
Composing stochastic quasi-Newton-type

algorithms

Thomas Schön, Uppsala University

Joint work with Adrian Wills at the University of Newcastle, Australia.

University of Potsdam, Institute for Mathematics

March 13, 2018.

Mindset — Numerical methods are inference algorithms

A numerical method estimates a certain latent property given the

result of computations.

Computation is inference meaning that numerical methods can be

interpreted as estimation/learning algorithms.

Basic numerical methods and basic statistical models are deeply

connected in formal ways!

Poincaré, H. Calcul des probabilités. Paris: Gauthier-Villars, 1896.

Diaconis, P. Bayesian numerical analysis. Statistical decision theory and related topics, IV(1), 163–175, 1988.

O’Hagan, A. Some Bayesian numerical analysis. Bayesian Statistics, 4, 345–363, 1992.

Hennig, P., Osborne, M. A., and Girolami, M. Probabilistic numerics and uncertainty in computations. Proceedings of the Royal Society

of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015.

probabilistic-numerics.org/
1/41

probabilistic-numerics.org/

Mindset — Numerical methods are inference algorithms

The task of a numerical algorithm is

to estimate unknown quantities from known ones.

Ex) basic algorithms that are equivalent to Gaussian MAP inference:

• Conjugate Gradients for linear algebra

• BFGS for nonlinear optimization

• Gaussian quadrature rules for integration

• Runge-Kutta solvers for ODEs

The structure of num. algs. is similar to statistical inference where

• The tractable quantities play the role of ”data”/”observations”.

• The intractable quantities relate to ”latent”/”hidden” quantities.

2/41

Problem formulation

If computation is inference then maybe it is possible to use this in

deriving new (and possibly more capable) algorithms.

What? Solve the non-convex stochastic optimization problem

max
x

f (x)

when we only have access to noisy evaluations of f (x) and its derivatives.

Why? These stochastic optimization problems are common:

• When the cost function cannot be evaluated on the entire dataset.

• When numerical methods approximate f (x) and ∇i f (x).

• . . .

3/41

How? — our contribution

How? Learn a probabilistic nonlinear model of the Hessian.

Provides a local approximation of the cost function f (x).

Use this local model to compute a search direction.

Captures second-order information (curvature) which opens up for better

performance compared to a pure gradient-based method.

4/41

Intuitive preview example — Rosenbrock function

Let f (x) = (a− x1)2 + b(x2 − x2
1)2, where a = 1 and b = 100.

Deterministic problem

max
x

f (x)

Stochastic problem

max
x

f (x)

when we only have access to noisy

versions of the cost function

(f̃ (x) = f (x) + e, e ∼ N (0, 302))

and its gradients. 5/41

fminunc at work

Terminates at the wrong solution after 3 iterations.

The true solution is (1, 1).

6/41

Adam at work

By not using the curvature information we expose ourself to the

”banana-problem”. 7/41

New algorithm at work — iteration 1

8/41

New algorithm at work — iteration 2

9/41

New algorithm at work — overall result

Initial value Iteration 1

Iteration 2 Iteration 50

10/41

Outline

Aim: Derive a stochastic quasi-Newton algorithm.

Spin-off: Combine it with particle filters for maximum likelihood iden-

tification in nonlinear state space models.

1. Mindset (probabilistic numerics) and problem formulation

2. A non-standard take on quasi-Newton

3. µ on the Gaussian process (GP)

4. Assembling a new stochastic optimization algorithm

a. Representing the Hessian with a GP

b. Learning the Hessian

5. Testing ground – maximum likelihood in SSMs

6. Some ongoing research (if there is time)

11/41

Quasi-Newton — A non-standard take

Our problem is of the form

max
x

f (x)

Idea underlying (quasi-)Newton methods: Learn a local quadratic

model q(xk , δ) of the cost function f (x) around the current iterate xk

q(xk , δ) = f (xk) + g(xk)Tδ +
1

2
δTH(xk)δ

A second-order Taylor expansion around xk , where

g(xk) = ∇f (x)
∣∣
x=xk

,

H(xk) = ∇2f (x)
∣∣
x=xk

,

δ = x − xk .

