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Content

Ensemble Kalman filter (EnKF)
High dimensional challenges for EnKF.

Sparse/Localized scenario:
m EnKF with domain localization,
m with a stable localized structure
m reaches its proclaimed performance,
m if the ensemble size K > C'r logd for a constant Cf.

Localization for inverse problems.

Gibbs sampler on Gaussian distributions.

m -MwG for inverse problems.
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Filtering

Signal-observation system

Signal: X411 = A4, X, + B + &1, 1 ~ N(O, En)
Observation: Y41 = HXpq1 + Cot1,  Cup1 ~ N(0, Jg]q)

Goal: estimate X,, based on Yi,...,Y,
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Weather forecast

m Signal: X, 11 = A, X, + By + &nt1,
Observation: Y11 = HX ;41 + Got1-
m Weather forecast:
Signal: atmosphere and ocean, “follows” a PDE.
Obs: weather station, satellite, sensors.....

m Main challenge: high dimension, d ~ 10% — 108.
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Kalman filter

m Use Gaussian: X, |y, , ~ N(my,, Ry,)
m Forecast step: My, 11 = A,m, + By, §n+1 = AanATTL + 2.
m Assimilation step: apply the Kalman update rule

~

Mpi1 = 1ni1 + G(Rg1) Vogr — Hitni1),  Rusr = K(Rpi1)
G(C)=CH" (oI, + HCHT)™', K(C)=C —-G(C)HC
m Complexity: O(d?).
Posterior at t =n Prior4+Obs at t =n+1 Posterior at t =n + 1

forecast

- i assimilate
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Sampling+Gaussian

m Monte Carlo: use samples to represent a distribution:
1K
) (K) — § : ~
X ,...,X P, kil(SX(k)Np.

m Ensemble {XT(Lk)}kK:1 to represent N'(X,,, Cy,)

()
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Ensemble Kalman filter

m Forecast step

Sk _ ® A SeyiSEa
X,H_1 =A, X —|—Bn—|—§n+1, Chy1=———
K-1
m Assimilation step
k (k k
X\ = X+ G(Cria) Vasr — HX D, + ().

Gain matrix: G(C)
m Complexity O(K?d).

Posterior at t =n

Xff{ - ~fotecast: M.C.

k
X1,

X.Tong

=CHT(021,+ HCHT)~1

Prior+Obs at t =n + 1

assimilate ~

Posterior at t =n +1

S xW
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Application and theory of EnKF

Application:
m Successful weather forecast and oil reservoir management.
m Recently been applied to deep neural networks.
m K = 50 ensembles can forecast d = 10° dimensional systems.
m Extreme savings: 1010 = dK? < d® = 10'8.
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Application and theory of EnKF

Application:
m Successful weather forecast and oil reservoir management.
m Recently been applied to deep neural networks.
m K = 50 ensembles can forecast d = 10° dimensional systems.
m Extreme savings: 1010 = dK? < d® = 10'8.
Theoretical Literature
Focused on showing ensemble version (X,,,Cp,) — (my, Ry,)
Require K — oo (Mandel, Cobb, Beezley 11)
Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
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Application and theory of EnKF

Application:
m Successful weather forecast and oil reservoir management.
m Recently been applied to deep neural networks.
m K = 50 ensembles can forecast d = 10° dimensional systems.
m Extreme savings: 1010 = dK? < d® = 10'8.
Theoretical Literature
Focused on showing ensemble version (X,,,Cp,) — (my, Ry,)
Require K — oo (Mandel, Cobb, Beezley 11)
Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
Fixed K, well definedness I}E\X(k)|2 < oo (Law, Kelly, Stuart, 14)

m Fixed K, boundedness buan|X |2 < oo (Tong, Majda, Kelly 15)

m Continuous version (de Wilijes, Reich, Stannat 17)

Gap: dependence or independence of K on d.
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s from high dimension

