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The Main Idea: Finitely Many Degrees of Freedom!!

Conventional theory of turbulence asserts that there are
finitely many “degrees of freedom” in turbulent flows.

Instabilities occur in turbulent flows at the large spatial scales,
and the viscosity dissipates and stabilizes the fine spatial
scales.

A rigorous mathematical framework, based on dynamical
systems approach, was developed to explain this assertion and
to identify these “degrees of freedom”, such as
finite-dimensional attractors, determining modes, determining
nodes, etc...

This dynamical systems approach soon proved to be
applicable to a whole class of dissipative evolution equations,
such as reaction-diffusion systems, Bénard convection, etc...
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The Question Is:

How can one use these finitely many degrees in real world
applications?

Data assimilation: Use the spatial coarse mesh
measurements to recover the corresponding unknown
reference solutions.

Synchronization: Use partial information on the solution to
recover the solution.

Control: Use discrete measurements to stabilize the
corresponding unstable system.
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Motivation

For making a weather forecast, one needs to know the current
state of the atmosphere and the Earth’s surface.
Data assimilation is used in weather forecasts in order to
estimate initial conditions for the forecast model from physical
observations.

 Source: http://www.ecmwf.int
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Data Assimilation
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Lorenz System

Ẋ = σ(Y − X )

Ẏ = ρX − Y − XZ

Ż = XY − βZ

X (0) = X0, Y (0) = Y0, Z (0) = Z0,

X - convection roll

Y - vertical temperature
difference

Z - horizontal temperature
difference

Parameters

ρ =
Ra

Rac
β =

Char lengthscale

distance b/w 2 plates

σ =
ν

κ
= viscosity

thermal diff
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Properties of Lorenz System

The system is dissipative, i.e., the solution are asymptotically
bounded independent of the initial data:

Theorem

Let (X (t),Y (t),Z (t)) be the solution to the Lorenz system
starting from the initial data (X0,Y0,Z0). Let β > 1, and define

K = 2

(
β(ρ+ σ)√
2µ(β − 1)

)
+ 3(σ + ρ)2,

where µ = min(1, σ). Then, there exists a finite time
t∗0 = t∗0 (X0,Y0,Z0, β, ρ, σ) > 0 such that

|(X (t),Y (t),Z (t))|2 ≤ K , for all t ≥ t∗0 .

.
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Properties of Lorenz System

Chaotic, sensitive to initial conditions: Check out a YOUTUBE
VIDEO.
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Properties of Lorenz System

Chaotic, sensitive to initial conditions:

σ = 10, ρ = 28, β = 8
3 , (X0,Y0,Z0), (X0 + 10−3,Y0,Z0)

Figure: X (t),Y (t),Z (t) vs. time(units of ∆t)
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Synchronization

Synchronization between two dynamical systems starting with
different initial conditions implies that the trajectory of one system
converges to the trajectory of the other system.

Question: Is it possible to synchronize two chaotic systems
starting with different initial conditions?

Answer: Yes! (For Dissipative Systems).

By some sort of data assimilation.

A quick demo for the overview of result
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Synchronization of two Lorenz systems
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Results

Indeed one can show the validity of certain data assimilation
algorithms applied to the Lorenz Equations

Show analytically and numerically that the proposed
algorithms allow for the synchronization of the two chaotic
systems.
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Application

Atmospheric Applications: data assimilation algorithms, where
some state variable observations are not available as an input
have been used for simplified numerical hydrodynamic forecast
models.

Numerical experiment of Charney in 1969 confirms that wind
and surface pressure can be determined from coarse mesh
measurements of temperatures alone.
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Algorithms - Direct Insertion - Continuous case

Direct Insertion (Continuous case) - observational
measurements from a known reference solution are directly
inserted into the evolution equation of the slaved system.

Coupling on X �X
Coupling on Y �X
Coupling on Z

Direct Insertion Discrete case - Data is inserted into the
slaved system only at specific times.

Coupling on X �X
Coupling on Y �X
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Direct Insertion (DI) Coupling on X

- partial observational measurements from a known reference
solution are directly inserted into the evolution equation of the
slaved system.

Ẋ = −σX + σY , X (0) = X0

Ẏ = ρX − Y − XZ , Y (0) = Y0

Ż = XY − βZ , Z (0) = Z0

ẏ = ρX − y − X z , y(0) = y0

ż = X y − βz , z(0) = z0

(1)

x(t) = X (t), y0 6= Y0 and z0 6= Z0
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ż = X y − βz , z(0) = z0

(1)

x(t) = X (t), y0 6= Y0 and z0 6= Z0

Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Direct Insertion Coupling on Y

- partial observational measurements from a known reference
solution are directly inserted into the evolution equation of the
slaved system.

