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Likelihood function for discrete time observations

dX; = b(Xy; 0)dt + o (Xy; 0)dW, 0e© CRP
X, b and W d-dimensional, o d x d-matrix
Data: Xy, -+, X, O=th<---<t,
Likelihood-function:

n
La(9) = l_[ p(AL Xy, X3 0), Aj=1t—ti4

i=1

XA|X0:XNP(A,X,';9)

o
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Bayesian estimation for diffusion processes
dXt = (I(Xt; G)dt + O'(Xt)th
Data: D=(Xt0,..‘,th), toZO

Partial observation of X;, = (X)o<t<t,
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Bayesian estimation for diffusion processes
dXt = Q(Xt; G)dt + O'(Xt)th
Data: D=(Xt0,...,th), to=0

Partial observation of X;, = (X)o<t<t,

Gibbs sampler
1. Draw 6 from the prior distribution
2. Simulate a sample path X;, conditionally on 6 and D
3. Draw 6 conditionally on X;, and D
4.GOTO2
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Bayesian estimation for diffusion processes
dXt = (I(Xt; G)dt + O'(Xt)th
Data: D:(Xto,...,th), to=0
Partial observation of X;, = (X)o<t<t,
Gibbs sampler
1. Draw 6 from the prior distribution
2. Simulate a sample path X;, conditionally on 6 and D

3. Draw 6 conditionally on X;, and D
4.GOTO2

Diffusion bridge: A solution of the SDE in the interval [0, T] such that
Xo = aand X7 = bis called an (a, b, T)-bridge.

Assume that the process X is ergodic

Simple bridge simulation: Bladt and Sgrensen (Bernoulli 2014, 2021)
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Diffusion bridge simulation

An incomplete list of other papers

® Durham and Gallant (2002)

® Delyon and Hu (2006)

® Beskos, Papaspiliopoulos and Roberts (2006, 2007)
® Golightly and Wilkinson (2008)

® Hairer, Stuart and Voss (2009)

® Chen and Huang (2013)

® Pollock, Johansen and Roberts (2016)

® Schauer, van der Meulen and van Zanten (2017)

® van der Meulen and Schauer (2017)

* Whitaker, Golightly, Boys and Sherlock (2017)
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1D Diffusion bridge simulation
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1D Diffusion bridge simulation
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1D Diffusion bridge simulation
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Approximate diffusion bridge simulation

dX! = a(X))dt + o(X)dW/, X! =a and X2 =b
W' and W2 independent standard Wiener processes

Define 7 = inf{0 <t < TIX] = X2_,} (inf @ = 40) and

X/ ifo<t<rt
Z[:
X2

2 ifr<ts<T.

Theorem

The distribution of {Z;}o<;<r conditional on the event {r < T} equals the
distributions of an (a, b, T)-bridge conditional on the event that the bridge
is hit by an independent stationary diffusion with the same stochastic
differential equation as X.
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Approximate diffusion bridge simulation

X ifo<t<rt
Zf:
X, ifr<t<T,

Theorem
The density of Z on the canonical space C, ([0, T]):

fappr (X) = f(X)mr(x) /77
® C,5([0,T]): the continuous functions on [0, T] from a to b
* fis the density of an (a, b, T)-diffusion bridge

* n1(x): probability that the sample path x is hit by an independent
stationary diffusion

® nr: probability that an (a, b, T)-diffusion bridge is hit by an
independent stationary diffusion
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Metropolis-Hastings algorithm: exact bridge

Simulate an initial approximate (a, b, T)-diffusion bridge, X(©, setk = 1.

(1) Propose a new sample paths by simulating an
approximate (a, b, T)-diffusion bridge X(*)

(2) Accept the proposed diffusion bridge with probability

. f(X(k))fappr(X(k_1)) : ”T(X(k_1))
min 1, k1—(k) = min 1, T
f(X (k= ))fappr(X ) mr(X®K)

Otherwise X(k) = x(k-1)

(3) Setk = k+1and GO TO (1)
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Metropolis-Hastings algorithm: exact bridge

Simulate an initial approximate (a, b, T)-diffusion bridge, X(©, setk = 1.

