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Stein variational gradient descent (SVGD)

Consider the interacting particle system
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where

» N number of particles,

» k positive definite kernel, e.g. k(x,y) = exp (—M)
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» V:RY - Ris called the potential.

Fact (informal):

As N — oo and t — oo, the distribution p of the particles
approaches
1 v
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where Z is a normalisation constant.




Measure transport
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Why is this good? - Because...

. by setting V = — log 7 we can approximate (expectations
wrt.) 7, having access only to V log 7, without knowing Z.

» ... this is the typical setting in Bayesian inference (inverse
problems, data assimilation, etc.).
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Langevin Stein (SVGD)
N
ax/ ,
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dX; = =V V(X,) dt + V2dW,

N

j=1
Fokker-Planck: Stein pde:

Oep =V - (pVV + Vp)

op =V - (p(k*(pVV + Vp)))

> noninteracting
> linear
> local

stochastic?

v

> interacting
» nonlinear

nonlocal

v

» deterministic?

“There are deterministic
versions of Langevin.

“There are stochastic
versions of SVGD.



Gradient flows

Orpr = —VgKL(pt|m)

relative entropy/KL-divergence:

KL(p|r) = /delog (g) dx

KL(p|m) _
[ - PR —/delogpdx—i—/RdVdp

‘ Both Langevin and Stein are gradient flows of KL.‘




Both Langevin and Stein are gradient flows of KL... ‘
. but with respect to different geometries on P(RY).

Langevin:

1
Bor (o, pn) = inf [ vy de = WEGuo, ),
(vat).o

Stein:

1
(o, n) = inf [ 1wl d,
KLl | ] e
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o PRt both subject to

Ocpe + V- (eve) =0 (weakly).

’ Take-home message (recipe for sampling algorithms): ‘

1. Choose a cost functional (here: KL),
2. Choose a geometry on P(R?),

3. Find a suitable simulation scheme for the ensuing gradient
flow pde.



Second order: geodesic convexity and contraction rates

Theorem (Informal)
Assume that there exists A > 0 such that

d2
@KL(NJW) > A,

for all unit-speed geodesics (jit)¢c(—z,c).- Then

KL(pelm) < e KL (pol).

P(RY) = =

Tl



Geodesic equations...

...for geodesics 1+ and their (generalised) velocity fields VV,.
» Langevin (Wasserstein):
Oepe + V- (uVV) =0,
OV + %wa? =0.

» Stein:

Oep(x) ( / (x, y)VV¥(y dﬂ()’)) =0,

0V (x) + VW(x / (x,y) VV¥(y)du(y) = 0.



Curvature for a discrete measure, V =0

eigenvalues




Conclusions:

» Probably there is no exponential decay for the Stein pde.

» The width of the kernel can (and should) be adjusted
according to a 'mean curvature' criterion.

Future directions:

> Are there connections with the approximation theory in RKHS
(bias-variance tradeoff, etc...)?

» Beyond gradient flows: Nesterov acceleration, Hamiltonian
Monte Carlo, ...
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