Reanalysis of radiation belt electrons relying on a Kalman filter, four spacecraft, and a diffusion model

Sebastián Cervantes1,2, Yuri Shprits1,2,3, Alexander Drozdov3, Adam Kellerman3, Nikita Aseev1,2, Angélica Castillo1,2

1: GFZ German Research Centre for Geosciences, Potsdam, Germany
2: Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
3: Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA

Workshop on Conservation Principles, Data, and Uncertainty in Atmosphere-Ocean Modelling
April 3rd, 2019
Space weather and its effects

What is space weather?

- The Sun is responsible for disturbances in our space environment.

[Source: Baker, 2002]
Space weather and its effects

What is space weather?

- The Sun is responsible for disturbances in our space environment.

- The Sun ejects clouds of ionized gas towards the Earth.

[Baker, 2002]
Space weather and its effects

What is space weather?

- The Sun is responsible for disturbances in our space environment.
- The Sun ejects clouds of ionized gas towards the Earth.
- Some effects: aurorae, communication disruptions, radiation hazards to orbiting astronauts and spacecraft, and induced currents in power lines.

[Baker, 2002].
Radiation belts: two zone structure

What are the radiation belts?

- Radiation belts are two donut shaped regions of high radiation encompassing the Earth.
Radiation belts: two zone structure

What are the radiation belts?

- Radiation belts are two donut shaped regions of **high radiation** encompassing the Earth.
- **Inner belt**: fairly stable.
- **Outer belt**: can change in timescale of an hour.
- **Slot region**: gap of lower fluxes.
- Particles with energies from ~ 100 keV up to tens of MeV.
Radiation belts: two zone structure

What are the radiation belts?

- Radiation belts are two donut shaped regions of high radiation encompassing the Earth.
- **Inner belt**: fairly stable.
- **Outer belt**: can change in timescale of an hour.
- **Slot region**: gap of lower fluxes.
- Particles with energies from ~ 100 keV up to tens of MeV.
- The outer belt **overlaps many satellite orbits!**
Radiation belts and data assimilation

How can data assimilation be applied in radiation belt modeling?

Data assimilation can help with:

- **Understanding** the fundamental physics underlying the radiation belts dynamics.

Increased dependence on the technology in space causes surge in space weather interest.
Radiation belts and data assimilation

How can data assimilation be applied in radiation belt modeling?

Data assimilation can help with:

▶ **Understanding** the fundamental physics underlying the radiation belts dynamics.

▶ **Predicting** radiation in space and the response of radiation belts to geomagnetic disturbances.
Radiation belts and data assimilation

How can data assimilation be applied in radiation belt modeling?

Data assimilation can help with:

- **Understanding** the fundamental physics underlying the radiation belts dynamics.
- **Predicting** radiation in space and the response of radiation belts to geomagnetic disturbances.
- **Increased dependence** on the technology in space causes surge in space weather interest.
Radiation belts and data assimilation

How can the dynamics in the radiation belts be modeled?

The evolution of relativistic electrons in the radiation belts is modeled by the **Fokker-Planck equation**, in terms of the radial distance L, relativistic momentum p, and pitch angle α as follows:

$$\frac{\partial f}{\partial t} = L^* \frac{2}{\partial L^*} \left|_{\mu,J} \frac{1}{L^*} D_{L^*L^*} \frac{\partial f}{\partial L^*} \right|_{\mu,J} + \frac{1}{p^2} \frac{\partial}{\partial p} \left|_{\alpha,L^*} p^2 \left(D_{pp} \frac{\partial}{\partial p} \left|_{\alpha,L^*} f + D_{p\alpha} \frac{\partial}{\partial \alpha_0} \left|_{p,L^*} f \right) \right) + \frac{1}{T(\alpha)\sin(2\alpha)} \frac{\partial}{\partial \alpha} \left|_{p,L^*} T(\alpha)\sin(2\alpha) \left(D_{\alpha\alpha} \frac{\partial}{\partial \alpha} \left|_{p,L^*} f + D_{\alpha p} \frac{\partial}{\partial p} \left|_{\alpha,L^*} f \right) \right) - \frac{f}{\tau} \right)$$

- μ, J, and L^* are the particle adiabatic invariants.
- $D_{L^*L^*}$, D_{pp}, $D_{\alpha\alpha}$, $D_{p\alpha}$, and $D_{\alpha p}$ are diffusion rates, and describe the effect of **wave-particle interactions**.
- Pitch angle (α): angle between the particle's velocity vector and the local magnetic field.
- This equation accounts for **radial**, **energy**, **pitch-angle**, and **mixed pitch angle - energy** diffusion.
Radiation belts and data assimilation

An example of 1D reanalysis (Shprits et al., 2012)

\[
\frac{\partial f}{\partial t} = L^*^2 \frac{\partial}{\partial L^*} \left| \begin{array}{c} 1 \\ L^*^2 D L^* L^* \frac{\partial f}{\partial L^*} \\ \end{array} \right|_{\mu, J}
\]

- Top: Reanalysis.
- Middle: CRRES observations.
- Bottom: Geomagnetic activity index.

