A consistent framework for stochastic representation of large-scale geophysical flows

E. Mémin

Inria/Irmar FLUMINANCE group

Workshop on Conservation Principles, Data, and Uncertainty in Atmosphere-Ocean Modelling
Introduction

Geophysical flow analysis

- Strong interest on the use of stochastic filters and ensemble methods for data assimilation and forecasting

- Particularly interesting to combine a partially known evolution law with noisy data

⇒ Require stochastic version of the evolution law and/or a modeling of the dynamics errors

Several methodological framework proposed in the literature (Berner et al. 2017, Franzke et al. 2015)

- additive/multiplicative forcing (Buiza et al. 99), backscattering (Leight 71), (Mason and Thomson 92)

- Low/fast modes decomposition (Majda et al. 99, Franzke et al. 05), scale separation (Grooms and Majda).

- Approaches based on stochastic transport (Holm 15, Mémin 14)

Explore expressions of dynamical models under location uncertainties
Location uncertainties

Principle

- Fluid particles displacement can be separated in two components: a smooth differentiable drift \mathbf{w} and a random uncertainty function $\sigma \mathrm{d}\mathbf{B}_t$

- Flow:
 \[
 \mathbf{X}_t = \mathbf{X}_{t_0} + \int_{t_0}^{t} \mathbf{w}(\mathbf{X}_s, s) \mathrm{d}s + \int_{t_0}^{t} \sigma(\mathbf{X}_s, s) \mathrm{d}\mathbf{B}_s,
 \]

- Displacement:
 \[
 \mathrm{d}\mathbf{X}_t = \mathbf{w}(\mathbf{X}_t, t) \mathrm{d}t + \sigma(\mathbf{X}_t, t) \mathrm{d}\mathbf{B}_t, \quad \text{with } \mathbf{X}_{t_0} = \mathbf{x},
 \]

- Eulerian description of the velocity fields:
 \[
 \mathbf{U}(\mathbf{x}, t) = \mathbf{w}(\mathbf{x}, t) + \sigma(\mathbf{x}, t) \dot{\mathbf{B}}_t.
 \]

- \mathbf{U} should be solution of Navier Stokes equation derived from Newton 2nd law
Noise term

Uncertainty random field

- **B**: Brownian motion function
- **Uncertainty**: Diffusion tensor and White noise on Ω
 \[(σ(x, t)dB_t)^i = \sum_j \int_Ω \tilde{σ}^{ij}(x, y, t)dB^j_t(y)dy.\]
 - Diffusion **σ**
 - Hilbert-Schmidt operator (Covariance of finite norm)
 - Covariance of the turbulent component
 \[Q_{ij}(x, y, t, t') = \sum_k \int_Ω \tilde{σ}^{ik}(x, y', t) \tilde{σ}^{jk}(y', y, t)dy'δ(t − t')dt\]
 \[Q_{ij}(x, x, t, t') \triangleq a_{ij}(x)δ(t − t')dt\]
Example: Kraichnan turbulence model

- Homogeneous diffusion provides homogeneous covariance tensor with spatially constant variance
- Incompressible fluid $d\xi_t^\zeta = \mathcal{P} \ast dB_t^\zeta$
- Spectral correlation defined as

\[
\hat{Q}(k)_{ij} = |k|^{-\zeta-d} \left(\delta_{ij} - \frac{k_i k_j}{|k|^2} \right) (\hat{\psi}_\zeta^\gamma)^2 dt
\]

- Quadratic variation process for a passband spectral cutoff ($1_{[\kappa,\gamma]}(k)$)

\[
a_{ij} = C_{\zeta,d} \zeta^{-1} (L^\zeta - \ell_D^\zeta) \delta_{ij}
\]
Stochastic Reynolds transport theorem

