

UNIVERSITY OF COPENHAGEN

Likelihood Inference for SDE-models

with applications in Biology and Geophysics

Michael Sørensen Department of Mathematical Sciences

Potsdam Data Assimilation Days, 11 - 13 September 2023 Slide 1/37

Likelihood function for discrete time observations

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t \qquad \theta \in \Theta \subseteq \mathbb{R}^{\rho}$$

X, b and W d-dimensional, $\sigma d \times d$ -matrix

Data: $X_{t_0}, \dots, X_{t_n}, 0 = t_0 < \dots < t_n$

Likelihood-function:

$$L_n(\theta) = \prod_{i=1}^n p(\Delta_i, X_{t_{i-1}}, X_{t_i}; \theta), \quad \Delta_i = t_i - t_{i-1}$$

 $X_{\Delta} | X_0 = x \sim p(\Delta, x, \cdot; \theta)$

Bayesian estimation for diffusion processes

$$dX_t = \alpha(X_t; \theta) dt + \sigma(X_t) dW_t$$

Data: $D = (X_{t_0}, ..., X_{t_n}), t_0 = 0$

Partial observation of $\mathbf{X}_{t_n} = (X_t)_{0 \le t \le t_n}$

Bayesian estimation for diffusion processes

$$dX_t = \alpha(X_t; \theta) dt + \sigma(X_t) dW_t$$

Data:
$$D = (X_{t_0}, ..., X_{t_n}), t_0 = 0$$

Partial observation of $\mathbf{X}_{t_n} = (X_t)_{0 \le t \le t_n}$

Gibbs sampler

- 1. Draw θ from the prior distribution
- 2. Simulate a sample path \mathbf{X}_{t_n} conditionally on θ and D
- 3. Draw θ conditionally on \mathbf{X}_{t_n} and D
- 4. GO TO 2

Bayesian estimation for diffusion processes

$$dX_t = \alpha(X_t; \theta) dt + \sigma(X_t) dW_t$$

Data:
$$D = (X_{t_0}, ..., X_{t_n}), t_0 = 0$$

Partial observation of $\mathbf{X}_{t_n} = (X_t)_{0 \le t \le t_n}$

Gibbs sampler

- 1. Draw θ from the prior distribution
- 2. Simulate a sample path \mathbf{X}_{t_n} conditionally on θ and D
- 3. Draw θ conditionally on \mathbf{X}_{t_n} and D
- 4. GO TO 2

Diffusion bridge: A solution of the SDE in the interval [0, T] such that $X_0 = a$ and $X_T = b$ is called an (a, b, T)-bridge.

Assume that the process X is ergodic

Simple bridge simulation: Bladt and Sørensen (Bernoulli 2014, 2021)

Diffusion bridge simulation

An incomplete list of other papers

- Durham and Gallant (2002)
- Delyon and Hu (2006)
- Beskos, Papaspiliopoulos and Roberts (2006, 2007)
- Golightly and Wilkinson (2008)
- Hairer, Stuart and Voss (2009)
- Chen and Huang (2013)
- Pollock, Johansen and Roberts (2016)
- Schauer, van der Meulen and van Zanten (2017)
- van der Meulen and Schauer (2017)
- Whitaker, Golightly, Boys and Sherlock (2017)

1D Diffusion bridge simulation

1D Diffusion bridge simulation

1D Diffusion bridge simulation

Approximate diffusion bridge simulation

$$dX_t^i = \alpha(X_t^i)dt + \sigma(X_t^i)dW_t^i, X_0^1 = a \text{ and } X_0^2 = b$$

 W^1 and W^2 independent standard Wiener processes

Define $\tau = \inf\{0 \le t \le T | X_t^1 = X_{T-t}^2\}$ (inf $\emptyset = +\infty$) and

$$Z_t = \begin{cases} X_t^1 & \text{if } 0 \le t \le \tau \\ \\ X_{T-t}^2 & \text{if } \tau < t \le T. \end{cases}$$

Theorem

The distribution of $\{Z_t\}_{0 \le t \le T}$ conditional on the event $\{\tau \le T\}$ equals the distributions of an (a, b, T)-bridge conditional on the event that the bridge is hit by an independent stationary diffusion with the same stochastic differential equation as X.

