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Introduction

Geophysical flow analysis

m Strong interest on the use of stochastic filters and ensemble
methods for data assimilation and forecasting

m Particularly interesting to combine a partially known evolution law
with noisy data

= Require

Several methodological framework proposed in the literature (Berner et al
2017, Franzke et al. 2015)

m additive/multiplicative forcing (Buiza et al 99), backscatering
(Leight 71), (Mason and Thomson 92)

m Low/fast modes decomposition (Majda et al. 99, Franzke et al 05),
scale separation (Grooms and Majda).

m Approaches based on stochastic transport (Holm 15, Mémin 14)



Location uncertainties

m Fluid particles displacement can be separated in two components:
a smooth differentiable drift w and a random uncertainty function
O'dBt

m Flow:

t t
X: = Xy, —|—/ W(Xs,s)ds—i—/ o(Xs, s)dBs,

to to

m Displacement:
dXt = W(Xt7 t)dt -+ O'(Xt, t)dBt7 with Xto = X,
m Eulerian description of the velocity fields:
U(x, t) = w(x, t) + o(x, t)Bs.

m U should be solution of Navier Stokes equation derived from
Newton 2nd law



Noise term

Uncertainty random field

m B: Brownian motion function

m Uncertainty: Diffusion tensor and White noise on

(o(x, t)dB,) = Z /Q 5i(x,y, t)dB(y)dy.

Diffusion o Hilbert-Schmidt operator (Covariance of finite norm)

m Covariance of the turbulent component
Qi(xy. t,t') = Z/ & (x,y',t) #(y',y, t)dy's(t — t')dt
o Ja

Qi(x,x, t, ') = a;(x)(t — t')dt



Noise term

Example: Kraichnan turbulence model

m Homogeneous diffusion provides homogeneous covariance tensor
with spatially constant variance

m Incompressible fluid d¢¢ = P » dBS
m Spectral correlation defined as

kik;

Q(k); = [k|=¢9(65 — W)(@)?dr

m Quadratic variation process for a passband spectral cutoff ( Uj,.,j(k))

aj = Ceg CTH(LE — £5)6;



Stochastic Reynolds transport theorem

Volumetric rate of change

Volumetric rate of change of a scalar process g(x, t) transported by

dX; = w(X¢, t)dt + o(X¢, t)dB;, with V-0 =0

1
d/ g(x, t)dx = / <dtq +V. (qut —=V. (aq)Tdt>> dx
V(t) V(1) 2

Example for the smooth Kraichnan model:

1
d [ qbxodx= [ [dq+ (V- (qw) - 5180t + Vg'deflax,
V(t) V(1)



Stochastic Reynolds transport theorem

Conservation of extensive scalar

Conservation constraint on the transported volume:
d/ q(x,t)dx =0
V(t)
Evolution law: 1
diq+ Vgq- (wdt+odB;) — V - <2qu) dt = gV - wdt,
D:q =gV - wdt
Effective drift: w = w — 1(V -a)

Dissipative operator: / -(aVgq) = Z/ 0iq a’Jajq <0

Incompressibility: A constant value of the scalar implies
V- (0dB:)=0, V-w=0



Stochastic Reynolds transport theorem

Energy conservation

Energy conservation of transported scalar (incompressible flow)

/th(QZ) =0,

Decomposition: g = E(q|w) + (g — E(q|w))

Energy conservation:

d . d , d
TEBll e = G IB@IE + 5p [ Var(a)ix =0

Mean field energy :

o, /Q (E(q)) dx = —% /Q VE(q)aVE(g)dx < 0.

