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Mindset — Numerical methods are inference algorithms

A numerical method estimates a certain latent property given the
result of computations.

Computation is inference meaning that numerical methods can be
interpreted as estimation/learning algorithms.

Basic numerical methods and basic statistical models are deeply
connected in formal ways!

Poincaré, H. Calcul des probabilités. Paris: Gauthier-Villars, 1896.
Diaconis, P. Bayesian numerical analysis. Statistical decision theory and related topics, IV(1), 163-175, 1988.
O’Hagan, A. Some Bayesian numerical analysis. Bayesian Statistics, 4, 345-363, 1992.

Hennig, P., Osborne, M. A., and Girolami, M. Probabilistic numerics and uncertainty in computations. Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015.

probabilistic-numerics.org/
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Mindset — Numerical methods are inference algorithms

The task of a numerical algorithm is

to estimate unknown quantities from known ones.

Ex) basic algorithms that are equivalent to Gaussian MAP inference:

e Conjugate Gradients for linear algebra

e BFGS for nonlinear optimization

e Gaussian quadrature rules for integration
e Runge-Kutta solvers for ODEs

The structure of num. algs. is similar to statistical inference where

e The tractable quantities play the role of "data” /” observations”.
e The intractable quantities relate to " latent” /" hidden” quantities.
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Problem formulation

If computation is inference then maybe it is possible to use this in
deriving new (and possibly more capable) algorithms.

What? Solve the non-convex stochastic optimization problem

max f(x)

when we only have access to noisy evaluations of f(x) and its derivatives.

Why? These stochastic optimization problems are common:

e When the cost function cannot be evaluated on the entire dataset.

e When numerical methods approximate f(x) and V/f(x).
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How? — our contribution

[ How? Learn a probabilistic nonlinear model of the Hessian.

Provides a local approximation of the cost function f(x).

Use this local model to compute a search direction.

Captures second-order information (curvature) which opens up for better
performance compared to a pure gradient-based method.
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Intuitive preview example — Rosenbrock function

Let f(x) = (a— x1)? + b(x2 — x3), where a =1 and b = 100.

Deterministic problem

max f(x)

Stochastic problem

max f(x)
X
when we only have access to noisy
versions of the cost function

(f(x) = f(x) + e, e ~ N(0,30?))
and its gradients.
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fminunc at work

Terminates at the wrong solution after 3 iterations.

The true solution is (1,1).
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Adam at work

(=]

By not using the curvature information we expose ourself to the

" banana-problem”. 7/41



New algorithm at work — iteration 1

(=]
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New algorithm at work — iteration 2

(=]
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New algorithm at work — overall result

Initial value Iteration 1

Iteration 2 Iteration 50
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Aim: Derive a stochastic quasi-Newton algorithm.

Spin-off: Combine it with particle filters for maximum likelihood iden-
tification in nonlinear state space models.

i

Mindset (probabilistic numerics) and problem formulation
A non-standard take on quasi-Newton

1 on the Gaussian process (GP)

Assembling a new stochastic optimization algorithm

a. Representing the Hessian with a GP
b. Learning the Hessian

Testing ground — maximum likelihood in SSMs

Some ongoing research (if there is time)
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Quasi-Newton — A non-standard take

Our problem is of the form

max f(x)

Idea underlying (quasi-)Newton methods: Learn a local quadratic
model g(xk, d) of the cost function f(x) around the current iterate X

A, 8) = F() + g(x)TO + %JTH(xk)é

A second-order Taylor expansion around xx, where

g(x0) = V().
H(xx) = V2f(x)‘xzxk,

6 =X — Xg.
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Available data

We have measurements of the

e cost function fi = f(xx),

e and its gradient gx = g(x«).

Question: How do we update the Hessian model?

Line segment connecting two adjacent iterates xx and Xx41:

(7)) = Xk + T(Xk1 — Xk), T€{0,1}.
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Useful basic facts

The fundamental theorem of calculus states that

/ 2 V(r(r))dr = V(1) ~ VA((0)) = VFlxk1) ~ VF(xi)

8k+1 8k

and the chain rule tells us that

2w(rk(T)) - V2f(rk(7))ar55_7)

or = V2f(rk(7))(xk+1 — Xk).