(1) Propose a new sample paths by simulating an
approximate (a, b, T)-diffusion bridge X(*)

(2) Accept the proposed diffusion bridge with probability

. f(X(k))fappr(X(k_1)) : ”T(X(k_1))
min 1, k1—(k) = min 1, T
f(X (k= ))fappr(X ) mr(X®K)

Otherwise X(k) = x(k-1)

(3) Setk = k+1and GO TO (1)

But we do not know 77 (x)
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But we can simulate

Pseudo-marginal MH-algorithm, Andrieu and Roberts (2009)
For a given x € C,,([0, T]), define a random variable S as follows:

Simulate a sequence, Y, Y®, .. of independent stationary diffusions,
until a sample path is obtained that intersects x

S = min{i : Y intersects x}.

E(S) = 1/nr(x).
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Pseudo-marginal Metropolis-Hastings algorithm: exact
bridge
Metropolis-Hastings Markov chain with state (X*), S®)).

Simulate an initial approximate (a, b, T)-diffusion bridge, X© and an
associated S© (with x = X®), and setk = 1.

(1) Propose a new sample paths by simulating an
approximate (a, b, T)-diffusion bridge, X*), and an
associated S*) (with x = X))
(2) Accept the proposed (X, () with probability
) Sk)
min 1, m
Otherwise X(*) = X(k-1) and St = gk-1)

(3) Setk = k +1and GO TO (1)
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Multivariate diffusions and bridge simulation without
discretization error
Simulation of multivariate diffusions:

Bladt, Finch and Sgrensen (2016, 2021)

Uses methods from the literature on coupling of diffusion processes
(Lindvall and Rogers, 1986, Chen and Li, 1089)
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Multivariate diffusions and bridge simulation without
discretization error
Simulation of multivariate diffusions:

Bladt, Finch and Sgrensen (2016, 2021)

Uses methods from the literature on coupling of diffusion processes
(Lindvall and Rogers, 1986, Chen and Li, 1089)

Diffusion bridge simulation without discretization error:

The confluent diffusion bridge sampler, by Jenkins, Pollock, Roberts and
Serensen (2021), combines two approaches

® The simple sampler of Bladt and Sgrensen (2014, 2021)

® The exact and e-strong simulation of unconditioned diffusions of
Pollock, Johansen and Roberts (2016)

to obtain a sampler without discretisation error with a computing time that
is linearin T
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Hyperbolic diffusion

ax = —— X W, a0

V1 +IIXP

Data: D = (X[O,...,th), th = 0

Partial observation of Xy, = (X;)o<t<t,

Slide 14/37 — Michael Serensen — Likelihood Inference for SDE-models — DA-days, Potsdam, 2023



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Hyperbolic diffusion

ax = —— X W, a0

V141X

Data: D = (X[O,...,th), th = 0

Partial observation of Xy, = (X;)o<t<t,

Gibbs sampler

1. Draw « from the prior distribution

2. Simulate a sample path X;, conditionally on & and D

3. Draw «a conditionally on X;, and D
4.GOTO?2
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Hyperbolic diffusion

Likelihood function based on X,

L°(a) = exp (aH[n — %athn) s

1 IR
Ht=¢1+||xo||2—¢1+||xr||2+f( 2%
0

—_— S
1+ IXI2)%72
t 2
11X
o [ X
T THIXIR

Exponential family of processes in the sense of Kiichler & Sgrensen (1997)
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Hyperbolic diffusion

Likelihood function based on X,

L°(a) = exp (aH[n — %athn) s

1 IR
Ht=¢1+||xo||2—¢1+||xr||2+f( 2%
0

—_— S
1+ IXI2)%72
t 2
11X
o [ X
T THIXIR

Exponential family of processes in the sense of Kiichler & Sgrensen (1997)
Conjugate prior: N, (@,0?)

Posterior distribution: N ((Hy, + &/c?)/(By, + 072), (B, + o72)7")

©
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Hyperbolic diffusion

ti=1i, i=0,...,1000
«=0.8 Prior: N.(1,1) 5000 iterations of the Gibbs sampler

Approximative bridge simulation

15

10
L

Likelihood, Posterior and Prior
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Stochastic differential equation with mixed effects
Baltazar-Larios, Bladt and Serensen (2023)
dX| = do o (X))t + opp (X)W, i=1,....N

agp(x) > 0forall x,8,b, X' ergodic

Wi, i=1,---,N, independent standard Wiener processes

Random effect: (a;, b;) ~ p,(a,b), i=1,....N,
independent random vectors

Parameters: «,B8,y

Data:
ODS_( obs? * * * obs)
Xioe = (X,,...,Xr’,. ), <t<..<t, i=1,....N
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Lamperti transformation
dX{ = do o (X))t + opp (X)W, i=1,....N

i = By (X)) o) = [ ' o

« OBb

By lto’s formula:
dY! = tapap(Y)dt + dWj,

where

C daa(hp () 1,
Hapat () = W = 5%, (hﬁ,b,()’)>

with o7, (X) = dx075,(X)