Approximate diffusion bridge simulation

$$Z_t = \begin{cases} X'_t & \text{if } 0 \le t \le \tau \\ \\ \bar{X}_t & \text{if } \tau < t \le T, \end{cases}$$

Theorem

The density of Z on the canonical space $C_{a,b}([0, T])$:

$$f_{appr}(x) = f(x)\pi_T(x)/\pi_T$$

- $C_{a,b}([0, T])$: the continuous functions on [0, T] from a to b
- *f* is the density of an (*a*, *b*, *T*)-diffusion bridge
- $\pi_T(x)$: probability that the sample path x is hit by an independent stationary diffusion
- *π*_T: probability that an (*a*, *b*, *T*)-diffusion bridge is hit by an independent stationary diffusion

Metropolis-Hastings algorithm: exact bridge

Simulate an initial approximate (a, b, T)-diffusion bridge, $X^{(0)}$, set k = 1.

(1) Propose a new sample paths by simulating an approximate (a, b, T)-diffusion bridge $X^{(k)}$

(2) Accept the proposed diffusion bridge with probability

$$\min\left(1, \frac{f(X^{(k)})f_{appr}(X^{(k-1)})}{f(X^{(k-1)})f_{appr}(X^{(k)})}\right) = \min\left(1, \frac{\pi_T(X^{(k-1)})}{\pi_T(X^{(k)})}\right)$$

Otherwise $X^{(k)} = X^{(k-1)}$

(3) Set k = k + 1 and GO TO (1)

Metropolis-Hastings algorithm: exact bridge

Simulate an initial approximate (a, b, T)-diffusion bridge, $X^{(0)}$, set k = 1.

(1) Propose a new sample paths by simulating an approximate (a, b, T)-diffusion bridge $X^{(k)}$

(2) Accept the proposed diffusion bridge with probability

$$\min\left(1, \frac{f(X^{(k)})f_{appr}(X^{(k-1)})}{f(X^{(k-1)})f_{appr}(X^{(k)})}\right) = \min\left(1, \frac{\pi_T(X^{(k-1)})}{\pi_T(X^{(k)})}\right)$$

Otherwise $X^{(k)} = X^{(k-1)}$

(3) Set k = k + 1 and GO TO (1)

But we do not know $\pi_T(x)$

Slide 10/37 — Michael Sørensen — Likelihood Inference for SDE-models — DA-days, Potsdam, 2023

But we can simulate

Pseudo-marginal MH-algorithm, Andrieu and Roberts (2009)

For a given $x \in C_{a,b}([0, T])$, define a random variable *S* as follows:

Simulate a sequence, $Y^{(1)}$, $Y^{(2)}$,..., of independent stationary diffusions, until a sample path is obtained that intersects *x*

 $S = \min\{i : Y^{(i)} \text{ intersects } x\}.$

 $E(S) = 1/\pi_T(x).$

Pseudo-marginal Metropolis-Hastings algorithm: exact bridge

Metropolis-Hastings Markov chain with state $(X^{(k)}, S^{(k)})$.

Simulate an initial approximate (a, b, T)-diffusion bridge, $X^{(0)}$, and an associated $S^{(0)}$ (with $x = X^{(0)}$), and set k = 1.

(1) Propose a new sample paths by simulating an approximate (a, b, T)-diffusion bridge, $X^{(k)}$, and an associated $S^{(k)}$ (with $x = X^{(k)}$)

(2) Accept the proposed $(X^{(k)}, S^{(k)})$ with probability

$$\min\left(1,\frac{S^{(k)}}{S^{(k-1)}}\right)$$

Otherwise
$$X^{(k)} = X^{(k-1)}$$
 and $S^{(k)} = S^{(k-1)}$

(3) Set
$$k = k + 1$$
 and GO TO (1)

Multivariate diffusions and bridge simulation without discretization error

Simulation of multivariate diffusions:

Bladt, Finch and Sørensen (2016, 2021)

Uses methods from the literature on coupling of diffusion processes (Lindvall and Rogers, 1986, Chen and Li, 1089)

Multivariate diffusions and bridge simulation without discretization error

Simulation of multivariate diffusions:

Bladt, Finch and Sørensen (2016, 2021)

Uses methods from the literature on coupling of diffusion processes (Lindvall and Rogers, 1986, Chen and Li, 1089)

Diffusion bridge simulation without discretization error:

The confluent diffusion bridge sampler, by Jenkins, Pollock, Roberts and Sørensen (2021), combines two approaches