12/41

Available data

We have measurements of the

• cost function fk = f (xk),

• and its gradient gk = g(xk).

Question: How do we update the Hessian model?

Line segment connecting two adjacent iterates xk and xk+1:

rk(τ) = xk + τ(xk+1 − xk), τ ∈ {0, 1}.

13/41

Useful basic facts

The fundamental theorem of calculus states that∫ 1

0

∂

∂τ
∇f (rk(τ))dτ = ∇f (rk(1))−∇f (rk(0)) = ∇f (xk+1)︸ ︷︷ ︸

gk+1

−∇f (xk)︸ ︷︷ ︸
gk

and the chain rule tells us that

∂

∂τ
∇f (rk(τ)) = ∇2f (rk(τ))

∂rk(τ)

∂τ
= ∇2f (rk(τ))(xk+1 − xk).

gk+1 − gk︸ ︷︷ ︸
=yk

=

∫ 1

0

∂

∂τ
∇f (rk(τ))dτ =

∫ 1

0

∇2f (rk(τ))dτ(xk+1 − xk︸ ︷︷ ︸
sk

).

14/41

Result — the quasi-Newton integral

With the definitions yk , gk+1 − gk and sk , xk+1 − xk we have

yk =

∫ 1

0

∇2f (rk(τ))dτsk .

Interpretation: The difference between two consecutive gradients (yk)

constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form

available for it.

15/41

Solution 1 — recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden’s method)

assume the Hessian to be constant

∇2f (rk(τ)) ≈ Hk+1, τ ∈ {0, 1},

implying the following approximation of the integral (secant condition)

yk = Hk+1sk .

Find Hk+1 by regularizing H:

Hk+1 = min
H

‖H − Hk‖2
W ,

s.t. H = HT, Hsk = yk ,

Equivalently, the existing quasi-Newton methods can be interpreted as

particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234–260, 2015. 16/41

Solution 2 — use a flexible nonlinear model

Our approach is fundamentally different.

Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

Idea: Represent the Hessian using a Gaussian process learnt from data.

Two of the remaining challenges:

1. Can we use line integral observations when learning a GP?

2. How do we ensure that the resulting GP represents a Hessian?

17/41

µ on the Gaussian process (GP)

The Gaussian process is a model for nonlinear functions

Q: Why is the Gaussian process used everywhere?

It is a non-parametric and probabilistic model for nonlinear functions.

• Non-parametric means that it does not rely on any particular

parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in every

aspect of the model.

18/41

An abstract idea

In probabilistic (Bayesian) linear regression

yt = θTxt︸︷︷︸
f (xt)

+et , et ∼ N (0, σ2),

we place a prior on θ, e.g. θ ∼ N (0, α2I).

(Abstract) idea: What if we instead place a prior directly on the func-

tion f (·)
f ∼ p(f)

and look for p(f | y1:T) rather than p(θ | y1:T)?!

19/41

One concrete construction

Well, one (arguably simple) idea on how we can reason probabilistically

about an unknown function f is by assuming that f (x) and f (x ′) are

jointly Gaussian distributed(
f (x)

f (x ′)

)
∼ N (m,K) .

If we accept the above idea we can without conceptual problems

generalize to any arbitrary finite set of input values {x1, x2, . . . , xT}.

 f (x1)
...

f (xT)

 ∼ N

m(x1)

...

m(xN)

 ,

k(x1, x1) . . . k(x1, xT)
...

. . .
...

k(xT , x1) . . . k(xT , xT)




20/41

Definition

Definition: (Gaussian Process, GP) A GP is a (potentially infinite)

collection of random variables such that any finite subset of it is jointly

distributed according to a Gaussian.