Volumetric rate of change

Volumetric rate of change of a scalar process \(q(x, t) \) transported by

\[
dX_t = w(X_t, t)dt + \sigma(X_t, t)dB_t, \text{ with } \nabla \cdot \sigma = 0
\]

\[
d \int_{V(t)} q(x, t)dx = \int_{V(t)} \left(dtq + \nabla \cdot \left(qdX_t - \frac{1}{2} \nabla \cdot (aq)^T dt \right) \right) dx
\]

Example for the smooth Kraichnan model:

\[
d \int_{V(t)} q(x, t)dx = \int_{V(t)} \left[dtq + (\nabla \cdot (qw) - \frac{1}{2} \gamma \Delta q)dt + \nabla q^T d\xi_t^c \right] dx,
\]
Stochastic Reynolds transport theorem

Conservation of extensive scalar

Conservation constraint on the transported volume:
\[d \int_{V(t)} q(x, t) dx = 0 \]

Evolution law:
\[d_t q + \nabla q \cdot (\tilde{w} dt + \sigma dB_t) - \nabla \cdot \left(\frac{1}{2} a \nabla q \right) dt = q \nabla \cdot \tilde{w} dt, \]
\[D_t q = q \nabla \cdot \tilde{w} dt \]

Effective drift:
\[\tilde{w} = w - \frac{1}{2} (\nabla \cdot a) \]

Dissipative operator:
\[\int_{\Omega} q \nabla \cdot (a \nabla q) = -\sum_{i,j} \int_{\Omega} \partial_i q \ a^{ij} \partial_j q \leq 0 \]

Incompressibility: A constant value of the scalar implies
\[\nabla \cdot (\sigma dB_t) = 0, \ \nabla \cdot \tilde{w} = 0 \]
Energy conservation of transported scalar (incompressible flow)

\[\int_{\Omega} dt (q^2) = 0, \]

Decomposition: \(q = \mathbb{E}(q|\tilde{w}) + (q - \mathbb{E}(q|\tilde{w})) \)

Energy conservation:

\[\frac{d}{dt} \mathbb{E} \|q\|_{\mathcal{L}^2(\Omega)}^2 = \frac{d}{dt} \|\mathbb{E}(q)\|_{\mathcal{L}^2(\Omega)}^2 + \frac{d}{dt} \int_{\Omega} \text{Var}(q) dx = 0 \]

Mean field energy:

\[\partial_t \int_{\Omega} (\mathbb{E}(q))^2 dx = -\frac{1}{2} \int_{\Omega} \nabla \mathbb{E}(q) a \nabla \mathbb{E}(q) dx \leq 0. \]

Mean field energy decreases, Variance increases by the same amount.
Conservation of momentum

Considering stochastic conservation principle (in a distribution sense)

\[D_t \left(\rho \left(w(x, t) + \sigma(x, t) \frac{dB_t}{dt} \right) \right) = F(x, t) \]

⇒ General (incompressible) stochastic Navier-Stokes equations

\[D_t (\rho w) = -\nabla (\rho dt + dp_t') + \mu \Delta (wdt + \sigma dB_t) \]

\[D_t \rho = 0 \]

\[\nabla \cdot (\sigma dB_t) = 0, \quad \nabla \cdot w - \nabla \cdot (\nabla \cdot a) = 0 \]

incompressibility

with

\[D_t q = dt + \nabla q \cdot (\tilde{w} dt + \sigma dB_t) - \frac{1}{2} \nabla \cdot (a \nabla q) dt \]
LES under location uncertainty

- Large scale drift of finite variation \Rightarrow separation of Brownian terms and finite variation terms

Momentum equations

$$\partial_t \mathbf{w} + (\tilde{\mathbf{w}} \cdot \nabla) \mathbf{w} - \frac{1}{2} \nabla \cdot (\mathbf{\tau}) = -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{w},$$