Mean field energy decreases, Variance increases by the same amount



Conservation of momentum

Conservation of momentum

Considering stochastic conservation principle (in a distribution sense)

De(p(w(x,t) + o(x, t)dd—Btt)) = F(x,t)

= General (incompressible) stochastic Navier-Stokes equations

D¢(pw) = =V (pdt + dp;) + pA(wdt + odB;) momentum

Dip=0 mass conservation

V. (6dB;)=0, V-w—V:(V-a)=0 incompressibility
with

~ 1
D.q =diq+ Vq-(wdt + odBy) _EV - (aVq)dt



Navier Stokes equations - LES\LU

LES under location uncertainty

m Large scale drift of finite variation = separation of Brownian terms
and finite variation terms

ow + (w-V)w — %V°(T) = —%VP-I-IJAW,
R PR

w = (W—E( -a)’)

7= ((aV)w)

1
;Vdﬁt =—(0dB; - V)w + vA(cdB,),

1
V. (0dB)=0,V-w--V-V-a=0



Navier Stokes equations - LES\LU

Incompressible case

m Constant eddy viscosity model for Kraichnan uncertainty model

m Smagorinsky model for a = ¢||S||I with ||S|| smooth enough
m Noise on isopycnal surfaces = Gent-McWilliams
m New LES schemes with a defined from local variance

m Stochastic models from POD noise on high resolution simulations,
resolved fluctuations, predefined covariances, targeted dissipation
(hyperviscosity), etc.

[ ] : Wake flows, channel flows, Green-Taylor flow,
geophysical flow approximations



Geophysical flow modelling

Geophysical flow modelling

m Same derivation and assumption as in the deterministic case
m Stratification, traditional approximation, etc.

m Introduction of the transport stochastic operator (material
derivative)

m Noise specification for the numerical simulations



Geophysical flow modeling

Simple Boussinesq equations (LU)

1
Diw + fk X (u+ (0dBt)y) = b k — p—VP/ + F(w),
b

1
Db+ N2 (wdt + (odBy),) = 5V (a.-N?) dt,

g 1 a2 g
b=——= ,N Z)=——0, z
P (2) o po(2)

V-W—%V-V-azo; V-(0dB;) =0



Geophysical flow modelling

Stochastic approximated model

m Zoology of approximated models obtained from power series
expansion in small number (Rossby) and scaling

m PG, QG, SQG, ...
m Same strategy and Proper scaling of the noise term

m = Stochastic PG, QG, SQG, ... see talks of Long Li and Valentin
Resseguier

m Global energy conservation, Modified enstrophy conservation
for general noises
m Structure preservation



Geophysical flow modelling

Usefulness of physically consistant Stochastic modeling

m Accuracy of large-scale models and error representation
m Fast exploration of attractor’s regions

m New physical modeling capabilities
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Geophysical flow modelling

Stochastic Lorenz model (LU) - Chapron et al QJRMS 2017

m Rayleigh-Bénard convection (incompressible fluid with T, > T,)

m Galerkin projection on Fourier modes of Navier-Stokes with
Boussinesq approximation

dX

X py—x)— Lx
dt ( )= o7
~Zz
=[X(p—2) - Y——Y]dH— “ris 4B
= [XY — bZ — Z]dt+ Y B,

T1/2

Usual model ~ DNS
Diffusive model ~ LES
Model under uncertainty




Geophysical flow modelling

Attractor visits exemple (strong noise and low noise)

Points of the Lorenz attractor visited (ensemble of 100 particles)
LZ (a), LZD (b), SLZ (c); colors: time of the visit; T = 10; T = 100



Geophysical flow modelling

Empirical PDF of X and spectrum of Z strong noise T = 10
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Geophysical flow modelling

Empirical PDF of X and spectrum of Z weak noise T = 100
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Geophysical flow modeling

Lorenz attractor visit rate T = 10 and T = 100
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Geophysical flow modelling

Usefulness of physically consistant Stochastic modeling

m Accuracy of large-scale models and error representation
m Fast exploration of attractor’s regions

m New physical modeling capabilities



Modified wall law expression in wall bounded flows

Boundary layers and wall law

m Profile of an idealized mean velocity profile u(z) over a plane wall
with constant pressure

Boundary layers stucture

m Viscous layer (dominated by molecular friction)

m Turbulent layer (dominated by large-scale shear stress associated to
the unresolved fluctuations)