Ẋ = −σX + σY , X (0) = X0

Ẏ = ρX − Y − XZ , Y (0) = Y0

Ż = XY − βZ , Z (0) = Z0

ẋ = σ(Y − x), x(0) = x0

ż = xY − βz , z(0) = z0

(2)
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Direct Insertion Algorithm Coupling on Z

- a crucial example where direct insertion in only one state variable
does not allow for synchronization

Ẋ = −σX + σY , X (0) = X0

Ẏ = ρX − Y − XZ , Y (0) = Y0

Ż = XY − βZ , Z (0) = Z0

ẋ = σ(y − x), x(0) = x0

ẏ = ρx − y − xZ , y(0) = y0

(3)

Interpretation: continuous measurements on the horizontal
temperature difference (Z (t)) is not enough to determine the full
state of the system.
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Numerics DI Coupling on X
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Numerics DI Coupling on Y

Plot of x ,X , z ,Z vs time step with DI on Y .:
σ = 10, ρ = 28, β = 8

3 , ICreference = [0, 10, 10], ICslaved = [1, 0, 1],
t = [0, 10] and ∆t = 1

100 .
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Coupling in X - steady states

Set ρ > 1 : Stationary points for the Lorenz system:

(X ,Y ,Z ) =
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
Stationary points for the coupled system: (Coupling in X .)

Set Ẋ = Ẏ = Ż = ẏ = ż = 0.

The master equation have similar stationary points as above.

For the slaved system:
0 = ẏ = ρX − y − Xz , 0 = ż = Xy − βz .

y = X (ρ− z) = ±
√
β(ρ− 1)(ρ− z) z =

Xy

β
.

Solving by substitution: y = ±
√
β(ρ− 1), ρ− 1.

Conclusion: y = Y , z = Z . 1− 1 correspondence with the
stationary points of the master equation.
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Coupling in Y - steady states

Set ρ > 1 : Stationary points for the Lorenz system:

(X ,Y ,Z ) =
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
Stationary points for the coupled system: (Coupling in Y .)

Set Ẋ = Ẏ = Ż = ẋ = ż = 0.

The master equation have similar stationary points as above.

For the slaved system:

x = Y = ±
√
β(ρ− 1) z =

xY

β
= ρ− 1.

x = X (ρ− z) = ±
√
β(ρ− 1)(ρ− z) z =

Xy

β
.

Conclusion: x = X , z = Z . 1-1 correspondence with the
stationary points of the master equation.

Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Coupling in Y - steady states

Set ρ > 1 : Stationary points for the Lorenz system:

(X ,Y ,Z ) =
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
Stationary points for the coupled system: (Coupling in Y .)
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Coupling in Z - Non-matching steady states



0 = Ẋ = −σX + σY , X (0) = X0

0 = Ẏ = ρX − Y − XZ , Y (0) = Y0

0 = Ż = XY − βZ , Z (0) = Z0

0 = ẋ = σ(y − x), x(0) = x0

0 = ẏ = ρx − y − xZ , y(0) = y0

(4)

For the last two equations x = y and y(z − ρ+ 1) = 0. But
Z = ρ− 1 so y can be arbitrary.
We get infinitely many stationary points:

(X ,Y ,Z , x , y) =
(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1, x , y

)
[Ref: Hayden, 2006)]
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Numerics DI Coupling on Z - NO SYNCHRONIZATION
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DI Coupling on X Theorem - Convergence Theorem

Theorem

Let β > 1. Let (X (t),Y (t),Z (t), y(t), z(t)) be the solution to the
system (1). Then |Y − y | → 0, and |Z − z | → 0 exponentially as
t →∞.
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Ideal situation: observational data X (t) is known continuously
for all times.

Why it works: if X (t) for the system (1) is known for all
t ≥ 0, 

Ẋ = −σX + σY , X (0) = X0

Ẏ = ρX − Y − XZ , Y (0) = Y0

Ż = XY − βZ , Z (0) = Z0

(5)

In physical applications, measurements are contaminated with
errors and thus Ẋ cannot be properly computed.

Observational measurements are generally known only at
discrete times.
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Convergence - Coupling in the X state variable

Theorem

Let β > 1. Suppose (X1,Y1,Z1)(t) and (X2,Y2,Z2)(t) are two
solutions to the Lorenz system (1) such that |X1 − X2| → 0 as
t →∞. Then |Y1 − Y2| → 0 and |Z1 − Z2| → 0 as t →∞.
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Direct Insertion - Discrete Coupling on X

Data is known for X (t) only at certain times
t0 < t1 < t2, · · · < ti < tN , |ti − tj | = h for j 6= i . Evolve both
systems and reinitialize the slaved system when X (ti ) data is
known. 

