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Introduction
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Goal: estimation of the characteristic
parameters of aerosol systems along
with their uncertainties, e.g.

condensational growth rate
nucleation rate
linear loss rates

Why? Per se, because it is interesting,
but also it is relevant, e.g. aerosols
play a key role in cloud formation. Also,
aerosols are known to disturb

satellite data
climate model (IPCC reports)
radiative forcing
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If it is so important, methods should
already exist, right? Well, it’s not that
simple! Indeed, some methods exist
for estimating some parameters... but
they are not satisfactory!

manual recipes,
no uncertainty estimation.

How to estimate the parameters? We
have:

data: time series of number
concentration
evolution model: GDE. . .

The perfect framework for an inverse
problem.

Evolution model of the form:

Bu

Bt
“ F pt, s, u; θq
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The evolution model

How to describe the evolution of a population of aerosols whose characteristics
depend on size? Size-structured Population Balance Equation (PBE).

Bu

Bt
`

Bgu

Bs
“ F pt, s, u; θq (1)

This PBE is a scalar conservation law where u is the particle size density, g the
growth rate and F is the term that describes the mechanisms that make the density
evolve — it depends on some parameter θ. We refer to this equation as the General
Dynamic Equation for aerosols, or simply GDE.

Note: without going into details, each aerosol particle cannot be described only by
a size. By nature, particles are complex objects of different shape, size and chemical
composition, but we model them as spherical objects of equivalent volume without
considering chemistry. Therefore, it cannot be a perfectly precise model (source of
uncertainty, potentially modelled by SPDE).
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The evolution model

Condensational growth
Ambient vapor condenses onto the surface of particles, resulting in the growth of
particles. Represented in the left hand side of equation (1) by g which is a speed.

Nucleation (and sources)
New particles can be added to an aerosol system either by adding existing particle
or by formation of particles from the ambient vapor i.e. nucleation. In either case:

F pt, s, u; Jq “ J (1)

is a simple source term.

Linear losses
Particles can be removed from the system by various mechanism such as
sedimentation or wall deposition. It is well described by a linear damping term:

F pt, s, u;λq “ λpt, vqupt, vq (2)
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The evolution model

Coagulation
Particle of a given size may be created or removed by coagulation — when two
particle collide and stick, they form a new particle.

F pt, v, u;βq “

ż v´v0

v0

βvps, v ´ squpt, squpt, v ´ sqds
looooooooooooooooooooooomooooooooooooooooooooooon

coagulation source

´upt, vq

ż 8

v0

βvpv, squpt, sqds
loooooooooooooooomoooooooooooooooon

coagulation sink

where βv is a collision frequency factor.
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The evolution model

The continuous form of the GDE is not really suitable for our purpose (parameter
estimation from time series of number concentration), hence we define:

@i P rr0, T ss, k P rr1,Kss, Nk
i “

ż

Ωi

ups, k∆tqds (1)

the number of particles in the size range Ωi per unit of volume. Considering a
logarithmic scale, and using the Euler time discretization scheme, we obtain the
following time-and-size discrete evolution equations:

Nk`1
1 “ Nk

1 ` ∆k
t

´

Jk ´

ˆ

gk
1

∆1
` λ1

˙

Nk
1 ´ Csink

1 pNkqNk
i

¯

` εk
1 (2)

Nk`1
i “ Nk

i ` ∆k
t

´ gk
i´1

∆i´1
Nk

i´1 ´

ˆ

gk
i

∆i
` λi

˙

Nk
i

` Csource
i pNkq ´ Csink

i pNkqNk
i

¯

` εk
i (3)

Note that both discretization steps — time and size — add errors. The overall
errors/uncertainties are encompassed in the terms εk

i .
Note that I leave out the parameter evolution for now.
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Data acquisition

DMA
This device acts as a selector of near monodisperse size distribution around a
given size di; its size discrimination power determines the sets tdiuiPrr1,Nss and
t∆iuiPrr1,Nss. For each channel, we denote the time invariant kernel ψi, which mod-
els the efficiency of the device. The number concentration at the outlet of the DMA
is approximated by:

zk
i “

1
∆t

ż t0`k∆t

t0`pk´1q∆t

ż

ωi

ψipsqups, tqdsdt` ιki “ φk
i ` ιki (4)

where ωi is the support of ψi — where it is not null — and ιki accounts for the
model uncertainties. The number of particle is then obtained by multiplying by the
volume.
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Data acquisition