- The simple sampler of Bladt and Sørensen (2014, 2021)
- The exact and ε-strong simulation of unconditioned diffusions of Pollock, Johansen and Roberts (2016)

to obtain a sampler without discretisation error with a computing time that is linear in T

$$dX_t = -\frac{\alpha X_t}{\sqrt{1 + \|X_t\|^2}} dt + dW_t, \quad \alpha > 0$$

Data:
$$D = (X_{t_0}, ..., X_{t_n}), t_0 = 0$$

Partial observation of $\mathbf{X}_{t_n} = (X_t)_{0 \le t \le t_n}$

$$dX_t = -\frac{\alpha X_t}{\sqrt{1 + \|X_t\|^2}} dt + dW_t, \quad \alpha > 0$$

Data:
$$D = (X_{t_0}, ..., X_{t_n}), t_0 = 0$$

Partial observation of $\mathbf{X}_{t_n} = (X_t)_{0 \le t \le t_n}$

Gibbs sampler

- 1. Draw α from the prior distribution
- 2. Simulate a sample path \mathbf{X}_{t_n} conditionally on α and D
- 3. Draw α conditionally on \mathbf{X}_{t_n} and D
- 4. GO TO 2

Likelihood function based on \mathbf{X}_{t_n}

$$\begin{split} L^{c}(\alpha) &= \exp\left(\alpha H_{t_{n}} - \frac{1}{2}\alpha^{2}B_{t_{n}}\right),\\ H_{t} &= \sqrt{1 + \|X_{0}\|^{2}} - \sqrt{1 + \|X_{t}\|^{2}} + \int_{0}^{t} \frac{1 + \frac{1}{2}\|X_{s}\|^{2}}{(1 + \|X_{s}\|^{2})^{3/2}} ds\\ B_{t} &= \int_{0}^{t} \frac{\|X_{s}\|^{2}}{1 + \|X_{s}\|^{2}} ds \end{split}$$

Exponential family of processes in the sense of Küchler & Sørensen (1997)

Likelihood function based on \mathbf{X}_{t_n}

$$\begin{split} L^{c}(\alpha) &= \exp\left(\alpha H_{t_{n}} - \frac{1}{2}\alpha^{2}B_{t_{n}}\right),\\ H_{t} &= \sqrt{1 + \|X_{0}\|^{2}} - \sqrt{1 + \|X_{t}\|^{2}} + \int_{0}^{t}\frac{1 + \frac{1}{2}\|X_{s}\|^{2}}{(1 + \|X_{s}\|^{2})^{3/2}}ds\\ B_{t} &= \int_{0}^{t}\frac{\|X_{s}\|^{2}}{1 + \|X_{s}\|^{2}}ds \end{split}$$

Exponential family of processes in the sense of Küchler & Sørensen (1997)

Conjugate prior: $N_+(\bar{\alpha}, \sigma^2)$

Posterior distribution: $N_+((H_{t_n} + \bar{\alpha}/\sigma^2)/(B_{t_n} + \sigma^{-2}), (B_{t_n} + \sigma^{-2})^{-1})$

 $t_i = i, i = 0, \dots, 1000$

 $\alpha = 0.8$ Prior: $N_{+}(1,1)$ 5000 iterations of the Gibbs sampler

Approximative bridge simulation

Stochastic differential equation with mixed effects

Baltazar-Larios, Bladt and Sørensen (2023)

$$dX_t^i = d_{\alpha,a_i}(X_t^i)dt + \sigma_{\beta,b_i}(X_t^i)dW_t^i, \quad i = 1, \dots, N$$

 $\sigma_{\beta,b}(x) > 0$ for all x, β, b, X^i ergodic $W^i, i = 1, \dots, N$, independent standard Wiener processes

Random effect: $(a_i, b_i) \sim p_{\gamma}(a, b), i = 1, ..., N$, independent random vectors

Parameters: α, β, γ

Data:

$$\begin{split} X_{\text{obs}} &= (X_{\text{obs}}^{1}, \dots, X_{\text{obs}}^{N}) \\ X_{\text{obs}}^{i} &= (X_{t_{1}^{i}}^{i}, \dots, X_{t_{n_{i}}^{i}}^{i}), \quad t_{1}^{i} < t_{2}^{i} < \dots < t_{n_{i}}^{i}, \quad i = 1, \dots, N \end{split}$$