21/41

We now have a prior!

f ∼ GP(m, k)

The GP is a generative model so let us first sample from the prior.

22/41

GP regression – illustration

23/41

Stochastic optimization

GP prior for the Hessian

Stochastic quasi-Newton integral

yk =

∫ 1

0

B(rk(τ))︸ ︷︷ ︸
=∇2f (rk (τ))

skdτ + ek ,

corresponds to noisy (ek) gradient observations.

Since B(x)sk is a column vector, the integrand is given by

vec (B(x)sk) = (sT
k ⊗ I) vec (B(x)) = (sT

k ⊗ I) vec (B(x)) ,

where vec (B(x)) = D vech (B(x))︸ ︷︷ ︸
B̃(x)

.

Let us use a GP model for the unique elements of the Hessian

B̃(x) ∼ GP(µ(x), κ(x , x ′)).

24/41

Resulting stochastic qN integral and Hessian model

Summary: resulting stochastic quasi-Newton integral:

yk = (sT
k ⊗ I)D︸ ︷︷ ︸

=D̄k

∫ 1

0

B̃(rk(τ))dτ + ek ,

with the following model for the Hessian

B̃(x) ∼ GP(µ(x), κ(x , x ′)).

The Hessian can now be estimated using tailored GP regression.

Linear transformations (such as an integral or a derivative) of a GP

results in a new GP.

25/41

Resulting stochastic optimization algorithm

Standard non-convex numerical optimization loop with non-standard

components.

Algorithm 1 Probabilistic optimization

1. Initialization (k = 1)

2. while not terminated do

(a) Compute a search direction pk using the current approximation of

the gradient gk and Hessian Bk .

(b) Probabilistic line search to find a step length αk and set

xk+1 = xk + αkpk .

(c) Set k := k + 1

(d) Update the Hessian estimate (tailored GP regression)

3. end while

26/41

Testing ground – nonlinear sys.id.

Probabilistic modelling of dynamical systems

xt = f (xt−1, θ) + wt ,

yt = g(xt , θ) + et ,

x0 ∼ p(x0 | θ),

(θ ∼ p(θ)).

xt | (xt−1, θ) ∼ p(xt | xt−1, θ),

yt | (xt , θ) ∼ p(yt | xt , θ),

x0 ∼ p(x0 | θ),

(θ ∼ p(θ)).

Corresponding full probabilistic model:

p(x0:T , θ, y1:T) =
T∏
t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation

T∏
t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!

27/41

Maximum likelihood nonlinear system identification

Maximum likelihood – model the unknown parameters as a determin-

istic variable θ and solve

max
θ

p(y1:T | θ),

Challenge: The optimization problem is stochastic!

28/41

Cost function – the likelihood

Each element p(yt | y1:t−1, θ) in the likelihood

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ),

can be computed by averaging over all possible values for the state xt ,

p(yt | y1:t−1, θ) =

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

approx. by PF

dxt .

Non-trivial fact: The likelihood estimates obtained from the particle

filter (PF) are unbiased.

Tutorial paper on the use of the PF (an instance of sequential Monte
Carlo, SMC) for nonlinear system identification

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential

Monte Carlo methods for system identification, Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing,

China, October 2015.
29/41

ex) Simple linear toy problem

Identify the parameters θ = (a, c , q, r)T in

xt+1 = axt + wt , wt ∼ N (0, q),

yt = cxt + et , et ∼ N (0, r).

Observations:

• The likelihood L(θ) = p(y1:T | θ) and its gradient ∇θL(θ) are

available in closed form via standard Kalman filter equations.

• Standard gradient-based search algorithms applies.

• Deterministic optimization problem (L(θ),∇θL(θ) noise-free).

30/41

ex) Simple linear toy problem

Both alg. in the noise-free case.