CPC
Let the number concentration of particles at the inlet of a CPC is zk

i (coming from
the ith channel of the DMA), the output yk

i is modeled by:

yk
i “

ỹk
i

V
, with ỹk

i „ PoissonpV zk
i q (4)

where V is the volume of sample used in the CPC for counting. In most cases,
the number of particle in the CPC is large enough (V zk

i ą 20), thus the Poisson
distribution can satisfactorily be approximated by:

yk
i „ N pzk

i ,
zk

i

V
q. (5)

Note that from this model it is clear that the quality of the measurement is directly
link to the volume of the sample.
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Data acquisition

SMPS
The full measurement device can be summarized by the model:

yk
i “

ỹk
i

V
, with ỹk

i „ PoissonpV pφk
i ` ιki qq. (4)

Assuming that the device operates under normal conditions — that is it is actually
counting something — and that the DMA model has no flaw, then the model
becomes:

yk
i “ φk

i `
1
V
ι̃ki , with ι̃ki „ N p0, V φk

i q. (5)

Note that the Nk
i s used in the GDE correspond to the case:

ψipsq “

" 1
|ωi|

if s P ωi

0 otherwise (6)

For the sake of clarity, we consider the above case, hence, the measurement model
is:

yk
i “ Nk

i `
1
V
ι̃ki with ι̃ki „ N p0, V Nk

i q (7)
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Fixed Interval Kalman Smoother: FIKS

Kalman Filter (KF)
Estimation of the expected state and its uncertainty

Xk|k “ ErXk|Yks and Γk|k “ CovrXk|Yks, (8)

Initialization
Set X0|0 P RN and Γ0|0 P RNˆN (Prior knowledge)
Recursion
While k ď K, do
Prediction
Xk|k´1 “ F k´1 `

Xk´1|k´1˘

(state expectation)
Γk|k´1 “ BF k´1Γk´1|k´1pBF k´1qT ` Γk´1

w (state covariance)
Calculation of Kalman’s gain
Kk “ Γk|k´1pHkqT pHkΓk|k´1pHkqT ` Γk

vq´1

Filtering
Γk|k “ pI ´KkHkqΓk|k´1

Xk|k “ Xk|k´1 `Kkpyk ´HkXk|k´1q

Update iterator
k ð k ` 1

end(while)
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Fixed Interval Kalman Smoother: FIKS

Fixed Interval Kalman Smoother (FIKS)

Xk|K “ ErXk|YKs and Γk|K “ CovrXk|YKs, (8)

Initialization
Run KF and store all variables
Set XK

smo “ XK|K and ΓK
smo “ ΓK|K

k Ð K ´ 1
Recursion
While k ě 1, do
Compute smoothing gain
Kk

smo “ Γk|kpBF k`1qT pΓk`1|kq´1

Smoothing
Xk

smo “ Xk|k `Kk
smo

`

Xk`1
smo ´Xk`1|k

˘

Γk
smo “ Γk|k `Kk

smo
`

Γk`1
smo ´ Γk`1|k

˘

pKk
smoqT

Update iterator
k ð k ´ 1

end(while)
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Fixed Interval Kalman Smoother: FIKS

We have almost all the elements to run the algorithm:
Evolution model of the number concentration
Measurement model
Data: simulation or measurement
Initial guesses: may depend on the user

however, we still miss one part:
Evolution model of the parameters

We’ll have to create some based on what we know of the system.
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Parameter evolution model

Time invariant Some parameter are time invariant, so their time evolution model is
a random walk:

k ě 1, pk`1 “ pk ` ηk, with ηk „ N p0,Γηq (8)

where Γη is the covariance of the model uncertainty.
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Parameter evolution model

Second order If a parameter is known to evolve smoothly with time, it can be
modelled as a second order stochastic process such as:

Gk “

„

pk

pk´1

ȷ

“

„

2rp ´r2
p

1 0

ȷ „

pk´1

pk´2

ȷ

`

„

ηk

0

ȷ

“ BprpqGk´1 `

„

ηk

0

ȷ

(8)

where rp is the smoothness lever and ηk „ N p0, σ2
ηq with ση controlling the am-

plitude of the process. The latter is given by its covariance matrix defined by:

Γk
G “ covpGkq “ BprpqΓk´1

G BprpqT `

„

σ2
η 0

0 0

ȷ

. (9)

We are interested in the asymptotic behavior, i. e. Γk
G “ Γk´1

G “ Γ8
G “

„

σ2
p c
c σ2

p

ȷ

,

and how the variance of η controls the variance of p, σ2
p. By expanding the previous

relation, we find that:

σ2
η “ σ2

p

ˆ

1 ´ r2
p

ˆ

4 ` r2
p

ˆ

1 ´
8

1 ` r2
p

˙˙˙

, c “
2rp

1 ` r2
p

σ2
p. (10)
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Parameter evolution model

Size correlation Some parameters are distributed, yet, the size dependence may be
unknown or only approximately known. For most parameter, it is safe to assume
that size dependence is continuous, and even rather smooth.
Let pk P RN follow a random walk described by eq. (8), the covariance Γη convey
the size dependence information, and it can be constructed as:

Γη “ D̃
1
2 D̄´ 1

2 Γ̄D̄´ 1
2 D̃

1
2 (8)

where Γ̄ is the Toeplitz matrix build with the sequence pσ̄iqiPrr1,Nss which determines
how the size dependence evolves with the size difference. We choose the sequence

@i P rr1, N ss, σ̄i “ e
1´i

δ (9)

with δ so that only the first δ neighboring sizes significantly contribute to the evo-
lution of one variable. The decay is exponential in size index, so it is actually lin-
early/polynomially decaying in the diameter space. The diagonal matrix D̄ “ σ̄2

1IN

normalize the covariance Γ̄ and the diagonal matrix D̃ “ diagprσ2
η,1 σ

2
η,2 . . . σ

2
η,N sq

scales the variance of each size.
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Parameter constraints

What if we know the possible range of a parameter?

Lower bound

p “ a`
1
α

log
`

1 ` eαζ
˘

, (10)

Range

p “ a`
b´ a

1 ` 1
αe

´αζ
(11)
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Data simulation

We use simulated data in order to evaluate the performance of the method.
dense discretization of the size space
non-approximated measurement model (Gaussian kernel and Poisson noise)

The dense discretization of the size space may lead to spurious oscillation (or di-
verge) if the following condition on the time step is not met:

0 ă ∆k
t ă

1

max
i

t
gk

i

∆i
` λi ` Csink

i pNkqu
. (12)
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Data simulation

Nucleation event
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Figure: Simulation of a nucleation event. a) Number concentration contour plot, b)
growth rate, c) nucleation rate at 14.1nm, and d) wall loss rate.
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Data simulation

CLOUD simulation
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Figure: Simulation of a steady state. 1) Number concentration contour plot, 2) growth
rate, 3) nucleation rate, and 4) wall loss rate.
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Results

Nucleation event
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Figure: Estimation of the parameter of the GDE for aerosols from a simulated nucleation
event data: 1) growth rate, 2) nucleation rate, 3) loss rate, and 4) number concentration.
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Results

CLOUD simulation
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Figure: Estimation of the parameter of the GDE for aerosols from a simulated transition
to steady state data: 1) growth rate, 2) nucleation rate, 3) loss rate, and 4) number
concentration.
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Conclusions

Message to take back home:
Aerosols can disturb everything... at least the models
The Fixed Interval Kalman Smoother is a suitable tool for the estimation of
the GDE parameters (distributed or not) along with meaningful uncertainties
The requirements for applying the method are “weak”: 1) the model must be
well approximated by their Jacobian, and 2) the errors can be approximated
as gaussian
Need surrogate evolution models for the parameters of interest (unless
someone comes up with a physically relevant evolution model).
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The end

Thanks!
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