Two different dynamical regimes piloted by different physics
at the interface



Modified wall law expression in wall bounded flows

Viscous layer stationary equations

vV2u=0= d,u= G,
- vV?0dB,=0 = V=0,
tdpr = G,
:V-(6dB;) =0

= Mean Velocity profile
1 -
Yz € [0,20] u(z)At = =02z dult + ez(At)Y?n.
v
Small-scale component: 2D divergence free random field with variance,

which depends on the wall shear stress variance and with a quadratic
growth in z



Modified wall law expression in wall bounded flows

Turbulent layer stationary equations

: —0;a,,0;u — 0, ((az + 2v)0,u) =0,
. Vdpr=0,u(0dB,),+vV3(edB;)y = 0,
: 0,dpy = 1/V2(a'dBt)z,
V. (cdB,) =0 V-(V-a)=0

Logarithmic law for the mean velocity profile if the turbophoresis drift is
neglected and linear turbulent viscosity

Buffer sublayer

Incompressibility: V-V .a=0 — §2,a=0 a.(2) = "U,(z — z)
At the interface z = z, d,u(z) = 2 U26u
— Mean velocity profile:

Vz € [20,2] u(z) = u(z) - U, % (+ - L) ou

RU, (z—z)+2v 2v




Modified wall law expression in wall bounded flows

Turbulent layer stationary equations

: —0;a,,0;u — 0, ((az + 2v)0,u) =0,
. Vdpr=0,u(0dB,),+vV3(edB;)y = 0,
- 0,dp; = vV?(0dBy),,
:V-(6dB;)=0 V-(V-a)=0

Logarithmic sublayer

To get a logarithmic law, a,, ~ /z and by continuity

a,,(z) = EUT(ZL — 29)4 /ZiL, Vz € [z, z1]

u(z) = u(z,) + 9;u(z)z In (ziL)

with the factor z,0,u(z,.) = (4vU%2)/(FU-(zL — z0) + 2u)2



Geophysical flow modeling

Numerical results turbulent boundary layer flow
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Geophysical flow modeling

Numerical results channel flow
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Role of small-scale inhomogeneity in flow structuration

From Euler-LU to Craik-Leibovich-LU

1
diw + ((wdt + 0dB;) - V)w — EV -(aVw)dt +29Q x wdt = —Vp

~ 1
w:waV-a:erws

Change of variable, introduction of a modified pressure, turbophoresis
drift stationnary and quasi-harmonic: scs

noise advection

—PN——
dew + ((wdt + odB;) - V)w — %V -V (a(w—ws)")+ (ws-V)odB; = -V

— 2Oxw dt+ 2Qx ws dt — ws x (wdt+ V x (¢dBt))

modified Coriolis Coriolis Stokes vortex force

LES\LU deterministic form corresponds to Craik-Leibovich system
atﬁl-‘r(ﬁ/-V)ﬁl—EV’V- (B(W—Ws)T) =-—Vr—-2Q x (W— Ws)— ws X W
2 —_————— N——

Coriolis + Stokes vortex force

with pressure term = = p+ 1|lw — w2 — 1| w2



Role of small-scale inhomogeneity in flow structuration

Numerical simulation Chanel flow Re, = 590

Simulation of a DNS, LES 1/48 (Dynamic Smagorinsky) and LU 1/48
(Full stochastic model with noise learned from POD/EOF on DNS)

S— = — —

z
0 00 05 10 15 20 25 30

row: DNS, LU, DSM; col: y* =50, y* = 100, y*© = 200



Role of small-scale inhomogeneity in flow structuration

Numerical simulation Chanel flow Re, = 590

Turbophoresis drift, Vorticity, Vortex force

(AV-a), (3V-a), (4 -a)




Role of small-scale inhomogeneity in flow structuration
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Conclusion

Dynamics modeling through stochastic transport

m LU modeling allows a systematic derivation of stochastic fluid
dynamics models

m Noise brings an additional degree of freedom for modeling

m Good representation of large-scale models (more accurate and
faster)

m Data analysis tool (to decipher the role of small-scale) (see also
Resseguier et al JFM 2017)

m Modeling tool to explain and simulate events related to small-scale
activity



Perspectives

Ocean modelling

m Derivation of Air-Sea interaction models

m Generalize the idea of modified advection and instabilities

m Study of the wave solutions(Rossby waves, internal waves,...)
m Theoretical study of the associated SPDEs

m Interaction of waves and mean large scale current

m Full stochastic simulation of realistic ocean dynamics models

m Data assimilation going toward non Gaussian models
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