PSD is given in units of \(\log_{10}(c/cm/\text{MeV})^3 \times 10^6\)
Radiation belts and data assimilation

An example of 1D reanalysis (Shprits et al., 2012)

\[
\frac{\partial f}{\partial t} = L^* \frac{\partial}{\partial L^*} \left| \frac{1}{L^*} \frac{D_{L^*} L^*}{\partial L^*} \right|_{\mu, J}
\]

- Top: Reanalysis.
- Middle: CRRES observations.
- Bottom: Geomagnetic activity index.

\[PSD \text{ is given in units of } \log_{10}(\text{c/cm}/\text{MeV})^3 \times 10^6 \]
Objectives

▶ Perform reanalysis in terms of the three dimensions (\(L\): radial distance, \(\alpha\): pitch angle, and \(E\): energy) using data from multiple spacecraft.
Objectives

▶ Perform reanalysis in terms of the three dimensions \((L: \text{ radial distance}, \alpha: \text{ pitch angle}, \ E: \text{ energy})\) using data from multiple spacecraft.

▶ Incorporate the following loss processes into the data assimilation code:
 1. mixed pitch angle - energy diffusion,
 2. scattering by Electromagnetic Ion Cyclotron (EMIC) waves, and
 3. losses to the interplanetary medium.
Objectives

- Perform reanalysis in terms of the **three dimensions** \((L: \text{radial distance}, \alpha: \text{pitch angle}, \text{and } E: \text{energy})\) using data from **multiple spacecraft**.

- Incorporate the following **loss processes** into the data assimilation code:
 1. mixed pitch angle - energy diffusion,
 2. scattering by Electromagnetic Ion Cyclotron (EMIC) waves, and
 3. losses to the interplanetary medium.

- Assess their effect on radiation belt modeling via the **innovation vector**.
Methodology

Model framework: VERB code

\[
\frac{\partial f}{\partial t} = \left. L^* \frac{\partial}{\partial L^*} \right|_{\mu,J} \left. \frac{1}{L^*} D_{L^*L^*} \frac{\partial f}{\partial L^*} \right|_{\mu,J} + \left. \frac{1}{p^2} \frac{\partial}{\partial p} \right|_{\alpha,L^*} p^2 \left. \left(D_{pp} \frac{\partial}{\partial p} \right) f + D_{p\alpha} \frac{\partial}{\partial \alpha_0} \right|_{p,L^*} f \right) + \\
\left. \frac{1}{T(\alpha)\sin(2\alpha)} \frac{\partial}{\partial \alpha} \right|_{p,L^*} T(\alpha)\sin(2\alpha) \left. \left(D_{\alpha\alpha} \frac{\partial}{\partial \alpha} \right) f + D_{\alpha p} \frac{\partial}{\partial p} \right|_{\alpha,L^*} f \right) - \frac{f}{\tau}
\]

The VERB (Versatile Electron Radiation Belt) code (Subbotin and Shprits, 2009) solves it numerically, by accounting for radial, energy, pitch-angle, and mixed pitch angle - energy diffusion.

Spacecraft observations

- NASA’s Radiation Belt Storm Probes (RBSP), highly elliptical orbit.
- NOAA’s Geostationary Operational Environmental Satellites (GOES), geostationary orbit.
We performed four different simulations, and systematically added one loss process at a time:

1. Radial + pitch angle + energy diffusion (3D),
Reconstructing the evolution of the Van Allen belts

- We performed four different simulations, and systematically added **one loss process at a time**:

 1. Radial + pitch angle + energy diffusion (3D),

 2. ... + mixed pitch angle - energy diffusion,
Reconstructing the evolution of the Van Allen belts

We performed four different simulations, and systematically added one loss process at a time:

1. Radial + pitch angle + energy diffusion (3D),
2. ... + mixed pitch angle - energy diffusion,
3. ... + scattering by Electromagnetic Ion Cyclotron (EMIC) waves, and
Reconstructing the evolution of the Van Allen belts

- We performed four different simulations, and systematically added **one loss process at a time**:

1. Radial + pitch angle + energy diffusion (3D),

2. ... + mixed pitch angle - energy diffusion,

3. ... + scattering by Electromagnetic Ion Cyclotron (EMIC) waves, and

4. ... + losses to the interplanetary medium.
Reconstructing the evolution of the Van Allen belts

Radial profiles of electron PSD

Electron PSD for $\mu = 50$ MeV/G and $K = 0.8 \text{ G}^{0.5} \text{Re}$:

- (i) spacecraft data,
- (ii) 3D + mixed diffusion + scattering by EMIC waves + magnetopause shadowing reanalysis,
- and evolution of
- (iii) solar wind dynamic pressure and speed,
- and (iv) geomagnetic Kp index.