Ẋ = −σX + σY , X (0) = X0

Ẏ = ρX − Y − XZ , Y (0) = Y0

Ż = XY − βZ , Z (0) = Z0

ẋ = σ(y − x), x(0) = X (0)

ẏ = ρx − y − xz , y(0) = y0

ż = xy − βz , z(0) = z0

(6)
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Direct Insertion Discrete Coupling on X

Note: The distance h between observations is crucial to the
synchronization of the slaved system to the master equations.
Analysis: Sufficient condition on the size of h to achieve
synchronization is done by Hayden-Olson-Titi in [4].

Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Plot of X and x vs time for the discrete DI on X :
σ = 10, ρ = 28, β = 8

3 , ICreference = [0, 10, 10],
ICslaved = [10, 45,−15], t = 10, 80 observations, h = .125.
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Plot of Y and y vs time for the discrete DI on X :
σ = 10, ρ = 28, β = 8

3 , ICreference = [0, 10, 10],
ICslaved = [10, 45,−15], t = 10, 80 observations, h = .125.
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Plot of Z and z vs time for the discrete DI on X :
σ = 10, ρ = 28, β = 8

3 , ICreference = [0, 10, 10],
ICslaved = [10, 45,−15], t = 10, 80 observations, h = .125.
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Plot of X vs time for both the reference and slaved solution with
discrete DI on X : σ = 10, ρ = 28, β = 8

3 , ICreference = [0, 10, 10],
ICslaved = [10, 45,−15], t = 10, 50 observations, h = .2.
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Non-synchronization with fewer data

Plot of Y vs time for both the reference and slaved solution with
discrete DI on X : σ = 10, ρ = 28, β = 8

3 , 50 observations, h = .2.
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Non-synchronization with fewer data

Plot of X vs time for both the reference and slaved solution with
discrete DI on X . σ = 10, ρ = 28, β = 8
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Direct Insertion (Continuous) - observational measurements
from a known reference solution are directly inserted into the
evolution equation of the slaved system.

Coupling on X �X
Coupling on Y �X
Coupling on Z [No using Direct Insertion, but YES using
Newtonian Relaxation scheme]

Direct Insertion Discrete (h small enough)

Coupling on X �X
Coupling on Y �X
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Newtonian Relaxation: Continuous coupling on Z

Lorenz system with continuous coupling on the Z variable using
Newtonian relaxation



Ẋ = −σX + σY , X (0) = X0

Ẏ = ρX − Y − XZ , Y (0) = Y0

Ż = XY − βZ , Z (0) = Z0

ẋ = σ(y − x), x(0) = x0

ẏ = ρx − y − xz , y(0) = y0

ż = xy − βz + µ3(Z − z), z(0) = z0

(7)

where µ3 > 0, x(0) = x0, y(0) = y0, z(0) = z0 and generally
x0 6= X0, y(0) 6= Y0, z(0) 6= Z0.
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Feedback Control

catalyticKSE

Analysis

Numerics

Data Assimilation Rcn-Diff

continuous intermittent EnKF, etc

Nudging Charney’s conjecture

Rayleigh-Benard 3D PG

Charney Altaf et al

RB porous mediumNSE

turbulence model
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Data Assimilation

continuous intermittent EnKF, tc

Nudging Charney’s conjecture

Rayleigh-Benard 3D PG

Charney Altaf et al

RB porous medium

2D NSE

NS-α model
Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Efficient Algorithms

Control and stabilization of flows for various chemical processes or
any transport-reaction-diffusion systems

rapid thermal chemical vapor deposition – to produce thin
films coatings for surfaces for defense-related applications

catalytic rod reactor, tubular reactor - require reactor
temperature to not exceed a certain value, or require a
product concentration to not drop below some purity
requirement

Ref: Nonlinear and Robust Control of PDE Systems [by Christofides].

Ref: Control and Optimization of Multiscale Process Systems, [by Christofides, Armaou, Lou, Varshney]
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Finite degrees of freedom

The model equations are known to have a finite number of
degrees of freedom.

Early attempts: feedback control approaches are based on
reduced order models. (Ahuja2009,
Christofides2000,Christofides2003,
Foias-Jolly-Kevrekidis-Sell-Titi 88, Jolly-Kevrekidis-Titi 90,
Shvartsman-Theodoropolous, Rico-Martinez - Titi -
Mounziares 2000)

analytical work in feedback control theory justifying these
algorithms.