Lamperti transformation

$$dX_t^i = d_{\alpha,a_i}(X_t^i)dt + \sigma_{\beta,b_i}(X_t^i)dW_t^i, \quad i = 1, \dots, N$$

$$Y_t^i = h_{\beta,b_i}(X_t^i) \qquad \qquad h_{\beta,b}(x) = \int_{x^*}^x \frac{1}{\sigma_{\beta,b}(u)} du$$

By Ito's formula:

$$dY_t^i = \mu_{\alpha,\beta,\mathbf{a}_i,\mathbf{b}_i}(Y_t^i)dt + dW_t^i,$$

where

$$\mu_{\alpha,\beta,a_{i},b_{i}}(y) = \frac{d_{\alpha,a_{i}}(h_{\beta,b_{i}}^{-1}(y))}{\sigma_{\beta,b_{i}}(h_{\beta,b_{i}}^{-1}(y))} - \frac{1}{2}\sigma_{\beta,b_{i}}'\left(h_{\beta,b_{i}}^{-1}(y)\right)$$

with $\sigma'_{\beta,b_i}(x) = \partial_x \sigma_{\beta,b_i}(x)$

The probability measures corresponding to continuous time observation of Y are equivalent, and an explicit likelihood function is given by Girsanov

Data augmentation

The data $X_{\rm obs}$ can be thought of as a partial observation of a "full" data set $(X_{\rm obs}, X_{\rm mis})$

The "missing" data are $X_{mis} = (X_{mis}^1, \dots, X_{mis}^N)$ with

$$X_{\min}^{i} = \{Y_{t}^{*ij}, t \in [t_{i-1}^{i}, t_{i}^{i}], j = 2, \dots, n_{i}, a_{i}, b_{i}\}.$$

$$\begin{split} \mathbf{Y}_{t}^{*ij} &= Z_{t}^{i,j} - \ell_{\beta,b_{i}}^{i}(t), \quad t \in [t_{j-1}^{i}, t_{j}^{i}] \\ \ell_{\beta,b}^{i}(t) &= \frac{(t_{j}^{i} - t)h_{\beta,b}(X_{t_{j-1}^{i}}^{i}) + (t - t_{j-1}^{i})h_{\beta,b}(X_{t_{j}^{i}}^{i})}{t_{j}^{i} - t_{j-1}^{i}}, \qquad t \in [t_{j-1}^{i}, t_{j}^{i}] \end{split}$$

Conditionally on X_{obs}^i and a_i, b_i ,

$$Z_t^{i,j}, j = 2, ..., n_i, i = 1, ..., N$$

are independent $(t_{j-1}^i, h_{\beta,b_i}(X_{t_{j-1}^i}^i), t_j^i, h_{\beta,b_i}(X_{t_j^i}^i))$ -bridges for the diffusion Y^i

Likelihood function for the augmented data set

$$L(\alpha,\beta,\gamma;X_{\text{obs}},X_{\text{mis}}) = \prod_{i=1}^{N} L_i(\alpha,\beta;X_{\text{obs}}^i,X_{\text{mis}}^i) \prod_{i=1}^{N} p_{\gamma}(a_i,b_i)$$

where

$$\log L_i(\alpha,\beta;X^i_{\text{obs}},X^i_{\text{mis}}) = H_{\alpha,\beta,\mathbf{a}_i,b_i}(X^i_{t^i_n}) - H_{\alpha,\beta,\mathbf{a}_i,b_i}(X^i_{t^i_1})$$

$$-\sum_{j=2}^{n_i}\left[\frac{(h_{\beta,b_i}(X_{t_j^i}^i)-h_{\beta,b_i}(X_{t_{j-1}^i}^i))^2}{2(t_j^i-t_{j-1}^i)}+\log(\sigma_{\beta,b_i}(X_{t_j^i}^i))+\frac{1}{2}\int_{t_{j-1}^i}^{t_j^i}\phi_{\alpha,\beta,a_i,b_i}(Y_s^{*ij}+\ell_{\beta,b_i}^i(s))ds\right]$$

with

$$H_{\alpha,\beta,a,b}(x) = \int_{x^*}^x \frac{d_{\alpha,a}(u)}{\sigma_{\beta,b}^2(u)} du - \frac{1}{2} \log(\sigma_{\beta,b}(x))$$

$$\phi_{\alpha,\beta,\mathbf{a},\mathbf{b}}(\mathbf{y}) = \mu'_{\alpha,\beta,\mathbf{a},\mathbf{b}}(\mathbf{y}) + \mu_{\alpha,\beta,\mathbf{a},\mathbf{b}}(\mathbf{y})^2$$