Reconstructing the evolution of the Van Allen belts

Innovation vector: “all the new information in the observation vector”

- How much **additional information** from the data will modify the forecast in order to produce an optimal estimate of the state of the system.
Reconstructing the evolution of the Van Allen belts

Innovation vector: ”all the new information in the observation vector”

- How much additional information from the data will modify the forecast in order to produce an optimal estimate of the state of the system.

- **Positive** innovation \rightarrow model underestimates data \rightarrow observations add PSD \rightarrow missing source of electrons in the model.

- **Negative** innovation \rightarrow model overestimates data \rightarrow observations remove PSD \rightarrow missing loss of electrons in the model.
Innovation vector: 3D + mixed diffusion

- Mixed diffusion removes the **overestimation** of PSD, particularly at low pitch angles.
- Left column: 3D diffusion.
- Right column: 3D + mixed diffusion.

Innovation vector as a function of L^* and Kp for electron PSD for the indicated pairs of μ and K.

GFZ Helmholtz-Zentrum Potsdam

SFB 1294 Data Assimilation
Innovation vector: 3D + mixed diffusion + EMIC scattering

- EMIC scattering reduces the electron PSD overestimation, especially at energies greater than 2 MeV.
- Left column: 3D + mixed diffusion.
- Right column: 3D + mixed diffusion + scattering by EMIC waves.

Innovation vector as a function of L^* and K_p for electron PSD for the indicated pairs of μ and K.
Innovation vector: 3D + mixed diffusion + EMIC scattering + magnetopause losses

- Left column: 3D + mixed diffusion + scattering by EMIC waves.
- Right column: 3D + mixed diffusion + scattering by EMIC waves + losses to the interplanetary medium.

Innovation vector as a function of L^* and Kp for electron PSD for the indicated pairs of μ and K.

![Graphs showing innovation vector changes](image-url)
Innovation vector: 3D + mixed diffusion + EMIC scattering + magnetopause losses

Innovation vector as a function of L^* and K_p for electron PSD for the indicated pair of μ and K.

- **Underestimation** at high radial distances and low energies due to absence of magnetospheric convection in the model.

- Convection brings particles from the tail region to the inner magnetosphere and can energize electrons by hundreds of keV ('seed population' for radiation belts).

Schematic representation of magnetospheric convection-dominated region in the tail and diffusion-dominated region close to the Earth [Subbotin et al., 2011].
Reconstructing the evolution of the Van Allen belts

Real-time Radiation Belt Forecast

Summary and future work

We have:

- applied a **standard Kalman filter** to multiple satellites to reconstruct the global state of the space environment,

We plan to:

- validate our DA performance by comparison with independent datasets, and
- compile a database of spacecraft anomalies and determine failures related to increases in radiation.
Summary and future work

- We have:
 - applied a **standard Kalman filter** to multiple satellites to reconstruct the global state of the space environment,
 - identified physical mechanisms missing in the model by means of the **innovation vector**, and

- We plan to:
 - validate our DA performance by comparison with independent datasets, and
 - compile a database of spacecraft anomalies and determine failures related to increases in radiation.
Summary and future work

We have:

- applied a **standard Kalman filter** to multiple satellites to reconstruct the global state of the space environment,
- identified physical mechanisms missing in the model by means of the **innovation vector**, and
- developed an early warning system for prediction and mitigation of natural hazards related to **space weather**.

We plan to:

- validate our DA performance by comparison with independent datasets, and
- compile a database of spacecraft anomalies and determine failures related to increases in radiation.
Summary and future work

We have:
- applied a **standard Kalman filter** to multiple satellites to reconstruct the global state of the space environment,
- identified physical mechanisms missing in the model by means of the **innovation vector**, and
- developed an early warning system for prediction and mitigation of natural hazards related to **space weather**.

We plan to:
- validate our DA performance by comparison with independent datasets, and
- compile a database of spacecraft anomalies and determine failures related to increases in radiation.