Effective drift

$$\tilde{\mathbf{w}} = (\mathbf{w} - \frac{1}{2}(\nabla \cdot \mathbf{a})^T)$$

Subgrid tensor

$$\mathbf{\tau} = ((a \nabla) \mathbf{w})$$

Pressure random contribution

$$\frac{1}{\rho} \nabla d\hat{p}_t = -(\sigma d\mathbf{B}_t \cdot \nabla) \mathbf{w} + \nu \Delta (\sigma d\mathbf{B}_t),$$

Mass conservation

$$\nabla \cdot (\sigma d\mathbf{B}_t) = 0, \ \nabla \cdot \mathbf{w} - \frac{1}{2} \nabla \cdot \nabla \cdot \mathbf{a} = 0$$
Incompressible case

Subgrid model:

- Constant eddy viscosity model for Kraichnan uncertainty model
- Smagorinsky model for $a = c \| \mathbf{S} \| \mathbb{I}$ with $\| \mathbf{S} \|$ smooth enough
- Noise on isopycnal surfaces \Rightarrow Gent-McWilliams
- New LES schemes with a defined from local variance
- Stochastic models from POD noise on high resolution simulations, resolved fluctuations, predefined covariances, targeted dissipation (hyperviscosity), etc.

Simulations: Wake flows, channel flows, Green-Taylor flow, geophysical flow approximations
Geophysical flow modelling

- Same derivation and assumption as in the deterministic case
- Stratification, traditional approximation, etc.
- Introduction of the transport stochastic operator (material derivative)
- Noise specification for the numerical simulations
Geophysical flow modeling

Simple Boussinesq equations (LU)

Momentum equations

\[\mathbb{D}_t w + f k \times (u + (\sigma dB_t)_H) = b k - \frac{1}{\rho_b} \nabla p' + \mathcal{F}(w), \]

Effective drift

\[\tilde{w} = \begin{pmatrix} \tilde{u} \\ \tilde{w} \end{pmatrix} = w - \frac{1}{2} (\nabla \cdot a)^T, \]

Buoyancy equation

\[\mathbb{D}_t b + N^2 (\tilde{w} dt + (\sigma dB_t)_z) = \frac{1}{2} \nabla \cdot (a \cdot z N^2) \, dt, \]

\[b = -\frac{g}{\rho_b} \rho', \quad N^2(z) = -\frac{g}{\rho_b} \partial_z \rho_0(z) \]

Incompressibility

\[\nabla \cdot w - \frac{1}{2} \nabla \cdot \nabla \cdot a = 0; \quad \nabla \cdot (\sigma dB_t) = 0 \]
<table>
<thead>
<tr>
<th>Stochastic approximated model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoology of approximated models obtained from power series expansion in small number (Rossby) and scaling</td>
</tr>
<tr>
<td>PG, QG, SQG, ...</td>
</tr>
<tr>
<td>Same strategy and Proper scaling of the noise term</td>
</tr>
<tr>
<td>⇒ Stochastic PG, QG, SQG, ... see talks of Long Li and Valentin Resseguier</td>
</tr>
<tr>
<td>Global energy conservation, Modified enstrophy conservation for general noises</td>
</tr>
<tr>
<td>Structure preservation</td>
</tr>
</tbody>
</table>
Usefulness of physically consistent Stochastic modeling

- Accuracy of large-scale models and error representation
- Fast exploration of attractor’s regions
- New physical modeling capabilities
Geophysical flow modelling

Usefulness of physically consistent Stochastic modeling

- Accuracy of large-scale models and error representation
- Fast exploration of attractor’s regions
- New physical modeling capabilities
Rayleigh-Bénard convection (incompressible fluid with $T_b > T_u$)

- Galerkin projection on Fourier modes of Navier-Stokes with Boussinesq approximation

\[
\frac{dX}{dt} = Pr(Y - X) - \frac{4}{2\gamma} X
\]

\[
dY = [X(\rho - Z) - Y - \frac{4}{2\gamma} Y]dt + \frac{\rho - Z}{\gamma^{1/2}} dB_t
\]

\[
dZ = [XY - bZ - \frac{8}{2\gamma} Z]dt + \frac{Y}{\gamma^{1/2}} dB_t
\]