Girsanov plus Roberts and Stramer (2001)

Gibbs sampler

Specify a prior distribution $\pi(\alpha, \beta, \gamma)$

1. Draw (α, β, γ) from the prior distribution π

2. Conditionally on γ , draw (a_i, b_i) from p_{γ} , independently for i = 1, ..., N

3. Simulate independent sample paths Y^{*ij} conditionally on $\alpha, \beta, a_i, b_i, X^i_{obs}$ for $j = 2, ..., n_i, i = 1, ..., N$

4. Draw (a_i, b_i) conditionally on $\alpha, \beta, \gamma, X_{obs}^i, Y^{*i2}, \dots, Y^{*in_i}$, independently for $i = 1, \dots, N$ Conditional density ∞ $L_i(\alpha, \beta, \gamma; X_{obs}^i, Y^{*i2}, \dots, Y^{*in_i}, a_i, b_i)p_{\gamma}(a_i, b_i)$

5. Draw (α, β, γ) given X_{mis} and X_{obs} Conditional density $\propto \pi(\alpha, \beta, \gamma) \cdot L(\alpha, \beta, \gamma; X_{\text{obs}}, X_{\text{mis}})$

6. GO TO 3

Ornstein-Uhlenbeck with mixed effects

$$dX_t^i = -a_i X_t^i dt + \beta dW_t^i$$
, $a_i \sim \text{exponential}(\gamma)$, $i = 1, \dots, N$, $\beta > 0$

Parameters: γ, β

Data:

$$\begin{aligned} X_{\text{obs}} &= (X_{\text{obs}}^{1}, \dots, X_{\text{obs}}^{N}) \\ X_{\text{obs}}^{i} &= (X_{t_{1}}^{i}, \dots, X_{t_{n}}^{i}), \quad t_{1} < t_{2} < \dots < t_{n}, \quad i = 1, \dots, N \end{aligned}$$

Prior:

 γ and β are independent

$$\gamma \sim \Gamma(\nu, \lambda^{-1}), \ \eta = \beta^{-2} \sim \Gamma(\kappa, \delta^{-1})$$

The continuous time full model is an exponential family of processes in the sense of Küchler & Sørensen (1997)

Gibbs sampler

- 1. Draw (γ, η) from the prior distribution
- 2. $a_i \sim \text{exponential}(\gamma), i = 1, \dots, N$
- 3. Simulate independent sample paths Y^{*ij} conditionally on η , a_i , X_{obs}^i for j = 2, ..., n, i = 1, ..., N
- 4. $a_i \sim N_+((A_i \gamma)/B_i, B_i^{-1})$ independently for i = 1, ..., N $A_i = A(X_{obs}^i, \eta), B_i = B(X_{obs}^i, Y^{*i}, \eta)$
- 5. $\gamma \sim \Gamma(\nu + N, (\lambda + a.)^{-1})$ 6. $\eta \sim c\eta^{(n-N)/2+\kappa-1} e^{-\eta(E_1+\delta)} \cdot e^{\sqrt{\eta}E_2+\eta E_3}$ $E_1 = E_1(X_{obs}), E_k = E_k(X_{obs}, Y^*, a_1, \dots a_N), k = 2, 3$ 7. GO TO 3

Membrane potential data

Data from Picchini, De Gaetano and Ditlevsen (2010):

Membrane potential of a single neuron measured every 0.15 ms

N = 109 interspike intervals, n = 1116

Model:

$$dX_t^i = (a_i - \alpha X_t^i)dt + \beta dW_t^i, \quad a_i \sim N(\mu, \sigma^2), \ i = 1, \dots, N,$$

Parameters: μ , $\sigma^2 > 0$, $\alpha > 0$, $\beta > 0$

Prior:

 μ, σ^2, α and β are independent

$$\mu \sim N(1,1), \ \tau^2 = \sigma^{-2} \sim \text{exponential}(1)$$

$$\alpha \sim \text{exponential(1)}, \quad \eta = \beta^{-1} \sim \text{exponential(1)}$$

Membrane potential data

Gibbs sampler: 5000 iterations (burn-in = 4000)

Posterior distribution:

Parameter	mean	0.025-quantile	0.975-quantile
α	16.82	16.58	17.02
β	0.013513	0.013510	0.0103516
μ	0.174	0.172	0.176
σ	0.0584	0.0580	0.0593