Set-back on the real time implementation of these algorithms
in industrial control systems.
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Introduction

Feedback control scheme by Azouani and Titi 2013 - allows
for general observations rather than just Fourier modes, uses
finitely many observables and controllers. Some concurrent
work by Bloemker et al, (2013), Law et al (2013) - spectral
case, data contains noise.

For systems that possess finite number of determining
parameters or degrees of freedom.

Example: finite number of determining Fourier modes,
determining nodes, and determining interpolants and
projections.
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Introduction

Applications to new continuous data assimilations
algorithm (observational data measurements are free of
noise) and signal synchronization (recover the soln of the
underlying dissipative system from the transmitted partial
data). (Azouani-Olson-Titi-2003, Farhat-Jolly-Titi14,
Farhat-Lunasin-Titi 2014,15,16, Markowich-Titi-Trabelsi15 )

Goal: Use low spatial resolution obs. measurements to find
reference soln.

Feedback control algorithm applied to data assimilations
where the observational data contains stochastic noise
(Bessaih-Olson-Titi 2014).

- E(approximate solution - exact solution)
≤ f(Grashof) * variance of noise,

−
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(Bessaih-Olson-Titi 2014).

- E(approximate solution - exact solution)
≤ f(Grashof) * variance of noise,

−
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Chafee-Infante equations: Finite volume elements

Feedback control scheme to stabilize the steady state solution
v ≡ 0:

∂u

∂t
− ν uxx − αu + u3 = −µ

N∑
k=1

uk χJk
(x), (8)

ux(0) = ux(L) = 0, (9)

Jk =
[
(k − 1) L

N , k
L
N

)
, for k = 1, . . . ,N − 1, and

JN =
[
(N − 1) L

N , L
]
,

χ
Jk

(x) is the characteristic function of the interval Jk , for

k = 1, . . . ,N, serving as the actuator shape function,

ϕ̄k =
1

|Jk |

∫
Jk

ϕ(x) dx =
N

L

∫
Jk

ϕ(x) dx ,

represents the amplitude for the given actuator.
local averages of the solution, uk , for k = 1, ...,N, are the
observables, and serve as feedback controllers in (8).

Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Existence, Uniqueness, Stability

AzTi2013 showed that every solution u of (8)-(9) tends to zero, as
t →∞, under specific explicit assumptions on N, in terms of the
physical parameters ν, α, L and µ.
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Kuramoto-Sivashinsky equation (Lunasin, Titi 2016)-

(a model for thin-film flows)

In one dimensional it is written as

∂u

∂t
= −γ ∂

2u

∂x2
− ν ∂

4u

∂x4
− u

∂u

∂x
, x ∈ [0, L] (10)

subject to the periodic boundary conditions, and initial condition:

u(x , 0) = u0(x), (11)

where u(x , t) denotes the height of the film, and the parameters γ
and ν are given positive constants. Equation (10) can be
nondimensionalized by substituting

u → γu/L̃, t → tL̃2/γ, x → L̃x , and ν → L̃2γν, with L̃ =
L

2π
In

this case one gets the same equation as before with the
modification γ = 1 and L = 2π.
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Terms

∂2u

∂x2
- responsible for internal destabilizing of the system

∂4u

∂x4
- responsible for dissipating energy and stabilizes the

system.

u
∂u

∂x
transfers energy from low modes to high modes.
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KSE, ν < 1

Case (ν = 4/15 < 1) : thin film flowing in an inclined surface exhibits unwanted wavy fluctuations.

At around time t = 32 a pattern starts to evolve.
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Finding the number of feedback controllers

Linearize equation (10) about v ≡ 0, subject to periodic
boundary conditions,

∂v

∂t
= −∂

2v

∂x2
− ν ∂

4v

∂x4
, x ∈ [0, 2π], (12)

Ansatz: v(x , t) = ak(t) e ikx that yields the equation

ȧk = (k2 − νk4)ak , (13)

solution, with initial condition v0(x) = Ake ikx , with Ak ∈ IR,

ak(t) = Ak ek
2(1−νk2)t
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Number of Unstable modes

ak(t) = Ak ek
2(1−νk2)t

Conclusion:

the solution have a range of unstable wave numbers k < 1√
ν

.

one needs at least 1√
ν

number of parameters to stabilize
v ≡ 0.

the nonlinear system (10), is locally unstable when ν < 1.

as soon as ν decreases below one atleast one Fourier freq. becomes

unstable in the linearized model.
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Case 0: KSE without feedback control, ν < 1

proof-of-concept: ν > 1 vs. ν < 1

Initial condition: 1e−10 ∗ cos x (1 + sin x) for both of the cases.