Ensemble size K to represent uncertainty of dimension d:
m Spurious correlation in high dimension.
Suppose XS ~ A(0,I,) ii.d, by Bai-Yin’s law
ICr — I4|| = +/d/K with large probability

25:1(X7(Lk)_yn)(xr(zk>_yn)T

m Rank deficiency: C,, = jrea]

C, 0] }K-1
Has rank(C),)< K — 1, see as [ 0 0 } }d-K+1
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Heuristic answers

We need conditions! Answers from practitioners
m Low effective dimension.
m Localized covariance structure.
As comparison: for high dimensional numerical problems,
m Low rank structure
m Sparse structure

can be exploited for efficient computation.
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Local interaction

High dimension often comes from dense grids.
Interaction often is local: PDE discritization:

Dua(t) = 5 (wisa () — i1 (1),

Example: Lorenz 96 model

l‘l(t) = (xi+1 — l‘i_g)l‘i_l —x;dt+F, i=1,---.,d

m Information travels along interaction, and is dissipated.

e __4—-;__
N

~ 7/
\'\-‘-.. —_ " -— -
3

2
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Sparsity: local covariance

m Correlation depends on information propagation.
m Correlation decays quickly with the distance.

m Covariance is localized with a structure ®, e.g. ®(z) = p*

~

[Culi,j o< @(Ji = jl)

®(z) € [0,1] is decreasing. Distance can be general.

Correlation of Lorenz 96
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Covariance Localization

Spurious correlation may exist for far away terms.

Localization: simply ignore far away correlations.

Implementation: Schur product with a mask

[CooDy1]ij = [Culij - [Drli

Use C,, o D, to describe uncertainty

[Drli; = ¢(]i — j|), with a radius L.

Gaspari-Cohn matrix: ¢(z) = exp(—4z?/L?)1;_j<L.
Cutoff/Branding matrix: ¢(v) = 1j;_j<r-

m Also resolves rank deficiency, e.g.

1 11 1 02 0 1 02 0
1 1 1{of02 1 02| =102 1 0.2
1 11 0 02 1 0 02 1
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Domain localization

Two types LEnKF: Domain localization and covariance tempering.

Domain localization with radius I:
Assume H is a partial observation matrix
Use information in Z; = {j : |i — j| <!} to update component i
C'=Pr,CPr,, G'(C)=C'H" (021, + HC'H")™!
GH(C) =) eie] G'(C)
X = XE) 4 GH(C) (Vo — HXP 4 ¢().

K S
— —
/ N
\ Local domain /
oy -
- — g -

d1 |d 1 2| 3
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Advantage with localization

Intuitively, ignoring the long distance covariance terms,
reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

IFXW . XE) ~ N(0,8), denote C = % S X®) @ x®),
ID.|j1 = max; Zj |Dyli ;. There is a constant ¢, and for any t > 0

P(||CoDy — X oDy > |Dzl1t) < 8exp(2logd — cK min{t, t*})

This indicates that K o |Dp||? logd is the necessary sample size.
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Advantage with localization

Intuitively, ignoring the long distance covariance terms,
reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

IFXW . XE) ~ N(0,8), denote C = % S X®) @ x®),
ID.|j1 = max; Zj |Dyli ;. There is a constant ¢, and for any t > 0

P(||CoDy — X oDy > |Dzl1t) < 8exp(2logd — cK min{t, t*})

This indicates that K o |Dp||? logd is the necessary sample size.

|ID .|| is independent of d, e.g, the cut-off/branding matrix,
[Déuii; = Li—ji<r: Dl ~ 2L
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Main result: localized EnKF
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Main result: localized EnKF

Theorem (T. 18)

Suppose the system coefficients have bandwidth [, and the LEnKF
ensemble covariance admits a stable localized structure, then for any

0 > 0, LEnKf reaches its proclaimed performance with high probability
1—-0(9):

1
1—

N

T

~ 1
> P(Esén ®én < (146)(Ca 0 Dl + pla) < 7 Do + D16,
t=1

if the sample size K > D; slogd.

