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Inspiration

This work is inspired by a recent series of articles by P. Del Moral, A.
N. Bishop, A. Kurtzmann, and J. Tugaut:

• DM, K, T (2016). On the stability and the exponential concentration of
extended Kalman-Bucy filters. arXiv:1606.08251.

• DM, K, T (2017). On the stability and the uniform propagation of chaos
of a class of extended ensemble Kalman–Bucy filters. SIAM J. Control
Optim. 55(1):119–155.

• B, DM (2017). On the stability of Kalman–Bucy diffusion processes. SIAM
J. Control Optim. 55(6):4015–4047.

• DM, T (2016). On the stability and the uniform propagation of chaos
properties of ensemble Kalman-Bucy filters. arXiv:1605.09329.
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Model: the linear case

Consider a linear SDE system with the state Xt ∈ RdX and
measurements Yt ∈ RdY :

dXt = AtXt dt + Q1/2 dWt ,

dYt = HXt dt + R1/2 dVt ,

with Wt and Vt independent standard Brownian motions.

In filtering, we want to infer the state based on the potentially
partial and noisy measurements. The aim is to compute the

filtering distributions Xt | Ft , Ft = σ(Ys , 0 ≤ s ≤ t),

for each t ≥ 0.
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The Kalman–Bucy filter

If the initial state X0 is Gaussian, the filtering distributions Xt | Ft

are Gaussian and solved by the classical Kalman–Bucy filter.

The mean X̂t = E[Xt | Ft ] of the filtering distribution evolves
according to the SDE

dX̂t = AtX̂t dt + PtH
TR−1[ dYt − HX̂t dt

]
,

where Pt is the error covariance

Pt = E
[(
Xt − X̂t

)(
Xt − X̂t

)T | Ft

]
.

It is solved from the Riccati equation

∂tPt = AtPt + PtA
T
t + Q − PtSPt (S = HTR−1H).
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Non-linear dynamics

We consider a (partially) non-linear extension

dXt = f (Xt) dt + Q1/2 dWt ,

dYt = HXt dt + R1/2 dVt ,

where the drift f : RdX → RdX is now a non-linear function with a
bounded Jacobian.

The filtering distributions are not going to remain Gaussian in this
case. Some kind of approximation must be used.

Kalman–Bucy filters for non-linear systems are based on pretending
that the filtering distributions are Gaussian using some sort of
linearisation.
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The extended Kalman–Bucy filter

The extended Kalman–Bucy filter (EKF) employs simple
first-order linearisations to approximate the filtering mean and
covariance:

dX̂t = f (X̂t) dt + PtH
TR−1[ dYt − HX̂t dt

]
,

∂tPt = Jf (X̂t)Pt + PtJf (X̂t)
T + Q − PtSPt ,

where Jf (x) ∈ RdX×dX is the Jacobian of f at point x ∈ RdX .

In contrast to the linear case, the Riccati equation now depends on
the measurements Yt through the Jacobian Jf (X̂t).
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Gaussian assumed density filters

In the Gaussian assumed density filter, the point evaluation of
the EKF are replaced with Gaussian expectations:

dX̂t = EN (X̂t ,Pt)
(f ) dt + PtH

TR−1[ dYt − HX̂t dt
]
,

∂tPt = EN (X̂t ,Pt)
(Jf )Pt + PtEN (X̂t ,Pt)

(Jf )
T + Q − PtSPt ,

where
EN (x ,P)(g) :=

∫
RdX

g(z)N (z | x ,P) dz

is element-wise expectation.

This filter can be implemented in practice only rarely because the
integrals typically lack analytical solutions. Use numerical
integration.
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Gaussian numerical integration filters

A (Gaussian) numerical integration filter uses numerical
integration to approximate the expectations:

N∑
i=1

wig(x) ≈ EN (0,I )(g) and
N∑
i=1

wig
(
x +
√
Pξi
)
≈ EN (x ,P)(g)

for some weights wi ∈ R and unit sigma-points ξi ∈ RdX . The filter
is

dX̂t =
n∑

i=1

wi f
(
X̂t +

√
Ptξi

)
dt + PtH

TR−1[ dYt − HX̂t dt
]
,

∂tPt =
n∑

i=1

wi

[
f
(
X̂t +

√
Ptξi

)
ξTi
√

Pt +
√

Ptξi f
(
X̂t +

√
Ptξi

)T]
+ Q − PtSPt .
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Numerical integration filters: examples

• Unscented Kalman–Bucy filter (UKF): 2dX + 1 sigma-points

ξ2dX+1 = 0, ξi = ei , ξi+dX = −ei for i = 1, . . . , dX .

• Cubature Kalman–Bucy filter (CKF): UKF but without the
central point.

• Gauss–Hermite Kalman–Bucy filter (GHKF): tensor product
grids based on the univariate Gauss–Hermite quadrature rule.