1 9 1
8ktl — 8k = / a—Vf(rk(T))dT = / V2 (re(7))dT (k11 — Xk)-

=Yk Sk
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Result — the quasi-Newton integral

With the definitions yx £ gx11 — gk and sx = xx1 — Xk we have

Yk = /01 V2f(r(T))d7s.

Interpretation: The difference between two consecutive gradients (yx)
constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form
available for it.
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Solution 1 — recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden's method)
assume the Hessian to be constant

sz(rk(r)) ~ Hk+1, T E {0, 1},
implying the following approximation of the integral (secant condition)

Yk = Hig1sk.

Find Hiy1 by regularizing H:
. 2
Hier = min - [[H = Hellw,
st. H=H", Hsc =y,
Equivalently, the existing quasi-Newton methods can be interpreted as
particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234-260, 2015. 16/41



Solution 2 — use a flexible nonlinear model

Our approach is fundamentally different.
Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

[ Idea: Represent the Hessian using a Gaussian process learnt from data.

Two of the remaining challenges:

1. Can we use line integral observations when learning a GP?

2. How do we ensure that the resulting GP represents a Hessian?
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1 on the Gaussian process (GP)




The Gaussian process is a model for nonlinear functions

Q: Why is the Gaussian process used everywhere?

It is a non-parametric and probabilistic model for nonlinear functions.

e Non-parametric means that it does not rely on any particular
parametric functional form to be postulated.

e Probabilistic means that it takes uncertainty into account in every
aspect of the model.
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An abstract idea

In probabilistic (Bayesian) linear regression

Y = 9Txt +et, e NN(O,OJ),

f(xe)

we place a prior on 6, e.g. 8 ~ N(0,a?]).

(Abstract) idea: What if we instead place a prior directly on the func-
tion f(-)
f ~ p(f)

and look for p(f | y1.7) rather than p(@ | y1.7)?!
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One concrete construction

Well, one (arguably simple) idea on how we can reason probabilistically
about an unknown function f is by assuming that f(x) and f(x’) are
jointly Gaussian distributed

If we accept the above idea we can without conceptual problems

generalize to any arbitrary finite set of input values {x1, x2,...,x7}.
f(Xl) m(xl) k(Xl,X]_) k(Xl,XT)
f(x7) m(xy) k(xr,x1) ... k(xr,x7)
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Definition: (Gaussian Process, GP) A GP is a (potentially infinite)
collection of random variables such that any finite subset of it is jointly
distributed according to a Gaussian.
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We now have a prior!

[ f ~GP(m, k)

The GP is a generative model so let us first sample from the prior.
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GP regression — illustration
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Stochastic optimization




GP prior for the Hessian

Stochastic quasi-Newton integral

1
Yk 2/ B(rk(T)) SedT + e,
0 =
=V2f(n (7))

corresponds to noisy (ex) gradient observations.

Since B(x)sk is a column vector, the integrand is given by
vec (B(x)sk) = (sf @ 1) vec(B(x)) = (s @ I)vec(B(x)),
where vec (B(x)) = D vech (B(x)).
—_———

B(x)

Let us use a GP model for the unique elements of the Hessian
B(x) ~ GP(u(x), n(x,X).
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Resulting stochastic gN integral and Hessian model

Summary: resulting stochastic quasi-Newton integral:

1
e — (skT®/)D/ B(re(r))dr + e,
N——J 0

—Dy

with the following model for the Hessian

B(x) ~ GP(u(x), 5(x, x")).

The Hessian can now be estimated using tailored GP regression.

Linear transformations (such as an integral or a derivative) of a GP

results in a new GP.
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Resulting stochastic optimization algorithm

Standard non-convex numerical optimization loop with non-standard
components.

Algorithm 1 Probabilistic optimization

1. Initialization (k = 1)
2. while not terminated do

(a) Compute a search direction px using the current approximation of
the gradient gx and Hessian B.
(b) Probabilistic line search to find a step length a and set

Xk+1 = Xk + QP
(c) Set k :=k+1
(d) Update the Hessian estimate (tailored GP regression)

3. end while
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Testing ground — nonlinear sys.id.