Integrated diffusions

Baltazar-Larios and Sørensen (2010)

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t, \quad X_0 \sim v_{\theta}$$

X ergodic with stationary density function v_{θ}

Data:

$$Y_i = \int_{t_{i-1}}^{t_i} X_s \, ds + Z_i, \quad i = 1, ..., n, \quad t_0 = 0, \quad Z_i \sim N(0, \tau^2)$$
 independent
 $X_{obs} = (Y_1, ..., Y_n)$

- t

Integrated diffusions

Baltazar-Larios and Sørensen (2010)

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t, \quad X_0 \sim v_{\theta}$$

X ergodic with stationary density function v_{θ}

Data:

Examples: Ice-core data (paleoclimate), integrated realized volatility, molecular dynamics, harmonic oscillator

$$dV_t = -(\alpha_1 P_t + \alpha_2 V_t)dt + \sigma dW_t, \qquad P_t = \int_0^t V_s ds$$

$$Y_i = P_{t_i} - P_{t_{i-1}} + Z_i$$

Integrated diffusions

Baltazar-Larios and Sørensen (2010)

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t, \quad X_0 \sim v_{\theta}$$

X ergodic with stationary density function v_{θ}

Data:

$$Y_i = \int_{t_{i-1}}^{t_i} X_s \, ds + Z_i, \quad i = 1, ..., n, \quad t_0 = 0, \quad Z_i \sim N(0, \tau^2)$$
 independent
 $X_{obs} = (Y_1, ..., Y_n)$

Likelihood function conditional on the diffusion process:

$$\prod_{i=1}^{n} \varphi \left(\mathsf{Y}_{i}; \int_{t_{i-1}}^{t_{i}} X_{s} \, ds, \, \tau^{2} \right), \quad \varphi \; \text{ Gaussian density function}$$

Data augmentation:
$$Y_{mis} = \{X_t : 0 \le t \le t_n\}$$
?

I

Likelihood function for the augmented data set

$$dX_t = b(X_t; \theta)dt + \sigma(X_t; \theta)dW_t, \quad X_0 \sim v_{\theta}$$

Lamperti transform:

$$U_t = h_{\theta}(X_t)$$
 $h_{\theta}(x) = \int_{x^*}^x \frac{1}{\sigma(y;\theta)} dy$

$$Y_i = \int_{t_{i-1}}^{t_i} h_{\theta}^{-1}(U_s) \, ds + Z_i, \quad i = 1, \dots, n$$

Data augmentation: $Y_{mis} = \{U_t : 0 \le t \le t_n\}$

$$\begin{array}{l} \log L\left(\theta,\tau^{2} ; Y_{1},\ldots,Y_{n},(U_{t},t\in[0,t_{n}])\right) = \\ \sum_{i=1}^{n}\log\varphi\left(Y_{i} ; \int_{t_{i-1}}^{t_{i}}h_{\theta}^{-1}(U_{t})\,dt,\,\tau^{2}\right) + H_{\theta}(U_{t_{n}}) - H_{\theta}(U_{0}) - \frac{1}{2}\int_{0}^{t_{n}}\phi_{\theta}(U_{t})dt \end{array}$$

EM algorithm

$(\hat{ heta},\hat{ au}^2)$ initial value of the parameter vector

(1) (E-step) Generate sample paths of $X^{(k)}$, k = 1, ..., M conditional on $Y_1, ..., Y_n$ using the parameter value $(\hat{\theta}, \hat{\tau}^2)$, and calculate

$$g(\theta,\tau) = \frac{1}{M - M_0} \sum_{k=M_0+1}^{M} \log L\left(\theta,\tau; \mathsf{Y}_1,\ldots,\mathsf{Y}_n, (h_{\hat{\theta}}(X_t^{(k)}), t \in [0, t_n])\right)$$

(burn-in period M_0)

(2) (M-step) (θ̂, τ̂²) = argmax g(θ, τ)
(3) GO TO (1)

Conditional diffusion simulation

Chib, Pitt & Shephard (2006)