• And a myriad of others: stochastic integration, Monte Carlo,
sparse grids, Bayesian cubature ... (all these are not necessarily
covered by our stability analysis)
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General class of Kalman–Bucy filters

Let Lx ,P be a linear functional that is applied element-wise to
vector-valued functions. We consider a class of generic filters
computing the conditional mean approximation as

dX̂t = L
X̂t ,Pt

(f ) dt + PtH
TR−1( dYt − HX̂t dt

)
.

We do not require that Pt is a solution to a Riccati-type equation.
However, a time-uniform upper bound on tr(Pt) will be assumed
later.

Examples:
• EKF: Lx ,P(g) = g(x).
• Gaussian assumed density filter: Lx ,P(g) = EN (x ,P)(g).

• Numerical integration filters: Lx ,P(g) =
∑N

i=1 wig
(
x +
√
Pξi
)
.
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Assumption on Lx ,P

Define the logarithmic norms

ν(A) =
1
2
λmin(A+ AT) and µ(A) =

1
2
λmax(A+ AT)

of a square matrix A and the “Lipschitz constants”

N(g) = inf
z
ν[Jg (z)] and M(g) = sup

z
µ[Jg (z)]

that satisfy

N(g) ‖x − y‖2 ≤
〈
x − y , g(x)− g(y)

〉
≤ M(g) ‖x − y‖2 .

Assumption

For every differentiable g : RdX → RdX there is a constant Cg ≥ 0,
varying continuously with M(g) and N(g), such that〈

x − y , g(x)− Ly ,P(g)
〉
≤ M(g) ‖x − y‖2 + Cg tr(P)

for any points x , y ∈ RdX and any matrix P ∈ RdX×dX .
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Filtering error I

Consider the EKF and recall that

dXt = f (Xt) dt + Q1/2 dWt ,

dYt = HXt dt + R1/2 dVt ,

dX̂t = f (X̂t) dt + PtH
TR−1[ dYt − HX̂t dt

]
.

The filtering error Et := Xt − X̂t is

dEt =
[
f (Xt)− f (X̂t)− PtH

TR−1H(Xt − X̂t)
]
dt

+ Q1/2 dWt − PtH
TR−1/2 dVt .
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Filtering error II

Itô’s lemma yields

d‖Et‖2 = 2
〈
f (Xt)− f (X̂t)− PtS(Xt − X̂ ),Xt − X̂t

〉
dt

+ 2
[
tr(Q) + tr(SP2

t )
]
dt + dMt

≤ 2M
(
f − PtS

)
‖Et‖2 + 2

[
tr(Q) + tr(SP2

t )
]
dt + dMt

for a zero-mean martingale Mt . For expectation,

∂tE(‖Et‖2) ≤ 2M(f − PtS)E(‖Et‖2) + 2
[
tr(Q) + tr(SP2

t )
]
.

Grönwall’s inequality produces

E(‖Et‖2) ≤ E(‖E0‖2) e2αt t +
e2αt t −1
αt

[
tr(Q)+λmax(S) sup

τ≤t
tr(P2

τ )
]

where
αt = sup

τ≤t
M
(
f − PtS

)
.
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Main assumptions

We impose strong time-uniform boundedness and contractivity
conditions.

Assumption I

There exists λP ≥ 0 such that supt≥0 tr(Pt) ≤ λP .

Assumption II

There exists a time T ≥ 0 and λ > 0 such that

M(f − PtS) = sup
x∈RdX

µ
[
Jf (x)− PtS

]
≤ −λ < 0

holds for every t ≥ T .
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On the assumptions

These assumptions are very restrictive:
• For linear Kalman–Bucy filters, it can be shown (under

appropriate conditions) that At − PtS defines an exponentially
stable system. However, it does not necessarily follow that
µ(At − PtS) < 0.

• For time-invariant linear systems (At = A), the limit
limt→∞ Pt = P satisfies the time-invariant stability condition

α(A− PS) := max
i=1,...,dX

Re
[
λi (A− PS)

]
< 0.

We can only say that α(A− PS) ≤ µ(A− PS).
• In practice, Pt is the solution to a non-linear Riccati-type

equation. Such equations are difficult to control for all but fully
observed models.
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Some implications

Recall that (still for the EKF)

∂tE(‖Et‖2) ≤ 2M(f − PtS)E(‖Et‖2) + 2
[
tr(Q) + tr(SP2

t )
]
.

Under our assumptions,

∂tE(‖Et‖2) ≤ 2
[
− λE(‖Et‖2) + u

]
with u = tr(Q) + λmax(S)λ

2
P for t ≥ T . Thus, by Grönwall,

E(‖Et‖2) ≤ E(‖ET‖2) e−2λ(t−T )+u/λ ≤ E(‖ET‖2) + u/λ.

More can be done with the use of Bernstein’s inequality.
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Bernstein’s inequality

Bernstein’s inequality

Let X be a non-negative random variable. Suppose that there exists
α > 0 such that

E(X n) ≤ nnαn

for every integer n ≥ 2. Then

P
[
X ≥ α e

(√
2δ + δ

)]
≤ e−δ

for any δ > 0.