Classical BFGS alg. for noisy observations of L(θ) and ∇L(θ). GP-based BFGS alg. with noisy observations of L(θ) and ∇L(θ).31/41

ex) laser interferometry

The classic Michelson-Morley

experiment from 1887.

Idea: Merge two light sources to

create an interference pattern by

superposition.

Two cases:

1. Mirror B and C at the same distance from mirror A.

2. Mirror B and C at different distances from mirror A.

32/41

ex) laser interferometry

Dynamics: constant velocity model (with unknown force w)(
ṗ

v̇

)
=

(
0 1

0 0

)(
p

v

)
+

(
0

w

)
.

Measurements: generated using two detectors

y1 = α0 + α1 cos(κp) + e1, e1 ∼ N (0, σ2),

y2 = β0 + β1 sin(κp + γ) + e2, e2 ∼ N (0, σ2).

Unknown parameters: θ =
(
α0 α0 β0 β1 γ σ

)T

.

Resulting maximum likelihood system identification problem

max
θ

p(y1:T | θ)

33/41

ex) laser interferometry

34/41

Snapshots of some related

ongoing research

Snapshot 1 – scaling up to large problems

What is the key limitation of our GP-based optimization algorithm?

It does not scale to large-scale problems!

It is still highly useful and competitive for small to medium sized

problems involving up to a coupled of hundred parameters or so.

We have developed a new technique that scales to very large problems.

35/41

Snapshot 1 – scaling up to large problems

Training a deep CNN for MNIST data.

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o
s
t

Alg1

MNJ

GGR

SVRG

Logistic loss function with an L2 regularizer,

gisette, 6 000 observations and 5 000

unknown variables.

0 100 200 300 400 500 600 700 800 900 1000

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

s
t

Alg1

MNJ

GGR

SVRG

Logistic loss function with an L2 regularizer,

URL, 2 396 130 observations and 3 231 961

unknown variables.

Key innovations

• Replace the GP with a matrix updated using fast Cholesky routines.

• Exploit a receding history of iterates and gradients akin to L-BFGS.

• An auxiliary variable Markov chain construction.

Adrian Wills and Thomas B. Schön. Stochastic quasi-Newton with adaptive step lengths for large-scale problems. arXiv:1802.04310,

February, 2018. 36/41

Snapshot 2 – A linearly constrained GP

Innovation: Modification of the covariance function in a GP to correctly

account for known linear operator constraints.

Contribution:

1. A probabilistic model that is

guaranteed to fulfil known

linear operator constraints.

2. A constructive procedure for

designing the transformation.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Linearly constrained Gaussian processes

Abstract
We consider a modification of the covariance
function in Gaussian processes to correctly ac-
count for known linear constraints. By modelling
the target function as a transformation of an un-
derlying function, the constraints are explicitly
incorporated in the model such that they are guar-
anteed to be fulfilled by any sample drawn or
prediction made. We also propose a constructive
procedure for designing the transformation op-
erator and illustrate the result on both simulated
and real-data examples.

1. Introduction
Bayesian non-parametric modelling has had a profound im-
pact in machine learning due, in no small part, to the flex-
ibility of these model structures in combination with the
ability to encode prior knowledge in a principled man-
ner (Ghahramani, 2015). These properties have been ex-
ploited within the class of Bayesian non-parametric models
known as Gaussian Processes (GPs), which have received
significant research attention and have demonstrated utility
across a very large range of real-world applications (Ras-
mussen & Williams, 2006).

Abstracting from the myriad number of these applications,
it has been observed that the efficacy of GPs modelling
is often intimately dependent on the appropriate choice of
mean and covariance functions, and the appropriate tuning
of their associated hyper-parameters. Often, the most ap-
propriate mean and covariance functions are connected to
prior knowledge of the underlying problem. For example,
Koyejo et al. (2013) use functional expectation constraints
to consider the problem of gene-disease association, and
Navarro et al. (2016) employs a multivariate generalised
von Mises distribution to produce a GP-like regression that
handles circular variable problems.