Simulate a stationary sample path of $X^{(0)}$ in $[0, t_n]$ and set $\ell = 1$

(1) Set $k_0 = 0$ and i = 1(2) Draw $k_i \sim Poisson(\lambda) + 1$, if $\sum_{j=1}^{i} k_j \ge n$ set $k_i = n$, K = i and stop, else set i = i + 1 and repeat 2 (3) For j = 1, ..., K simulate independent $(X_{t_{k_{j-1}}}^{(\ell-1)}, X_{t_{k_j}}^{(\ell-1)}, t_{k_j} - t_{k_{j-1}})$ -bridges $B^{(\ell,j)}$ conditional on $Y_{t_{k_{j-1}}+1}, ..., Y_{t_{k_j}}$ and set $X^{(\ell)} = B^{(\ell,j)}$ for $t \in [t_i, t_i], i = 1$.

$$X_t^{(c)} = B_{t-t_{k_{j-1}}}^{(c,j)}$$
 for $t \in [t_{k_{j-1}}, t_{k_j}], j = 1, \dots, k_{j-1}$

(4) Set $\ell = \ell + 1$ and GO TO (1)

Conditional bridge simulation

The following Metropolis-Hastings algorithm simulates the $(X_{t_{k_{j-1}}}^{(\ell-1)}, X_{t_{k_j}}^{(\ell-1)}, t_{k_j} - t_{k_{j-1}})$ -bridge $B^{(\ell,j)}$ conditional on $Y_{k_{j-1}} + 1, \ldots, Y_{k_j}$:

(1) Simulate an initial $(X_{t_{k_{j-1}}}^{(\ell-1)}, X_{t_{k_j}}^{(\ell-1)}, t_{k_j} - t_{k_{j-1}})$ -diffusion bridge, $B^{(\ell,j,0)}$, and set k = 1.

(2) Propose a new sample path by sampling a $(X_{t_{k_{j-1}}}^{(\ell-1)}, X_{t_{k_j}}^{(\ell-1)}, t_{k_j} - t_{k_{j-1}})$ -diffusion bridge $B^{(\ell,j,k)}$

(3) Accept the proposed diffusion bridge with probability

$$\min\left(1,\prod_{i=k_{j-1}+1}^{k_{j}}\frac{\varphi\left(Y_{i};\;\int_{t_{i-1}}^{t_{i}}B_{t-t_{k_{j-1}}}^{(\ell,j,k)}dt,\;\tau^{2}\right)}{\varphi\left(Y_{i};\;\int_{t_{i-1}}^{t_{i}}B_{t-t_{k_{j-1}}}^{(\ell,j,k-1)}dt,\;\tau^{2}\right)}\right)$$

Otherwise $B^{(\ell,j,k)} = X^{(\ell,j,k-1)}$

(4) Set k = k + 1 and GO TO (2)

Integrated square root process: simulation study

$$dX_t = (\alpha - \beta X_t)dt + \sigma \sqrt{X_t}dW_t$$

$$\alpha = 0.5 \quad \beta = 0.2 \quad \sigma = 0.5 \quad \tau^2 = 1.25$$

$$Y_i$$
, $t_i = i$, $i = 1..., 1500$

 $M = 10000, M_0 = 1000$

1000 simulated datasets

Average of parameter estimates:

λ	α	β	σ	τ^2
30	0.4802	0.2056	0.4787	1.2432
20	0.4727	0.2043	0.4698	1.2406
10	0.4587	0.1965	0.4609	1.2287

Ice core data

Figure 6.1: $\delta^{18}O\text{-values}$ integrated over 20 years intervals obtained from ice core data from the Greenland ice-sheet.

Model:
$$dX_t = -\alpha X_t dt + \sigma dW_t$$

EM-algorithm: M = 10000, $M_0 = 1000$ $\lambda = 20$

Parameter	[-10000,0]	[-30000,-10000]	[-60000,-30000]
α^{-1}	205.3	669.8	321.1
σ	0.0303	0.1167	0.1395
$\sigma/\sqrt{2\alpha}$	0.307	2.136	1.767
τ^2	0.1063	0.6967	0.2260

Ditlevsen, Ditlevsen and Andersen (2002)

Model of protein structure evolution

García-Portugués and Sørensen (2023)

Dihedral angles (ϕ, ψ)

A simplified representation of a protein of size N is

$$= ((\phi, \psi), \mathbf{a}, \mathbf{s}) \in \underbrace{\mathbb{T}^{2N}}_{\text{dihedral angles}} \times \underbrace{\{1, \dots, 20\}^{N}}_{\text{amino acids}}$$

The stochastic process (ϕ_t, ψ_t) must be ergodic, time-reversible and reasonably tractable

New circular diffusions

 $f : \mathbb{R} \to \mathbb{R}^+$ is a differentiable **circular** probability density: (*i*) $f(x + 2k\pi) = f(x)$ and (*ii*) $\int_0^{2\pi} f(\theta) d\theta = 1$, for any $x \in \mathbb{R}$ and $k \in \mathbb{Z}$ $F(x) = \int_0^x f(\theta) d\theta$, $x \in \mathbb{R}$, is a one-to-one map $\mathbb{R} \to \mathbb{R}$

Figure: Circular pdf *f* (left) and its cdf *F* (rigth), with extensions from $[0, 2\pi)$ (red boundaries) to \mathbb{R} .