Case: (ν = 1.1 > 1), linear stability analysis shows exponential
decay to the linearly stable steady state zero solution.

Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Case when ν > 1

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3
x 10

−19

x

u
s

Figure: (a) Open-loop profile showing stability of the u(x , t) = 0 steady
state solution when ν = 1.1 > 1 (b) Profile of u(x , t = 200).
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Case when ν < 1

Figure: (a) Open-loop profile showing instability of the u(x , t) = 0 steady
state solution when ν = 4/15 < 1. (b) Top view profile of u(x , t)
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Case 0: KSE without feedback control, ν < 1

Case (ν = 4/15 < 1) : experimentally observed that a thin film flowing in an inclined surface exhibits
unwanted wavy fluctuations.

At around time t = 32 a pattern starts to evolve.

Main goal: [Christofides et al [2001+], Ahuja[2009]]. A
control strategy to suppress the undesirable occurrences of
these wavy patterns by using actuators/sensors that controls
the thin film’s thickness

Design a control algorithm that can be achieved in real time
making the implementation tractable for industrial control
system problems.
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Example of Approximate Interpolants

Finite volume elements

Ih(ϕ) =
N∑
j=1

ϕ̄k χJk
(x),

Approximate interpolant based on nodal values

Ih(ϕ) =
N∑

k=1

ϕ(xk)χ
Jk

(x),

Projection onto Fourier modes as approximate interpolant

Ih(u) =
m∑

k=1

ak cos kx +
m∑

k=1

bk sin kx , h =
L

N
, (14)

where the Fourier coefficients are given by
ak = 2

L

∫ L
0 u(x) cos kx dx , bk = 2

L

∫ L
0 u(x) sin kx dx .
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KSE with Feedback control

Feedback control system for the KSE to stabilize the steady state
solution v = 0

∂u

∂t
= −∂

2u

∂x2
− ν ∂

4u

∂x4
− u

∂u

∂x
− µ Ih(u), x ∈ [0, 2π] (15)

subject to the periodic boundary conditions, and initial condition
u(x , 0) = u0(x), with

∫ 2π
0 u(x , 0) dx = 0, where the interpolant

operator Ih acting on u can be defined as a general interpolant
satisfying certain properties.
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Terms

∂2u

∂x2
- responsible for internal destabilizing of the system

∂4u

∂x4
- responsible for dissipating energy and stabilizes the

system.

Together,
∂2u

∂x2
, ν
∂4u

∂x4
destabilizes the low modes (large scales)

and stabilizes the high modes (small scales) with the positive
constant ν as the stabilizing parameter.

u
∂u

∂x
transfers energy from low modes to high modes.

−µIh(u) - responsible for stabilizing the low unstable modes,
i.e. neutralizes the instability caused by uxx

Convergence to reference solution: technical conditions on the
interpolant operator and µ.

−
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Numerical Results

————————————————————————————

Case # Actuators µ ν [0, L] [t0, tf ] tc N M
0a 0 0 1.1 [0, 2π] [0, 200] 0 128 1600
0b 0 0 4/15 [0, 2π] [0, 200] 0 128 1600
1 0 20 4/15 [0, 2π] [0, 200] 0 128 1600

2a 4 10 4/20 [0, 2π] [0, 200] 0 128 1600
2b 4 10 4/20 [0, 2π] [0, 200] 15 128 1600
3 4 10 4/15 [0, 2π] [0, 200] 40 128 1600

Table: Model parameters and discretization parameters for the
un-controlled and controlled 1D Kuramoto-Sivashinksy equations
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Case 2a: Controlled KSE with Finite Volume Elements.
Control turned on at t = tc = 0

Initial condition:

u0(x) =
(

2.5/
√

5
) 5∑

n=1

(sin(nx − nπ) + cos(nx − nπ) .

Number of controls: NC = 4 which is proportional to the
number of unstable modes.

Observe the closed-loop profile showing exponential
stabilization of the u(x , t) = 0 steady state solution.

Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Results

Figure: (a) Closed-loop profile showing fast stabilization of the
u(x , t) = 0 steady state solution for ν = 4/20 < 1, and with µ = 10. (b)
Top view profile of u(x , t).
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Results
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Figure: (a) Exponential decay of the ‖u‖L2 , (b) Control KSE run for
longer time.
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Case 3: Controlled KSE with Finite Nodal Elements

∂u

∂t
= −∂

2u

∂x2
− ν ∂

4u

∂x4
− u

∂u

∂x
− µ

N∑
k=1

u(x∗k )χjk (x). (16)

u0 = 1e−10 cos x(1 + sin x),

number of controllers NC = 4

relaxation parameter µ = 2 which is turned on at tc = 40,

the film height starts to destabilize around t = 32 and then
once feedback control is turned on at tc = 40 it stabilizes
exponentially to zero again.
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Results

Figure: (a) u0 = 1e−10 cos x(1 + sin x), the film height starts to
destabilize around t = 32 and then once feedback control is turned on at
tc = 40 it stabilizes to zero again. (b) A top view of the controlled profile.

−
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Predictive control of catalytic rod with or without
uncertainty variables

Catalytic rod example (Christofides).

long thin rod in a reactor where a pure species A is fed into
the system and a catalytic reaction of the form

A→ B

takes place on the rod.

The reaction is exothermic, needs a cooling medium in
contact with the rod to reduce temperature.
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Predictive control of catalytic rod with or without
uncertainty variables

u(x , t) - dimensionless temperature in the reactor

∂u

∂t
=
∂2u

∂x2
+ βT e−

γ
1+u + βU (b(x)q(t)− u)− βT e−γ , (17)

subject to BCs:
u(0, t) = 0, u(π, t) = 0,

βT - dimensionless heat of reaction,

γ - dimensionless activation energy,

βU - dimensionless heat transfer coefficient, and

q(t) - the manipulated input (supplied but the cooling medium),

b(x) - the actuator distribution shape function set to

b(x) =
√

2
π sin(x) to supply maximum cooling in the middle of the

rod.

−
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Case 1: Uncontrolled catalytic rod

For the typical values of the model parameters,

βT = 50, βU = 2, γ = 4, (18)

the steady state solution u(x , t) = 0 is unstable.

For a small perturbation near zero, the temperature evolves to
another stable steady state where the temperature profile has
a hot-spot in the middle.

For the given catalytic rod problem parameters given in (18),
we have one unstable mode
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Results
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Figure: (a) Open-loop profile showing instability of the u(x , t) = 0 steady
state solution. (b) Top-view of u(x , t).
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Case 2: Controlled catalytic rod

∂u

∂t
=
∂2u

∂x2
+ βT e−

γ
1+u + βU (−µIh(u)− u)− βT e−γ . (19)

We put one actuator in the middle of the rod at x = π/2.

And our interpolant I (u) = ū χ
[0,π]

(x), ū is the spatial

average of u(x) in the interval [0, π] at time t −∆t.

We run the simulation with feedback control with initial
condition, u0(x) = 1e−3 sin(2x).

We observed that both presents stabilization of the trivial
steady state solution.
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Figure: (a) Open-loop profile showing initial instability of the u(x , t) = 0
steady state solution and eventual stability. (b) Top-view.
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Case 3: Application to catalytic rod with uncertainty

−
Catalytic rod example, assume that the heat of the reaction is
unknown and varies with time.

Goal: Stabilize the rod temperature in the presence of
time-varying uncertainty in the dimensionless heat of the
reaction parameter βT .

The location of the actuator is at x = π/2.

Conclusion: In the presence of the uncertainty in some model
parameters values, the control algorithm is able to
compensate for the uncertainty.

The result on the bounds for u depends on the size of the
error in the measurements.

−
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Figure: (a) Open-loop profile showing instability of the u(x , t) = 0 steady
state solution. (b) Top-view.
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Case 4: Nodal case, sensors, controllers different

- Observables are the values of the solutions u(xk), at the points
xk ∈ Jk = [(k − 1) L

N , k
L
N ], k = 1, ...,N,

- Feedback controllers are at some points xk ∈ Jk , xk is not
necessarily the same as xk .
- That is the measurements are made at xk , while the feedback
controllers are at xk , for k = 1, 2...,N.
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Feedback Control

catalyticKSE

Analysis

Numerics

Data Assimilation Rcn-Diff

continuous intermittent EnKF, etc

Nudging Charney’s conjecture

Rayleigh-Benard 3D PG

Charney Altaf et al

RB porous mediumNSE

turbulence model
Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Applications to other models

[Kalantarov-Titi] established rigorous analytic results concerning
similar feedback control algorithms for the Navier-Stokes equations,
Navier-Stokes-Voigt, nonlinear damped wave equations, etc....
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Data Assimilation

continuous intermittent EnKF, tc

Nudging Charney’s conjecture

Rayleigh-Benard 3D PG

Charney Altaf et al

RB porous medium

2D NSE

NS-α model
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General Form - Data Assimilation - Newtonian Relaxation

Suppose that u(t) represents a solution of some dissipative dynamical system governed by an evolution equation of

the type

du

dt
= F (u), (20)

where the initial data u(0) = u0 is missing.
Let Ih(u(t)) - an interpolant operator based on the observational measurements of this system at a coarse

spatial resolution of size h, for t ∈ [0,T ].