Usual model \sim DNS

Diffusive model \sim LES

Model under uncertainty
Geophysical flow modelling

Attractor visits example (strong noise and low noise)

Points of the Lorenz attractor visited (ensemble of 100 particles)
LZ (a), LZD (b), SLZ (c); colors: time of the visit; $\gamma = 10; \gamma = 100$
Geophysical flow modelling

Empirical PDF of X and spectrum of Z strong noise $\gamma = 10$

![Graphs showing empirical PDF of X and spectrum of Z.]

10,000 realizations $t \in [0, 100]$

BSLZ: ad hoc stochastic Lorenz with multiplicative noise (Chekroun et al)

\[
\frac{dX}{dt} = Pr(Y - X)
\]

\[
dY = [X(\rho - Z) - Y]dt + \frac{Y}{\gamma^{1/2}} dB_t
\]

\[
dZ = [XY - bZ]dt + \frac{Z}{\gamma^{1/2}} dB_t
\]
Geophysical flow modelling

Empirical PDF of X and spectrum of Z weak noise $\Upsilon = 100$

10,000 realizations $t \in [0, 100]$

BSLZ: adhoc stochastic Lorenz with multiplicative noise (Chekroun et al)

\[
\frac{dX}{dt} = P_r(Y - X)
\]

\[
dY = [X(\rho - Z) - Y]dt + \frac{Y}{\Upsilon^{1/2}} dB_t
\]

\[
dZ = [XY - bZ]dt + \frac{Z}{\Upsilon^{1/2}} dB_t
\]
Lorenz attractor visit rate $\Upsilon = 10$ and $\Upsilon = 100$

$\#\{\text{boxes covering the attractor visited over } [0,T]\}/N$ (Computed on 10,000 realizations; red: SLZ, green: LZD, black: LZ)
Geophysical flow modelling

Usefulness of physically consistent Stochastic modeling

- Accuracy of large-scale models and error representation
- Fast exploration of attractor’s regions
- New physical modeling capabilities
Modified wall law expression in wall bounded flows

Boundary layers and wall law

- Profile of an idealized mean velocity profile $u(z)$ over a plane wall with constant pressure

Boundary layers structure

- Viscous layer (dominated by molecular friction)
- Turbulent layer (dominated by large-scale shear stress associated to the unresolved fluctuations)

Two different dynamical regimes piloted by different physics

Buffer zone at the interface
Modified wall law expression in wall bounded flows

Viscous layer stationary equations

Large-scale component: \(\nu \nabla^2 u = 0 \Rightarrow \partial_z u = C_1, \)

Small scale component: \(\nu \nabla^2 \sigma dB_t = 0 \Rightarrow \nabla^2 \sigma^{ij} = 0, \)

Turbulent pressure: \(dp_t = C_2, \)

Incompressibility: \(\nabla \cdot (\sigma dB_t) = 0 \)

\(\Rightarrow \) **Mean Velocity profile**

\[\forall z \in [0, z_0] \quad u(z) \Delta t = \frac{1}{\nu} \bar{U}^2 z \delta u \Delta t + \epsilon z (\Delta t)^{1/2} \eta. \]

Small-scale component: 2D divergence free random field with variance, which depends on the wall shear stress variance and with a quadratic growth in \(z \).
Modified wall law expression in wall bounded flows

Turbulent layer stationary equations

Large-scale component: \(-\partial_z a_{zz} \partial_z u - \partial_z((a_{zz} + 2\nu)\partial_z u) = 0,\)

Turbulent pressure: \(\nabla_H dp_t = \partial_z u(\sigma dB_t)_z + \nu \nabla^2(\sigma dB_t)_H = 0,\)

Turbulent pressure: \(\partial_z dp_t = \nu \nabla^2(\sigma dB_t)_z,\)