New circular diffusions

Define $\Theta_t = F^{-1}(\sigma W_t + F(\theta_0)) \mod 2\pi, t > 0$,

where *W* is a standard Wiener process, $\sigma > 0$ and $\theta_0 \in [0, 2\pi)$

Proposition

 $\left\{ \Theta_t \right\} \text{ solves the SDE }$

$$\mathrm{d}\Theta_t = -\frac{\sigma^2 f'(\Theta_t)}{2f(\Theta_t)^3} \mathrm{d}t + \frac{\sigma}{f(\Theta_t)} \mathrm{d}W_t$$

on the circle $\mathbb{T}^1 := [0, 2\pi)$, with 0 and 2π identified

2 $\{\Theta_t\}$ is time-reversible and ergodic with stationary density f

3 For t > 0 and $\theta_1, \theta_2 \in \mathbb{T}^1$, the transition density of $\{\Theta_t\}$ is

$$p_t(\theta_2 | \theta_1) = 2\pi f_{WN} \left(2\pi F(\theta_2); 2\pi F(\theta_1), 4\pi^2 t \sigma^2 \right) f(\theta_2),$$

where $f_{WN}(\theta; \mu, \sigma^2) = \sum_{k \in \mathbb{Z}} \phi_{\sigma^2}(\theta - \mu + 2k\pi)$ is the **wrapped normal** density function, with $\phi_{\sigma^2}(\cdot)$ denoting the density of $\mathcal{N}(0, \sigma^2)$

$$\Theta_{t_2} | \Theta_{t_1} = \theta_1 \sim p_{t_2 - t_1} (\cdot | \theta_1), \ t_2 > t_1 \ge 0$$

Example: a von Mises diffusion

The von Mises distribution has the density function

$$f_{\rm vM}(\theta;\mu,\kappa) = (2\pi I_0(\kappa))^{-1} \exp\{\kappa \cos(\theta - \mu)\}, \ \mu \in \mathbb{T}^1, \ \kappa > 0$$

The von Mises diffusion solves the SDE

$$d\Theta_t = \frac{\sigma^2 \kappa \sin(\Theta_t - \mu)}{2 \exp\{2\kappa \cos(\Theta_t - \mu)\}} dt + \frac{\sigma}{\exp\{\kappa \cos(\Theta_t - \mu)\}} dW_t$$

Example: a von Mises diffusion

The von Mises distribution has the density function

$$f_{\rm vM}(\theta;\mu,\kappa) = (2\pi I_0(\kappa))^{-1} \exp\{\kappa \cos(\theta - \mu)\}, \ \mu \in \mathbb{T}^1, \ \kappa > 0$$

The von Mises diffusion solves the SDE

$$\mathrm{d}\Theta_t = \frac{\sigma^2 \kappa \sin(\Theta_t - \mu)}{2 \exp\{2\kappa \cos(\Theta_t - \mu)\}} \mathrm{d}t + \frac{\sigma}{\exp\{\kappa \cos(\Theta_t - \mu)\}} \mathrm{d}W_t$$

Experiment: Assessing directionality of ants movement. An ant in a circular container, movement tracked for 2 x 10 minutes

Experiment: assessing directionality of ants movement

Figure: Rows: "exploration" and "revisit" stages. Columns: three most active ants

Same directional behaviour in "exploration" and "revisit" stages?

$$\mathcal{H}_0: \xi_{\text{exp.}} = \xi_{\text{rev.}}$$
 vs. $\mathcal{H}_1: \xi_{\text{exp.}} \neq \xi_{\text{rev.}}, \quad \xi = (\mu, \kappa, \sigma)$

Ant 1, 2, 3 homogeneity *p*-values: 0.1394, 1.4×10^{-14} , 9.1×10^{-12}