DA Algorithm: [Azouani-Olson-Titi 2013] - construct an approximate solution v(t)

that satisfies the equations

dv

dt
= F (v)− µ(Ih(v)− Ih(u)), (21a)

v(0) = v0, (21b)

where µ > 0 is a relaxation (nudging) parameter and v0 is taken to be an arbitrary initial data.

If system (21) is globally well-posed and Ih(v) converge to Ih(u) in time, then one recovers the reference u(x, t)

from the approximate solution v(x, t). For large enough time T > 0, the solution v(T ) can be used as initial

condition to (21) .
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Basic concepts

Added to the prognostic equation a term that nudges the
solution towards observations.

If nudging parameter µ is too big then solution converges
towards observation points too fast, the dynamics do not have
time to adjust – leading to the creation of spurious spill over
effects.

If the nudging parameter µ is too small, the errors in the
model and measurements can grow too much before the
nudging becomes effective.

Hokes and Anthes [1976] the relaxation parameter should be
chosen so that the nudging term in similar in magnitude to
the less dominant terms.
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Numerical weather prediction (NWP)

NWP - an IVP where equations for geophysical fluid dynamics
are integrated forward in time from a set of initial values.

needs accuracy of model
accuracy of initial conditions
well-posedness

Difficulties: data collected such as temperature and velocity
measurements are usually sparse.

Data assimilation is a proper combination of model +
observations → accurate initial conditions. [survey: Dowey1992].

Two categories: Continuous (insert data as received) vs.
Intermittent (screens for bad meteorological data then after
analysis data are assimilated intermittently at specified
intervals)
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Charney 1954

1954 - Use of Primitive equation of motion for NWP.
Observations:

– (obstacle) “initial values of wind and pressure cannot as a rule
be prescribed independently with sufficient accuracy”

– “ initial inaccuracies gives rise to spurious inertio-gravitational
oscillations that obscure meteorological significant motions.”

– (how to overcome)“ accurate initial winds can be determine
from pressure field alone, and that if this is done
intertio-gravitational oscillations will not arise”
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Charney et al 1969

Charney, Halem, Jastrom [1969] - Use of incomplete historical
data to infer the present state of the atmosphere - launch of
temperature sounding satellite. (See also, Smagarinsky 1970, Rutherford 1972,

Morel and Telegrand 1974)

- If it is possible to obtain large-scale wind field from
temperatures alone then NWP would be substantially
advanced.

- Mintz-Arakawa global circulation model (predicts winds and
temperatures at 800 and 400 mb and pressure at sea level.)

Jastrom, Halem [1970] - Used Direct insertion method -
observation simply replaced the model forecast at model grid
point nearest the observation location. (limited success).

gives rise to shocks.
when applied to primitive equation model an imbalance
between the mass and wind fields generates non physical
oscillations when the model integration is resumed.
model attempting to restore the dynamic balance [Bengston
1975].
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Data assimilation algorithm based on feedback control theory.

Types of applications we’ve analysized motivated by Charney’s
conjecture. Our analytical results support Charney’s
conjecture that temperature observations are enough to
determine all the dynamical state of the system for certain
models.

Edriss S. Titi Stabilizing unstable flows by coarse mesh observables



Azouani-Olson-Titi [2013]

Approximate solution, U(t, x , y) for the reference solution
u(t, x , y) to the 2D NSE, for t ∈ [0,T ] is given by

∂U1

∂t
− ν∆U1 + U1∂xU1 + U2∂yU1 + ∂xP = f1 − µ(Ih(U1)− Ih(u1)),

∂U2

∂t
− ν∆U2 + U1∂xU2 + U2∂yU2 + ∂yP = f2 − µ(Ih(U2)− Ih(u2)),

∂xU1 + ∂yU2 = 0,

U1(0, x , y) = U0
1 (x , y), U2(0, x , y) = U0

2 (x , y).