By applying Ito’s lemma to ‖Et‖2n and deriving an affine differential
inequality for E(‖Et‖2n)1/n, it is not too difficult to show that

E(‖Et‖2n) ≤
(
CT e−2λ(t−T )+u/λ

)n
nn

for every n ≥ 1 and for certain CT ≥ 0.
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An exponential concentration inequality

Theorem
Consider any generic Kalman–Bucy filter and suppose that
Assumptions I and II hold. Denote

β(δ) = e (
√
2δ + δ).

Then there are non-negative constants Cλ and CT such that, for any
t ≥ T and δ > 0, the probability of

‖Xt − X̂t‖
2
≥
(
CT e−2λ(t−T )+

tr(Q) + CλλP + tr(S)λ2
P

λ

)
β(δ)

is smaller than e−δ.

• Cλ depends on the filter. E.g., Cλ = 0 for the EKF.
• CT is an upper bound on E(‖ET‖2) under the assumptions

M(f ) <∞ and supt≥0 tr(Pt) ≤ λP .
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Fully observed models

Definition
A model is fully observed if S = HTR−1H = sI for some s > 0.

For fully observed models,

M(f − PtS) ≤ M(f ) + sµ(−Pt) = M(f )− sλmin(Pt).

This is negative if
• The model is contractive: M(f ) < 0. This implies that xt → 0

exponentially fast for the homogeneous system ∂txt = f (xt).
• The error covariance is large enough:

inf
t≥T

λmin(Pt) > M(f )/s.
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Contractive models (Del Moral, Kurtzmann, Tugaut)

This is the case considered by Del Moral, Kurtzmann, and Tugaut1.

Assume full observability and M(f ) ≤ −λ < 0. Then

d‖Et‖2 = 2
[〈
f (Xt)− f (X̂t),Xt − X̂t

〉
− s〈Pt(Xt − X̂t),Xt − X̂t〉

]
dt

+ 2
[
tr(Q) + s tr(P2

t )
]
dt + dMt

≤ −2λ ‖Et‖2 + 2
[
tr(Q) + s tr(P2

t )
]
dt + dMt

and

∂t tr(Pt) = tr
[
Jf (X̂t)Pt + PtJf (X̂t)

]
+ tr(Q)− s tr(P2

t )

≤ −2λ tr(Pt) + tr(Q).

Grönwall: tr(Pt) and E(‖Et‖2) remain uniformly bounded.
1On the stability and the exponential concentration of extended

Kalman-Bucy filters. arXiv:1606.08251, 2016.
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Bounds on the Riccati equation

For simplicity, consider again the EKF. The (tuned) Riccati equation
for Pt is

∂tPt = Jf (X̂t)Pt + PtJf (X̂t)
T + Qtu − sP2

t ,

where Qtu is positive-definite matrix that does not have to equal Q.

Proposition

At the limit t →∞,

tr(Pt) ≥
λmin(Qtu)/dX

N(f ) +
√
sλmin(Qtu)/dX + N(f )2

and

tr(Pt) ≤
M(f ) +

√
s tr(Qtu)/dX +M(f )2

s/dX
.
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Fully observable models with covariance inflation

Since
tr(Pt) ≥

λmin(Qtu)/dX

N(f ) +
√
sλmin(Qtu)/dX + N(f )2

,

inft≥T λmin(Pt) > M(f )/s for large enough tuned model noise
covariance Qtu.

For the EKF, the probability of

‖Xt − X̂t‖
2
≥
(
CT e−2λ(t−T )+

tr(Q) + tr(S)λ2
P

λ

)
e (
√
2δ + δ)

is smaller than e−δ.

Using inflated Qtu guarantees stability but degrades accuracy as λ2
P

becomes larger.
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Integrated velocity models I

Consider the integrated velocity model

d

(
Xt,1
Xt,2

)
=

(
A1Xt,1 + A2Xt,2
−g(Xt,2)

)
dt + Q1/2 dWt ,

dYt = H1Xt,1 dt + R1/2 dVt ,

where the non-linear function M(g) < 0.

The state component Xt,2 has an equilibrium at the origin. The
model is essentially a linear one.

Under “full detectability” (i.e., all state components that are not
exponentially stable are fully observed), stability should be attainable.
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Integrated velocity models II

If S1 = HT
1 R
−1H1 = sI ,

Jf (X̂t)− PtS =

(
A1 − sPt,11 A2

−sPT
t,12 −Jg (X̂t,2)

)
.

With large enough Pt,11, this matrix should be of negative
logarithmic norm. However, we have not been able to prove this.

For the case Xt,1,Xt,2,Yt ∈ R, analysis is simpler and it can be
shown that sufficient covariance inflation guarantees stability.
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Conclusions

• Assumptions are very stringent and it is not easy to apply them
to systems other than fully observed.

• Weakness primarily stems from uniform nature of the analysis.
That is, all the stochastic terms difficult to analyse are
“bounded away” from the filtering error SDE.

• Similar analysis can be carried out for discrete-time systems
where M(f − PtS) < 0 is replaced with

sup
x
‖Jf (x)‖ ‖I − KkH‖ < 1.

• Covering fully detectable systems is a desirable generalisation.

Thank you for your attention!
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