At the same time, it is not always obvious how one might
construct a GP model that obeys underlying principles,

*Equal contribution . Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

3
2

x1 [m]

1
0

-1-3
-2

x2 [m]

-1
0

1

2

1.5

1

0.5

0

x
3
[m

]

0.7 0.8 0.9 1 1.1 1.2 1.3

Predicted
magnetic field
strength [a.u.]

Figure 1. Predicted strength of a magnetic field at three heights,
given measured data sampled from the trajectory shown (blue
curve). The three components (x1, x2, x3) denote the Cartesian
coordinates, where the x3-coordinate is the height above the floor.
The magnetic field is curl-free, which can be formulated in terms
of three linear constraints. The method proposed in this paper
can exploit these constraints to improve the predictions. See Sec-
tion 5.2 for details.

such as equilibrium conditions and conservation ”laws”.
One straightforward approach to this problem is to add fic-
titious measurements that observe the constraints at a finite
number of points of interest. This has the benefit of being
relatively straightforward to implement, but has the some-
times significant drawback of increasing the problem di-
mension and at the same time not enforcing the constraints
between the points of interest.

A different approach to constraining the GP model is to
construct mean and covariance functions that obey the con-
straints. For example, curl and divergence free covariance
functions are used in (Macêdo & Castro, 2008) to improve
the accuracy for regression problems. The main benefit of
this approach is that the problem dimension does not grow,
and the constraints are enforced everywhere, not just at the

Carl Jidling, Niklas Wahlström, Adrian Wills and Thomas B. Schön. Linearly constrained Gaussian processes. Advances in Neural

Information Processing Systems (NIPS), Long Beach, CA, USA, December, 2017.
37/41

Snapshot 3 – GP-based nonlinear state space model

“Inspired by the Gaussian process, enabled by the particle filter”

xt+1 = f (xt) + wt , s.t. f (x) ∼ GP(0, κη,f (x , x ′)),

yt = g(xt) + et , s.t. g(x) ∼ GP(0, κη,g (x , x ′)).

Results in a flexible non-parametric model where the GP prior takes on

the role of a regularizer.

We can now find the posterior distribution

p(f , g ,Q,R, η | y1:T),

via some approximation (we use particle MCMC).

Frigola, Roger, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen. Bayesian inference and learning in Gaussian process

state-space models with particle MCMC. In Advances in Neural Information Processing Systems (NIPS), 2013.

Andreas Svensson and Thomas B. Schön. A flexible state space model for learning nonlinear dynamical systems, Automatica,

80:189-199, June, 2017.
38/41

Snapshot 4 – The ASSEMBLE project and Birch

Aim: Automate probabilistic modeling of dynamical

systems (and their surroundings) via a formally defined

probabilistic modeling language.

Keep the model and the learning algorithms separated.

Create a market place for SMC-based learning algorithms (think CVX).

Birch — Our prototype probabilistic programming language.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman and Thomas B. Schön. Delayed sampling and automatic

Rao-Blackwellization of probabilistic programs. In Proceedings of the 21st International Conference on Artificial Intelligence and

Statistics (AISTATS), Lanzarote, Spain, April, 2018.

39/41

Birch - our prototype probabilistic programming language

1. The basic idea of probabilistic programming is to equate

probabilistic models with the programs that implement them.

2. Just as we can think of doing inference over models, we can think of

doing inference over programs.

The particular PPL used here is Birch, which is currently being

developed at Uppsala University.

Probabilistic and object-oriented language.

An early pre-release of Birch is available

birch-lang.org

40/41

birch-lang.org

Conclusions

Derived a probabilistic quasi-Newton algorithm that can be used with

noisy observations of the cost function and its derivatives.

• Non-standard interpretation of quasi-Newton.

• Represent the Hessian using a Gaussian process.