P is the approximate pressure. A choice for U0
1 and U0

2 is arbitrary.
µ is a positive nudging parameter, which relaxes (nudges) the
coarse spatial scales of U2 toward those of the observed data
Ih(u1), Ih(u2).
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Gesho, Olson, Titi [2015]

µ = 1/3
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The 2D Bénard convection problem

∂u

∂t
− ν∆u + (u · ∇)u +∇p = θe2, (23a)

∂θ

∂t
− κ∆θ + (u · ∇)θ − u · e2 = 0, (23b)

∇ · u = 0, (23c)

u(0, x , y) = u0(x , y), θ(0, x , y) = θ0(x , y), (23d)

with appropriate boundary conditions. Farhat-Jolly-Titi[2015]

∂U

∂t
− ν∆U + (U · ∇)U +∇P = ηe2 − µ(Ih(U)− Ih(u)), (24a)

∂η

∂t
− κ∆η + (U · ∇)η − U · e2 = 0, (24b)

∇ · U = 0, (24c)

U(0, x , y) = U0(x , y), η(0, x , y) = η0(x , y), (24d)

Can we design a DA algorithm for the Bénard convection model, based on temperature measurements only
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Can we design a DA algorithm for the Bénard convection model,
based on temperature measurements only?
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Continuous Data Assimilation (CDA) for 2D Bénard

−
Performance Analysis of CDA
when downscaling measure-
ments

of temperature and
velocity X

of velocity alone X

of temperature alone X

When assimilating only temperature with CDA, the

temperature converges exponentially but the velocity

does not converge. Eg. Assimilation starts from an

initial shear flow. In this case, velocity field suffers

from large errors

Figure: (a) Numerical Study of Data Assimilation for 2D Bénard Problem
by Altaf et al. Results are compared to point to point nudging approach.
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Approximate Solution: Standard Grid Nudging Approach
(NA) vs Continuous Data Assimilation (CDA)

with zero initial conditions and where for example,

Ih(φ)(x) =
N∑

k=1

φ(x∗k )χJk
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Farhat, Lunasin, Titi [2015]

A data assimilation algorithm for the 2D Navier-Stokes Equations
utilizing measurements of only one component of the velocity field.

∂U1

∂t
− ν∆U1 + U1∂xU1 + U2∂yU1 + ∂xP = f1,

∂U2

∂t
− ν∆U2 + U1∂xU2 + U2∂yU2 + ∂yP = f2 − µ(Ih(U2)− Ih(u2)),

∂xU1 + ∂yU2 = 0,

U1(0, x , y) = U0
1 (x , y), U2(0, x , y) = U0

2 (x , y).
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Farhat, Lunasin, Titi [2016]

Data assimilation algorithm for a two-dimensional Bénard
convection problem: two-dimensional Boussinesq system of a layer
of incompressible fluid between two solid horizontal walls, with
no-normal flow and stress free boundary condition on the walls,
and fluid is heated from the bottom and cooled from the top.

We incorporate the observables as a feedback (nudging) term in
the evolution equation of the horizontal velocity.
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3D Bénard Problem in Porous Medium

Fluid flow through a porous media such as flow within and
between rock layers.

γ
∂u

∂t
+ u +∇p = Ra θk̂, (26a)

∂θ

∂t
−∆θ + (u · ∇)θ − u · k̂ = 0, (26b)

∇ · u = 0, (26c)

u(0; x , y , z) = u0(x , y , z), θ(0; x , y , z) = θ0(x , y , z), (26d)

subject to the boundary conditions:

θ(t; x, y, 0) = θ(t; x, y, 1) = 0, (26e)

∂θ

∂x
(t; 0, y, z) =

∂θ

∂x
(t; L, y, z) =

∂θ

∂y
(t; x, 0, z) =

∂θ

∂y
(t; x, l, z) = 0, (26f)

u · n̂ = 0, on ∂Ω. (26g)
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Data Assimilation for 3D Bénard Problem in Porous
Medium employing temperature measurements

Our algorithm: (Farhat, Lunasin, Titi 2015)

γ
∂v

∂t
+ v +∇q = Ra ηk̂ , (27a)

∂η

∂t
−∆η + (v · ∇)η − v · k̂ = −µ(Ih(η)− Ih(θ)),

(27b)

∇ · v = 0, (27c)

v(0; x , y , z) = v 0(x , y , z), η(0; x , y , z) = η0(x , y , z), (27d)

subject to the appropriate boundary conditions.
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Planetary Geostrophic equations

Planetary scale ocean circulation model
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Planetary Geostrophic model
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Data Assimilation

continuous intermittent EnKF, tc

Nudging Charney’s conjecture

Rayleigh-Benard 3D PG

Charney Altaf et al

RB porous medium

2D NSE

NS-α model
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