Probabilistic modelling of dynamical systems

xt = f(xt—1,0) + w, Xt | (xt—1,0) ~ p(x¢ | x¢—1,0),
Ye = g(xe,0) + e, Ye| (xe, 0) ~ p(ye | xe, 0),
xo ~ p(xo|0), xo ~ p(xo|0),
(0 ~ p(9)). (0 ~ p(0)).
Corresponding full probabilistic model:
T
p(xo.7,0, y1:7) H p(ye | xe, 0 H p(xe | xe—1,0) p(x0 | 0) p(0)
t—1 S——
observation dynamics state  param.
prior
[ Model = probability distribution!
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Maximum likelihood nonlinear system identification

Maximum likelihood — model the unknown parameters as a determin-
istic variable 6 and solve

meax P(YLT | 9),

Challenge: The optimization problem is stochastic!
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Cost function — the likelihood

Each element p(y: | y1.t—1,0) in the likelihood

.le|9 HP}/t|}/1t 1, )7
can be computed by averaging over aII possible values for the state x;,

P(ye | y1:e-1,0) = /p(ytlxt,ﬁ) p(xt | y1.4-1,0) dxe.
——— ——
approx. by PF

Non-trivial fact: The likelihood estimates obtained from the particle
filter (PF) are unbiased.

Tutorial paper on the use of the PF (an instance of sequential Monte
Carlo, SMC) for nonlinear system identification
Thomas B. Schén, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential

Monte Carlo methods for system identification, Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing, 29/41
China, October 2015.



ex) Simple linear toy problem

Identify the parameters § = (a,c,q,r)" in
Xt+1 = aXy + W, we ~ N(0, q),
Yt = CX¢ + €, e ~ N(0,r).

Observations:

e The likelihood L(0) = p(y1.7|0) and its gradient VyL(0) are
available in closed form via standard Kalman filter equations.

e Standard gradient-based search algorithms applies.

e Deterministic optimization problem (L(0), VoL(0) noise-free).
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ex) Simple linear toy problem

10? 102 107 10

Both alg. in the noise-free case.

5
o

10° 10 107 100
10
20
Y
0
50

3 z 0 5

3 102 o o 10 10 10 10°

Classical BFGS alg. for noisy observations of L(6) and V' L(6). GP-based BFGS alg. with noisy observations of L(6) and W L(6).31/41



ex) laser interferomet

Mirror

Hypothetical

cther The classic Michelson-Morley

/ experiment from 1887.

Idea: Merge two light sources to

Light y d .
g create an interference pattern by

Half-silvered mirror su perposition .

Mirror

o<l

Two cases:
1. Mirror B and C at the same distance from mirror A.

2. Mirror B and C at different distances from mirror A.
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ex) laser interferometry

Dynamics: constant velocity model (with unknown force w)

()= o))+ ()

Measurements: generated using two detectors
y1 = ap + o cos(kp) + e1, er ~ N(0,0?),
Y2 :80—1—“815in(/<;p+’y)+e2, (=) NN(070'2).

-
Unknown parameters:G:(ao ag Bo P17 a).

Resulting maximum likelihood system identification problem

max p(y1:710)
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ex) laser interferometry

(=]
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Snapshots of some related
ongoing research




Snapshot 1 — scaling up to large problems

What is the key limitation of our GP-based optimization algorithm?

It does not scale to large-scale problems!

It is still highly useful and competitive for small to medium sized
problems involving up to a coupled of hundred parameters or so.

We have developed a new technique that scales to very large problems.
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Snapshot 1 — scaling up to large problems

—Algt
—-sG
-+ Adam
=
H
1S
N ' ’ Time (sec) T ST el
Training a deep CNN for MNIST data. Logistic loss function with an L2 regularizer, Logistic loss function wwt.h an L2 regularizer,
gisette, 6 000 observations and 5 000 URL, 2 396 130 observations and 3 231 961
unknown variables.

unknown variables.

Key innovations
e Replace the GP with a matrix updated using fast Cholesky routines.
e Exploit a receding history of iterates and gradients akin to L-BFGS.
e An auxiliary variable Markov chain construction.

Adrian Wills and Thomas B. Schon. Stochastic quasi-Newton with adaptive step lengths for large-scale problems. arXiv:1802.04310, /
36/41

February, 2018.



Snapshot 2 — A linearly constrained GP

Innovation: Modification of the covariance function in a GP to correctly
account for known linear operator constraints.

magnetic field
07 08 09 1 1.1 12 13 >

strength [a.u.]
m AN
[

. . v
linear operator constraints. 2l
I

=

2. A constructive procedure for 5 T

Contribution:

1. A probabilistic model that is
guaranteed to fulfil known

designing the transformation.