Incompressibility: \(\nabla \cdot (\sigma dB_t) = 0\quad \nabla \cdot (\nabla \cdot a) = 0\)

Logarithmic law for the mean velocity profile if the turbophoresis drift is neglected and linear turbulent viscosity

Buffer sublayer

Incompressibility: \(\nabla \cdot \nabla \cdot a = 0 \implies \partial_{zz}^2 a = 0 \implies a_{zz}(z) = \tilde{\kappa} \tilde{U}_\tau (z - z_0)\)

At the interface \(z = z_0, \partial_z u(z_0) = \frac{1}{\nu} \tilde{U}_\tau^2 \delta u\)

\(\implies\) Mean velocity profile:

\[
\forall z \in [z_0, z_L]\quad u(z) = u(z_0) - \tilde{U}_\tau \frac{4\nu}{\kappa} \left(\frac{1}{\tilde{\kappa} \tilde{U}_\tau (z - z_0) + 2\nu} - \frac{1}{2\nu} \right) \delta u
\]
Modified wall law expression in wall bounded flows

Turbulent layer stationary equations

Large-scale component: \(-\partial_z a_{zz} \partial_z u - \partial_z ((a_{zz} + 2\nu) \partial_z u) = 0\),

Turbulent pressure: \(\nabla_H d\rho_t = \partial_z u (\sigma dB_t)_z + \nu \nabla^2 (\sigma dB_t)_H = 0\),

Turbulent pressure: \(\partial_z d\rho_t = \nu \nabla^2 (\sigma dB_t)_z\),

Incompressibility: \(\nabla \cdot (\sigma dB_t) = 0\) \(\nabla \cdot (\nabla \cdot a) = 0\)

Logarithmic sublayer

To get a logarithmic law, \(a_{zz} \sim \sqrt{z}\) and by continuity

\[a_{zz}(z) = \tilde{k} \tilde{U}_\tau (z_L - z_0) \sqrt{\frac{z}{z_L}}, \quad \forall z \in [z_L, z_1]\]

\[
\begin{align*}
 u(z) &= u(z_L) + \partial_z u(z_L) z_L \ln \left(\frac{z}{z_L} \right) \\
 \text{with the factor } z_L \partial_z u(z_L) &= \left(4\nu \tilde{U}_\tau^2 z_L\right) / \left(\tilde{k} \tilde{U}_\tau (z_L - z_0) + 2\nu\right)^2
\end{align*}
\]
Numerical results turbulent boundary layer flow

$$\tilde{u}^+$$ vs $$z^+$$

<table>
<thead>
<tr>
<th></th>
<th>$$Re_T$$</th>
<th>$$z_0^+$$</th>
<th>$$z_L^+$$</th>
<th>$$\tilde{\kappa}$$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1989</td>
<td>4.90</td>
<td>50.38</td>
<td>0.158</td>
</tr>
</tbody>
</table>
Geophysical flow modeling

Numerical results channel flow

<table>
<thead>
<tr>
<th>Re_T</th>
<th>z_0^+</th>
<th>z_L^+</th>
<th>$\tilde{\kappa}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5200</td>
<td>5.0</td>
<td>45.0</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Role of small-scale inhomogeneity in flow structuration

From Euler-LU to Craik-Leibovich-LU

Euler-LU Momentum:

\[
d_t \mathbf{w} + ((\mathbf{w} \cdot \nabla) \mathbf{w} - \frac{1}{2} \nabla \cdot (a \nabla \mathbf{w}) \mathbf{d}t + 2 \Omega \times \mathbf{w} \mathbf{d}t = -\nabla p
\]

\[
\tilde{\mathbf{w}} = \mathbf{w} - \frac{1}{2} \nabla \cdot a = \mathbf{w} + \mathbf{w}_S
\]