• Application: Maximum likelihood estimation in nonlinear SSMs.

• We can scale up to large problems.

Remember to talk to people who work on different problems with

different tools!!

41/41

Backup slides

Tailoring GP regression for Hessian estimation

Setting: We put a GP prior on part of the Hessian

B̃(x) ∼ GP(µ(x), κ(x , x ′)),

which is then updated using the measurements via the stochastic

quasi-Newton integral:

yk = (sT
k ⊗ I)D︸ ︷︷ ︸

=D̄k

∫ 1

0

B̃(rk(τ))dτ + ek .

The Gaussian process is closed under linear operators implying that

yk ∼ N (mk ,Kkk) ,

where

mk = D̄k

∫ 1

0

µ(rk(τ))dτ,

Kkk = D̄k

∫ 1

0

∫ 1

0

κ(rk(τ), rk(t))dτdtD̄T
k + R.

Hessian posterior distribution

Setting: We have training data available in the form {si , yi}Ni=1.

Model assumptions:(
B̃?
y

)
∼ N

((
ms?

ms

)
,

(
Ks?s? Ks?s

Kss? Kss

))
.

y =
(
y1 y2 · · · yN

)T

, s =
(
s1 s2 · · · sN

)T

.

Result of using the new Hessian information

B̃? | y ∼ N (mp,Kp) ,

mp = ms? − Ks?sK
−1
ss (y −ms),

Kp = Ks?s? − Ks?sK
−1
ss Kss? .

GP regression – general

Remaining problem: Given training data T = {xt , yt}Ti=1 and our GP

prior f ∼ GP(m, k) compute p(f? | y) for an arbitrary test point (x?, y?).

(
y

f?

)
∼ N

((
m(x)

m(x?)

)
,

(
k(x, x) + σ2IT k(x, x?)

k(x?, x) k(x?, x?)

))
,

The conditioning theorem for partitioned Gaussians results in

f? | y ∼ N (µ?, k?) ,

µ? = m(x?) + sT(y −m(x)),

k? = k(x?, x?)− sTk(x, x?),

where sT = k(x?, x)(k(x, x) + σ2IT)−1.

	 on the Gaussian process (GP)
	Stochastic optimization
	Testing ground – nonlinear sys.id.
	Snapshots of some related ongoing research
	Appendix
	Backup slides

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PauseLeft:
	2.PlayLeft:
	2.PlayPauseLeft:
	2.PauseRight:
	2.PlayRight:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	anm3:
	3.EndLeft:
	3.StepLeft:
	3.PauseLeft:
	3.PlayLeft:
	3.PlayPauseLeft:
	3.PauseRight:
	3.PlayRight:
	3.PlayPauseRight:
	3.StepRight:
	3.EndRight:
	3.Minus:
	3.Reset:
	3.Plus:
	4.0:
	4.1:
	4.2:
	4.3:
	4.4:
	4.5:
	4.6:
	4.7:
	4.8:
	4.9:
	4.10:
	4.11:
	4.12:
	4.13:
	4.14:
	4.15:
	4.16:
	4.17:
	4.18:
	4.19:
	4.20:
	4.21:
	4.22:
	4.23:
	4.24:
	4.25:
	4.26:
	4.27:
	4.28:
	4.29:
	4.30:
	4.31:
	4.32:
	4.33:
	4.34:
	4.35:
	4.36:
	4.37:
	4.38:
	4.39:
	4.40:
	4.41:
	4.42:
	4.43:
	4.44:
	4.45:
	4.46:
	4.47:
	4.48:
	4.49:
	anm4:
	4.EndLeft:
	4.StepLeft:
	4.PauseLeft:
	4.PlayLeft:
	4.PlayPauseLeft:
	4.PauseRight:
	4.PlayRight:
	4.PlayPauseRight:
	4.StepRight:
	4.EndRight:
	4.Minus:
	4.Reset:
	4.Plus:

