΠIS

-MALA
MALA

SIS
-MALA

SΠIS
-MALA

earnings-earn height 3 1.41 0.0674 0.0332 5.33 0.656 0.181
gp pois regr-gp regr 3 0.298 0.0436 0.0373 1.22 0.385 0.223
kidiq-kidscore momhs 3 1.04 0.109 0.0941 4.66 0.848 0.476
kidiq-kidscore momiq 3 5.03 0.516 0.358 25.3 4.86 1.55

mesquite-logmesquite logvolume 3 1.10 0.179 0.156 4.97 1.70 0.844
arma-arma11 4 4.47 1.09 1.01 26.0 8.91 6.03

earnings-logearn logheight male 4 9.46 1.96 1.59 53.9 15.4 8.65
garch-garch11 4 0.543 0.159 0.130 4.70 1.16 1.01

kidiq-kidscore momhsiq 4 5.21 0.982 0.897 29.3 7.25 5.05
earnings-logearn interaction z 5 3.09 1.36 1.33 19.3 10.4 8.94
kidiq-kidscore interaction 5 7.74 1.65 1.79 47.8 13.2 10.1

kidiq with mom work-kidscore interaction c 5 1.35 0.659 0.711 7.92 4.05 4.17
kidiq with mom work-kidscore interaction c2 5 1.38 0.689 0.699 8.09 4.24 4.25
kidiq with mom work-kidscore interaction z 5 1.11 0.500 0.499 6.62 2.63 3.25
kidiq with mom work-kidscore mom work 5 1.07 0.507 0.545 6.70 2.63 3.04
low dim gauss mix-low dim gauss mix 5 5.51 1.87 1.76 37.5 14.7 11.3

mesquite-logmesquite logva 5 1.83 0.821 0.818 12.6 5.73 5.59
hmm example-hmm example 6 1.99 0.578 0.523 11.6 4.13 3.40

sblrc-blr 6 479 154 134 3300 1100 854
sblri-blr 6 201 66.7 60.3 1340 514 595
arK-arK 7 6.87 3.39 3.16 60.4 26.4 23.0

mesquite-logmesquite logvash 7 1.89 1.18 1.23 15.5 8.88 10.1
bball drive event 0-hmm drive 0 8 1.15 0.679 0.698 8.55 4.72 3.99
bball drive event 1-hmm drive 1 8 42.9 11.9 12.4 285 85.6 67.8
hudson lynx hare-lotka volterra 8 4.62 2.29 2.15 47.4 18.8 18.9

mesquite-logmesquite 8 1.46 1.00 1.06 13.3 8.28 9.14
mesquite-logmesquite logvas 8 2.02 1.31 1.35 19.2 10.8 12.2

mesquite-mesquite 8 0.429 0.268 0.235 3.71 2.17 2.42
eight schools-eight schools centered 10 0.526 0.100 0.182 7.53 2.15 215

eight schools-eight schools noncentered 10 0.210 0.137 0.137 43.6 28.7 27.5
nes1972-nes 10 6.16 3.89 3.45 72.9 36.2 34.4
nes1976-nes 10 6.67 3.86 3.53 77.5 35.5 34.4
nes1980-nes 10 4.34 2.68 2.57 49.8 25.4 25.7
nes1984-nes 10 6.18 3.75 3.43 71.3 34.9 33.6
nes1988-nes 10 7.40 3.70 3.27 81.4 34.6 32.4
nes1992-nes 10 7.52 4.32 3.84 89.1 39.7 37.3
nes1996-nes 10 6.44 3.87 3.53 74.1 36.4 34.3
nes2000-nes 10 3.35 2.22 2.20 38.6 21.3 22.8

diamonds-diamonds 26 196 157 143 5120 2990 2620
mcycle gp-accel gp 66 11.3 8.25 9.79 960 623 815

Improvement on ≈ 70% of
tasks in PosteriorDB
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Gradient-Free Kernel Stein Discrepancy

Question: How to construct a Stein kernel?

The Langevin–Stein kernel kP is defined as

H(kP) = SPH(k), SPh :=
1

p
∇ · (p∇h).

It is a popular choice since it

▶ does not require the normalisation constant of P

▶ has weak convergence control: DP(Qn) → 0 implies Qn
d→ P [Gorham and Mackey, 2017]

However, all existing Stein kernels require that the gradient ∇ log p

▶ exists, and

▶ can be efficiently computed.

Question: Can we construct a Stein kernel without taking a gradient?
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Gradient-Free Kernel Stein Discrepancy

Our starting point is a gradient-free Stein operator, introduced in Han and Liu [2018] in the context of
Stein variational gradient descent [Liu and Wang, 2016]:

Definition (Gradient-Free Stein Operator)

For P,Q ∈ P(Rd) with Q ≪ P and ∇ log q well-defined, the gradient-free Stein operator is defined as

SP,Qh :=
q

p
(∇ · h+ h · ∇ log q) ,

acting on differentiable functions h : Rd → Rd .

Remarks:

▶
∫
SP,Qh dP = 0 for suitably ‘nice’ h : Rd → Rd (

∫
SP,Qh dP =

∫
SQh dQ)

▶ if Q ̸= P, the dependence on the derivatives of p is removed

▶ Q is an additional degree of freedom - this can be good and bad

▶ the canonical (or Langevin) Stein operator is recovered when P = Q

Now to create a discrepancy ...
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▶ Q is an additional degree of freedom - this can be good and bad

▶ the canonical (or Langevin) Stein operator is recovered when P = Q
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Definition (Gradient-Free Kernel Stein Discrepancy)

For π ∈ P(Rd), the gradient-free kernel Stein discrepancy is defined as

DP,Q(π) =
(∫∫

kP,Q(x , y) dπ(x)dπ(y)
)1/2

where the gradient-free Stein kernel kP,Q is defined as H(kP,Q) = SP,Q [H(k)× · · · × H(k)].

This is well-defined if there is an α > 1 such that

▶
∫
(q/p)α dπ < ∞ and

▶
∫
∥∇ log q∥α/(α−1) dπ < ∞ ,

which are quite trivial when π is finitely supported. Call these “weak regularity conditions” (WRC).

GF-KSD is computable up to proportionality when p has an intractable normalising constant (like
KSD).

But is this a useful discrepancy?
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Theoretical Justification for GF-KSD

For measurable g : Rd → R, we follow Huggins and Mackey [2018] and denote the tilted Wasserstein
distance as

W1(π,P; g) := sup
Lip(f )≤1

∣∣∣∣∫ fg dπ −
∫

fg dP

∣∣∣∣
whenever this expression is well-defined.

Theorem (GF-KSD Detects Convergence)

Let P,Q ∈ P(Rd) with Q ≪ P, ∇ log q Lipschitz and
∫
∥∇ log q∥2 dQ < ∞.

Assume the sequence (πn)n∈N ⊂ P(Rd) satisfies WRC.

Then
W1(πn,P; q/p) → 0 ⇒ DP,Q(πn) → 0.
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Theoretical Justification for GF-KSD

Main condition on q: Let Q(Rd) denote the set of probability distributions with positive density
function q : Rd → (0,∞) for which ∇ log q is Lipschitz and q is strongly log-concave outside (and on
the boundary of) a compact set.

(implies Q-invariant overdamped Langevin mixes fast)

Theorem (GF-KSD Controls Convergence)

Let P ∈ P(Rd), Q ∈ Q(Rd) be such that p is continuous and infx∈Rd q(x)/p(x) > 0.

Assume the sequence (πn)n∈N ⊂ P(Rd) satisfies WRC.

Then
DP,Q(πn) → 0 ⇒ πn

d→ P.

The proof is based on re-casting GF-KSD as standard KSD between Q and a transformed distribution
π̄, then appealing to the analysis of Gorham and Mackey [2017].
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Application #1: Gradient-Free Stein Importance Sampling

To date, applications of Stein importance sampling have been limited to instances where the statistical
model p can be differentiated; our contribution is to remove this requirement.

Theorem (Gradient-Free Stein Importance Sampling)

Let P ∈ P(Rd), Q ∈ Q(Rd), p continuous, inf q/p > 0, and
∫
exp{γ∥∇ log q∥2} dQ < ∞.

Let (xn)n∈N be independent samples from Q.

To the sample, assign optimal weights

w⋆ ∈ argmin
{
DP,Q

(∑n
i=1 wiδ(xi )

)
: 0 ≤ w , w⊤1 = 1

}
.

Then
n∑

i=1

w⋆
i δ(xi )

d→ P a.s. as n → ∞.
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Application #2: Stein Variational Inference Without Second Order Gradient

KSD is an appealing alternative to KLD for VI because it does not require the variational family to be
absolutely continuous with respect to P, unlike KLD.

However, KSD requires second-order gradients of p to be computed [Fisher et al., 2021]; our
contribution is to remove this requirement.

An interesting methodological extension is to take Q = Pθn to be the ‘current approximation’ to p
along the stochastic optimisation path.
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Summary

Stein discrepancies have given rise to a new generation of computational methods!

This raises many interesting research questions:

▶ explore the interplay between the choice of Stein discrepancy and the sampling method

▶ identify when one of the failure modes of KSD / GF-KSD has occurred

▶ extend to spaces other than Rd

Full details are contained in the preprints

Wang C, Chen WY, Kanagawa H, CJO. Stein Π-Importance Sampling, arXiv:2305.10068

Fisher MA and CJO. Gradient-Free Kernel Stein Discrepancy, arXiv:2207.02636

Thank you for your attention!
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