The probability measures corresponding to continuous time observation of
Y are equivalent, and an explicit likelihood function is given by Girsanov @
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UNIVERSITY OF COPENHAGEN

Data augmentation

The data X, can be thought of as a partial observation of a “full” data set
(Xobs7 Xmis)

The “missing” data are Xy, = (X1, ..., XN.) with

X =Y te [t . t], j=2.....n, a, b}

v =2/~ fli?,b,-(t)’ te [tjiq’ t/]

| (= )hgu(X, )+ (t =1L, )hes(X) .
(1) = B : te . 1]
B.b , Y

=t

Conditionally on X/, and a;, b;,
ZJ, j=2,...,n i=1,...,N

are independent (' ;. hs,(X], ). 1/, hsp,(X]))-bridges for the diffusion Y’
-1 )
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Likelihood function for the augmented data set

N N
L(a,,B, e Xobs» Xmls 1_[ Ll obs’ mls l_[ py(a“ i

where

|Og L ((Z ﬁ obs’ mls) - dﬁal b/( ) ‘Yﬁal bl( )

i (hﬁ»bi(xtii) - hﬂ,bi(Xtij ))2

3 , 1Y o
J -1 i *Ij i
- _ + log(epn (X)) + = f Gopan (Y + £, (5)) s
2|2 D2l
with

Hopap(x) = f aaEU; du —  log(csp(x))
% ﬁb

Papan(V) = Hopap(V) + Hapas(y)?

Girsanov plus Roberts and Stramer (2001) %
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Gibbs sampler
Specify a prior distribution 7(«, 3, y)

1. Draw (a, 3,v) from the prior distribution 7

2. Conditionally on vy, draw (a;, b;) from p,, independently
fori=1,....,N

3. Simulate independent sample paths Y*¥ conditionally
ona,B,a,b, X, forj=2,....n, i=1,...,N

4. Draw (a;, b;) conditionally on a,8,y, X, Y*2,..., Y*in,
independently fori =1,...,N

Conditional density o«

Li((x,ﬁ, Y ngs, Y*iz, ey Y*in’, aj, b,-)py(a,', b,)

5. Draw (a,B,y) given X and X
Conditional density o 7(a, 8, %) - L(.8,¥; Xovs> Xuis)

6. GOTO 3
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Ornstein-Uhlenbeck with mixed effects

dX! = —a;X!dt + BdW!,  a; ~ exponential(y), i=1,...,N, B>0

Parameters: vy,

Data:
obs ( obs? * ¢ obs)

X = ( {n) h<b<..<t, i=1,...,N

Prior:

v and B are independent

y~Tna™), n=p2~T(ks")

The continuous time full model is an exponential family of processes in the
sense of Klichler & Sgrensen (1997) %
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Gibbs sampler

1. Draw (y,n) from the prior distribution
2. a; ~ exponential(y), i=1,...,N

3. Simulate independent sample paths Y*/ conditionally
onna, X forj=2,....,n, i=1,...,N

4. a; ~ N, ((Ai - y)/B;, B7") independently fori = 1,...,N
Ai = A(Xjs, ), Bi = B(Xly,, Y*',17)

5.y~T(v+N,(1+a.)™")

6.1~ Cn("'_’\l)/er"_1 e ME1+0) . g ViEa+nEs

E1 = E1 (Xobs): Ek = Ek(Xobs’ Y-, 31,...31\/), k=23

7.GOTO3
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Membrane potential data

Data from Picchini, De Gaetano and Ditlevsen (2010):
Membrane potential of a single neuron measured every 0.15 ms

N =109 interspike intervals, n=1116

Model:

dX] = (a — aX])dt +pdW,,  a ~ N(u,a?), i=1,...,N,
Parameters: u, 02>0, >0, 8>0

Prior:

1,02, @ and B are independent

u~N(1,1), 7 =02 ~ exponential(1)
a ~ exponential(1), 7 =" ~ exponential(1) %
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Membrane potential data

DEPARTMENT OF MATHEMATICAL SCIENCES

Gibbs sampler: 5000 iterations (burn-in = 4000)

Posterior distribution:

Parameter mean 0.025-quantile | 0.975-quantile
a 16.82 16.58 17.02
B 0.013513 0.013510 0.0103516
7 0.174 0.172 0.176
o 0.0584 0.0580 0.0593
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Integrated diffusions

Baltazar-Larios and Sgrensen (2010)
dX[ = b(X{, 0)dt + O'(X(, G)th, XQ ~ Vg

X ergodic with stationary density function vy

Data:
i
Y, = f Xsds+2Z, i=1,...,n, =0, Z ~ N(0,7?) independent
ti—1
Xobs - (Y1’~--7Yn)
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Integrated diffusions

Baltazar-Larios and Sgrensen (2010)
dX[ = b(X{, e)dt + (T(Xf, G)th, XQ ~ Vg

X ergodic with stationary density function vy

Data:
i
Y, = f Xsds+2Z, i=1,...,n, =0, Z ~ N(0,7?) independent
ti—1
Xobs = (Y1’~--7Yn)

Examples: Ice-core data (paleoclimate), integrated realized volatility,
molecular dynamics, harmonic oscillator

t
dV{ = —((11 Pf +Q’2V[)dt +0'th, Pt = f Vst
0

Y,=P,-P,, +7Z @
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Integrated diffusions

Baltazar-Larios and Sgrensen (2010)
dX[ = b(X{, e)dt + (T(Xf, G)th, XQ ~ Vg

X ergodic with stationary density function vy

Data:
i
Y, = f Xsds+2Z, i=1,...,n, =0, Z ~ N(0,7?) independent
ti—1
Xobs = (Y1’~--7Yn)

Likelihood function conditional on the diffusion process:

n

tj
1_[90 (Yi:f X, ds, 12> , ¢ Gaussian density function
ti—1

i=1

Data augmentation: Yy, = {X; : 0 <t <t,}? %
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Likelihood function for the augmented data set

dXt = b(Xt, H)dt + O'(X(, g)th, XO ~ Vy

Lamperti transform:

U= 0= [ o

1
Yi= | h'(U)ds+2z, i=1,...n

tiq

Data augmentation: Y, ={U; : 0 <t <t}

IogL (0 7'2'Y1,--- Ym(UhtG [0 tﬂ])) =

Zlogtp( f ' (Uy) ot T) + Hy(Uy,) = Ho(Uo) - & Orn¢9(U,)dt
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EM algorithm

(6,?) initial value of the parameter vector

(1) (E-step) Generate sample paths of X, k =1,..., M
conditional on Yi, ..., Y, using the parameter value
(6,%?), and calculate

1 M
9(6.7) = =5 > logL (6,73 Vi, Yo, (h(X), 1 € [0, 1))
Ok=Mo+1

(burn-in period My)
(2) (M-step) (8,%?) = argmax g(6,7)

(83) GO TO (1)
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Conditional diffusion simulation

Chib, Pitt & Shephard (2006)

Simulate a stationary sample path of X in [0, t,] and set £ = 1

(1) Setkg =0andi=1
(2) Draw k; ~ Poisson(A) + 1, if 2}21 ki > nset ki = n, K =i and stop,
else seti =i+ 1 and repeat 2

(8) Forj=1,..., K simulate independent (X(’f;_” X0, ti; — t,_, )-bridges
-

gy g
B“) conditional on Y,k}__1 renes Y[kj and set

X =B fortelt, bl j=1.....K

- Tt tkj—1

(4) Set{ =¢+1and GO TO (1)
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Conditional bridge simulation

The following Metropolis-Hastings algorithm simulates the
(x}kj’j), xfkj’*‘), t, — t_, )-bridge B() conditional on Yi._, +1,..., Yi:
(1) Simulate an initial (X", X" t; ~ t_, )-diffusion bridge, B4, and
setk=1.
(2) Propose a new sample path by sampling a
(1) yle=1) PSRN
(thj_1 ,erj .t — ti,_, )-diffusion bridge B(“*)
(3) Accept the proposed diffusion bridge with probability
boog (Vi ! B o, 72)

t—fkl._1

i=ki_1+1 @ (Y;; fr,t; g1 at, 72)

f*tqu

Otherwise B(//K) = X(tik=1)
(4) Set k = k +1 and GO TO (2)
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Integrated square root process: simulation study

dX; = (o - BX;)dt + o /X, dW,
=05 =02 0=05 2=125

Y, t=i i=1....,1500
M = 10000, M, = 1000

1000 simulated datasets

Average of parameter estimates:

Pl a B o 72
30 | 0.4802 0.2056 0.4787 1.2432
20 | 0.4727 0.2043 0.4698 1.2406
10 | 0.4587 0.1965 0.4609 1.2287

o
Slide 31/37 — Michael Serensen — Likelihood Inference for SDE-models — DA-days, Potsdam, 2023



DEPARTMENT OF MATHEMATICAL SCIENCES
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Ice core data

Ice core data

ot

Time (years)

[T

S0 (per mil)

e

Figure 6.1: 6"®O-values integrated over 20 years intervals obtained from ice core data from
the Greenland ice-sheet.

Model: dXt = —Ct’Xtdt + O'dW(

EM-algorithm: M = 10000, M, = 1000 A =20
Parameter \ [-10000,0] [-30000,-10000] [-60000,-30000]

a! 205.3 669.8 321.1
o 0.0303 0.1167 0.1395
o/ V2a 0.307 2.136 1.767
72 0.1063 0.6967 0.2260
Ditlevsen, Ditlevsen and Andersen (2002) .@
L J
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Model of protein structure evolution

Garcia-Portugués and Sgrensen (2023)

Dihedral angles (¢, %)

A simplified representation of a protein of size N is

/&:((¢,¢),a,s)e @ x{1,...,20N

dihedral angles amino acids

The stochastic process (¢;., ;) must be ergodic, time-reversible and
reasonably tractable
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New circular diffusions

f: R — RT is a differentiable circular probability density:
(i) f(x + 2km) = f(x) and (ii) f:” f(#)do =1,forany x eRand k € Z

F(x) = [, f(0)dd. x € R, is a one-to-one map R — R

[ 7

1)
(6)
o5

05 00

10

- om0 nooowm am oan - om0 "o wmoan
6 6

Figure: Circular pdf f (left) and its cdf F (rigth), with extensions from [0, 2r) (red
boundaries) to R.
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New circular diffusions
Define ©; = F~' (oW, + F(6p)) mod 27, t >0,
where W is a standard Wiener process, o > 0 and 6, € [0, 2r)

Proposition
© {©;} solves the SDE

a?f'(©y) o
- d dwW,
a0 O eyt

de; =

on the circle T! := [0, 2x), with 0 and 2x identified
® {©;} is time-reversible and ergodic with stationary density f
©® Fort > 0and 6,6, € T', the transition density of {©;} is
pe(62161) = 2nfwn (2nF(62); 2nF(64), 4n°to?) £(62),

where fyn (6; 1, 02) = Ykez $o2(0 — 1 + 2kn) is the wrapped normal
density function, with ¢, (+) denoting the density of (0, o)

O, 04 =01 ~ Py, (-161), >t 20
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Example: a von Mises diffusion
The von Mises distribution has the density function

fon (6; 11, €) = (27l (k)" explkcos(6 — )}, ueT', k>0

The von Mises diffusion solves the SDE

o2ksin(©; — p) o

= W
2 exp{2k cos(©; — u)} exp{k cos(©; —,u)}d !

t
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Example: a von Mises diffusion
The von Mises distribution has the density function

fon (6; 11, €) = (27l (k)" explkcos(6 — )}, ueT', k>0

The von Mises diffusion solves the SDE
o2ksin(©; — ) o

= W
2 exp{2k cos(©; — u)} exp{k cos(©; —,u)}d !

t

Experiment: Assessing directionality of ants movement. An antin a
circular container, movement tracked for 2 x 10 minutes

Figure: Ant, recorded track, and the track’s angles %
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Experiment: assessing directionality of ants movement

Figure: Rows: “exploration” and “revisit” stages. Columns: three most active ants

Same directional behaviour in “exploration” and “revisit” stages?

Ho :‘fepr = &rev. VS. H; :fexp. * e, E= (lla K, 0')

Ant 1, 2, 3 homogeneity p-values: 0.1394, 1.4 x 107'*, 9.1 x 1072 @
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