Change of variable, introduction of a modified pressure, turbophoresis drift stationnary and quasi-harmonic:

\[
d_t \tilde{\mathbf{w}} + ((\tilde{\mathbf{w}} \cdot \nabla) \tilde{\mathbf{w}} - \frac{1}{2} \nabla \cdot (a(\tilde{\mathbf{w}} - \mathbf{w}_S)^T) + (\mathbf{w}_S \cdot \nabla)\sigma \mathbf{d}B_t = -\nabla \pi
\]

\[
- 2\Omega \times \tilde{\mathbf{w}} \mathbf{d}t + 2\Omega \times \mathbf{w}_S \mathbf{d}t - \mathbf{w}_S \times (\mathbf{w} \cdot \nabla) \sigma \mathbf{d}B_t
\]

LES/LU deterministic form corresponds to Craik-Leibovich system

\[
\partial_t \tilde{\mathbf{w}} + (\tilde{\mathbf{w}} \cdot \nabla) \tilde{\mathbf{w}} - \frac{1}{2} \nabla \cdot (a(\tilde{\mathbf{w}} - \mathbf{w}_S)^T) = -\nabla \pi - 2\Omega \times (\tilde{\mathbf{w}} - \mathbf{w}_S) - \mathbf{w}_S \times \tilde{\mathbf{w}}
\]

with pressure term \(\pi = p + \frac{1}{2} \| \mathbf{w} - \mathbf{w}_S \|^2 - \frac{1}{2} \| \tilde{\mathbf{w}} \|^2 \)
Role of small-scale inhomogeneity in flow structuration

Numerical simulation Chanel flow $Re_\tau = 590$

Simulation of a DNS, LES 1/48 (Dynamic Smagorinsky) and LU 1/48 (Full stochastic model with noise learned from POD/EOF on DNS)

row: DNS, LU, DSM; col: $y^+ = 50$, $y^+ = 100$, $y^+ = 200$
Role of small-scale inhomogeneity in flow structuration

Numerical simulation Chanel flow $Re_τ = 590$

Turbophoresis drift, Vorticity, Vortex force
Role of small-scale inhomogeneity in flow structuration

Numerical simulation Chanel flow $Re_T = 590$

1D FFT of vortex force components
Conclusion

Dynamics modeling through stochastic transport

- LU modeling allows a systematic derivation of stochastic fluid dynamics models
- Noise brings an additional degree of freedom for modeling
- Good representation of large-scale models (more accurate and faster)
- Data analysis tool (to decipher the role of small-scale) (see also Resseguier et al JFM 2017)
- Modeling tool to explain and simulate events related to small-scale activity
Perspectives

Ocean modelling

- Derivation of Air-Sea interaction models
- Generalize the idea of modified advection and instabilities
- Study of the wave solutions (Rossby waves, internal waves, ...)
- Theoretical study of the associated SPDEs
- Interaction of waves and mean large scale current
- Full stochastic simulation of realistic ocean dynamics models
- Data assimilation going toward non Gaussian models
Recent Publications

B. Pinier, E. Mémin, S. Laizet, R. Lewandowski
A stochastic flow model to predict the mean velocity in wall bounded flows, hal-inria, 2019

Y. Yang, E. Mémin
Estimation of physical parameters under location uncertainty using an Ensemble2-Expectation-Maximization algorithm, QJRMS, 2019

B. Chapron, P. Dérian, E. Mémin, V. Resseguier
Large scale flows under location uncertainty: a consistent stochastic framework, QJRMS, 2018

P. Chandramouli, D. Heitz, S. Laizet, E. Mémin
Coarse large-eddy simulations in a transitional wake flow with flow models under location uncertainty, Comp. and Fluids. 2018

S. Kadri, Mémin
Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling, Comp. and Fluids, 156, pp.456-469, 2017

V. Resseguier, E. Mémin, D. Heitz and B. Chapron
Stochastic modeling and diffusion modes for POD models and small-scale flow analysis, J. of Fluid Mech., 828: 888-917, 2017

V. Resseguier, E. Mémin, B. Chapron

E. Mémin