Carl Jidling, Niklas Wahlstrém, Adrian Wills and Thomas B. Schén. Linearly constrained Gaussian processes. Advances in Neural

Information Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. 3741



Snapshot 3 — GP-based nonlinear state space model

“Inspired by the Gaussian process, enabled by the particle filter”

Xt+1 - f(Xt) + Wt, s.t. f(X) ~ gP(O7 KJ’!],f(XaX/))y
ye = g(x¢) + e, st. g(x) ~ GP(0, Ky g(x,x")).
Results in a flexible non-parametric model where the GP prior takes on
the role of a regularizer.
We can now find the posterior distribution

p(f,g, Q. R,n|yi.1),

via some approximation (we use particle MCMC).

Frigola, Roger, Fredrik Lindsten, Thomas B. Schon, and Carl Rasmussen. Bayesian inference and learning in Gaussian process
state-space models with particle MCMC. In Advances in Neural Information Processing Systems (NIPS), 2013.

Andreas Svensson and Thomas B. Schon. A flexible state space model for learning nonlinear dynamical systems, Automatica, 38/41
80:189-199, June, 2017.



Snapshot 4 — The ASSEMBLE project and Birch

Aim: Automate probabilistic modeling of dynamical
systems (and their surroundings) via a formally defined
probabilistic modeling language. Swepish FOUNDATION i

STRATEGIC RESEARCH

Keep the model and the learning algorithms separated.
Create a market place for SMC-based learning algorithms (think CVX).

Birch — Our prototype probabilistic programming language.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman and Thomas B. Schon. Delayed sampling and automatic
Rao-Blackwellization of probabilistic programs. In Proceedings of the 21st International Conference on Artificial Intelligence and
Statistics (AISTATS), Lanzarote, Spain, April, 2018.
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Birch - our prototype probabilistic programming language

1. The basic idea of probabilistic programming is to equate
probabilistic models with the programs that implement them.

2. Just as we can think of doing inference over models, we can think of
doing inference over programs.

The particular PPL used here is Birch, which is currently being
developed at Uppsala University.

Probabilistic and object-oriented language.
An early pre-release of Birch is available

birch-lang.org
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birch-lang.org

Conclusions

Derived a probabilistic quasi-Newton algorithm that can be used with
noisy observations of the cost function and its derivatives.

Non-standard interpretation of quasi-Newton.

Represent the Hessian using a Gaussian process.

Application: Maximum likelihood estimation in nonlinear SSMs.

e We can scale up to large problems.

Remember to talk to people who work on different problems with
different tools!!

41/41



Backup slides




Tailoring GP regression for Hessian estimation

Setting: We put a GP prior on part of the Hessian
B(x) ~ GP(u(x), k(x, X)),

which is then updated using the measurements via the stochastic
quasi-Newton integral:

Yk = (s,(T ® /)D/ E(rk(T))dT + ex.
N—-—J0

=Dy

The Gaussian process is closed under linear operators implying that
Y ~ N (mi, Kik)

where
1

w(re(7))dr,

my = Dk/

0

K = Dk/ / K(I’k(T)7 rk(t))detDkT + R.
0 0



Hessian posterior distribution

Setting: We have training data available in the form {s;,y;}V .

Model assumptions:
B [ (ms) (Kos Ko
y mS , KSS* KSS

T T
y:()/1 Y2 oo y/v) ) s:(51 Sy e SN) .

Result of using the new Hessian information

B*|y NN(mpaKp)a
x KS*Sngl(y - ms)a
Ko = Ks,s, — Ks*sngles*-

my = ms



GP regression — general

Remaining problem: Given training data 7 = {x, y:},_; and our GP
prior f ~ GP(m, k) compute p(f, | y) for an arbitrary test point (X, yx).

y\ o m(x) k(x,x) + o2l k(x,x.)
(ﬂ) N((m(&))’( k(xx, X) k(XhX*)))’

The conditioning theorem for partitioned Gaussians results in
f*|yNN(M*vk*)v
pe = m(x.) +sT(y — m(x)),

ke = k(X %) — 8 k(X, Xy ),

where sT = k(x,, x)(k(x,x) + o2I7) L.
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