Egs conditioned on the information of the sampling noise realization.
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Proclaimed performance

Proclaimed /estimated performance
m EnKF estimates X, by X, = & 3 X
m Error e, = X,, — X,,. Covariance : Eenef = Ee,, ® e,.

m EnKF estimates its performance by ensemble covariance C£.
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Proclaimed performance

Proclaimed /estimated performance
m EnKF estimates X, by X, = & 3 X
m Error e, = X,, — X,,. Covariance : Eenef = Ee,, ® e,.
m EnKF estimates its performance by ensemble covariance C£.

m Can it captures the error covariance?

EC? = Ee, ® e,

T
1 o ~ 1
1— 7 § P(Esé, ® é, = (14 6)(C, o DY 4 ply)) < TDO + D46,

t=1
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Stable localized structure

m Intuitively, we need some conditions on the covariance structure.
m Stable localized structure: with local structure function @, e.g.
d(x) = A7,

T
[Culiy < M ®(li —jl), Y EM, <TM,.

n=1

M, describes how localized the sample covariance matrix is.

m Why is this necessary?
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LEnKF inconsistency

An intrinsic bias/inconsistency in LEnKF.

Localization creates a bias.

Target covariance by Bayes formula
(I = GH(C)H)[Cr o DL = GH(C)H)T + o3G5 (M)
m LEnKF implementation
X = R + UG (Y, - HED + ()
m Average ensemble covariance

CpoDy = [(I1-G"(C)H)Co(I-G"(Cr)H)" +02G"(G")"]oDy..

Difference: commuting the localization and Kalman update.

Previously investigated numerically by Nerger 2015,
the inconsistency can lead to error growth.
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When is the inconsistency small?

m localization is applied, covariance is assumed localized.

m Given localized structure ®, find M,, so that

[Culiy < Ma®(|i — j]).
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When is the inconsistency small?

localization is applied, covariance is assumed localized.
Given localized structure ®, find M,, so that

[Culiy < Ma®(|i — j]).

m Interestingly, when Dy, is D§, the
Localization inconsistency < C'M,®(20).

If 21 is large, ®(x) = A%, this difference can be controlled.

Localized covariance leads to small localization inconsistency.

Therefore, we need M, to be a stable sequence,

T
Z]EMn < TM,.

n=1
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When is covariance localized?

Practical perspective
m Simply assumed.

m Numerically checked.
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When is covariance localized?

Practical perspective

m Simply assumed.

m Numerically checked.
Theoretical perspective: does covariance localize for any stochastic
system?

m Linear system: covariance can be computed.

m Nonlinear: difficult, e.g. Lorenz 96.

m LEnKF: difficult since assimilation is nonlinear.

m Under strong conditions:

m Weak local interaction, strong dissipation.
m Sparse observation for simplicity.

m Also scales with the noise strength.
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Stable local structure

Theorem

x

Suppose the following, then a stable localized structure with ®(z) = N4

1) The system noise is diagonal and the observations are sparse
D, = oglch d(o;,05) > 21, Vi#j.

2) There is a Ay < r~ !, max; {Zizl |[An]i,k|)\;1d(i’k)} < Aa.

3) There are constants such that ¥y, (M, 0.) < M,

0 <6, <min{0.25, 3(A;' =)}, M, > —"7T"—%,
1—2Aa

¥an (M, 6) = (r+6) max {)\AM (1+052M)° + Aao;2M2, N3 M + o—g} .

4) Denote n, = 2L + f10g45 = |. The sample size K exceeds

1 _
K > max{ 52)\% log(16d*n..6; %), T'(2rd; *, d)}
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al example

A stochastically forced dissipative advection equation:

Ou(x,t)  Ou(x,t) 0%u(x,t) .
5% = s vu(z,t) + Wz + o . W(x,t).
Discretization

Xn+1,i = a_Xm_l + aoXm + a+Xn,1-+1 + oV Ath—i—l,ia 1= 1, ey d,

JT7AN cAt ap = 1 — 2puAt Z/At, ay = nAt + CQAht'

- h2 h2

0— = 72 2h

Observe Y, 1, = Xy, p(k—1)+1 + 00 Bn k-
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Stable regime

Strong damping+weak advection
h=1, At=0.1, p=5 wv=5 ¢=01, p=01, o,=0,=1.

Direct verification of the conditions is possible.

a) LEnKF b) EnKF
04 04py -
|
03 03f|
w \
9 02 02| "
o [ INVIRY )
a %
01 Feereanis
d=100
o 10 20 80 4 s 60 70 8 s 100 d=1000| © 0 20 8 40 50 e 70 8 0 100
" to optimal t .
c) Stability of localization structure d) LEnKF MSE with small noise
5[,
i\ o
ab
3 \/
2 107)
1
107
0 10 20 30 40 50 60 70 80 %0 100 10" 100
! Noise strength ¢
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Strong advection regime

Weak damping-+strong advection
h=0.2 At=01, p=5 v=01, ¢=2, p=01, o,=0,=1

Direct verification of the conditions is not possible.

a) LEnKF b) EnKF
4
o
s
w 10°
w2 A
o
1 10° -
d=10 |
o 10 20 % 40 & 6 70 8 %0 10 d=100 [0 0 2 0 40 50 60 70 80 %0 10
t d=1000 t
c) Largest covariance component optimal d) LEnKF MSE with small noise
8
| "
of i |
FAl v
10"
2
I O ) 1 g

-
t Noise strength ¢
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Extension of localization

Localization has made EnKF very effective for high dimensional
DA problems.

Various generalization to particle filters.

Often relies on Gaspari Cohn matrices.
Makes non-Gaussian application difficult.

Non-ad hoc ways generalize localization to PF?

Can we apply localization to other UQ problem?
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sian inverse problem

m Suppose x ~ pg = N (m, C), we observe
y=h(x)+v, v~N(O,R).

Try to recover the value and uncertainty of x.
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Bayesian inverse problem

m Suppose x ~ pg = N (m, C), we observe
y=h(x)+v, v~N(O,R).

Try to recover the value and uncertainty of x.

m Possible applications:

m X is the real image, h defocus map.
m X initial condition, A forward map of a PDE.
m x model parameters, h gives model outcome.

Often x is high dimension.
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sian inverse problem

m Suppose x ~ pg = N (m, C), we observe
y=h(x)+v, v~N(O,R).

Try to recover the value and uncertainty of x.

m Possible applications:

m X is the real image, h defocus map.
m X initial condition, A forward map of a PDE.
m x model parameters, h gives model outcome.

Often x is high dimension.

m Bayesian approach: try to sample the posterior

p(x|y) o po(x)pi(y|x).
p(ylx) = N(h(x), R).
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MCMC sampler

m Given a target distribution p(x), generate a sequence of samples

xM x@ o x(V)
Use sample statistics to approximate population ones.

m Standard MCMC steps
m Generate proposals x’ ~ ¢(x*, x’)
m Accept with prob.
alx,x') = min{l,p(x/)q(x/,x(k))/q(x(k),x/)p(x)}
m Popular choices of proposals & ~ N(0, I,).
m RWM: x’ = x;, + 0&;,
m MALA: x' = x;, + %Vlogp(xk) + 0.
m pCN: Axp 1 = /1 — B2Ax, + B&.
Also emcee and Hamiltonian MCMC.
o, B are tuning parameters.

X.Tong Localization 28 / 45



How does MCMC work in high dim?

Sample isotropic Gaussian p = N(0, I).
Measurement of efficiency: integrated auto-correlation time (IACT)
Measure how many iterations to get an “uncorrelated” sample.

— RWM =— emcee — Hamiltonian MCMC —— MALA
1200 .

IACT

0 500 1000 500 1000
Dimension Dimension

increases with dimension
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Where is the problem?

m Let’s look at RWM, assume x; = 0.
m Propose X' = o€,
m Accept with probability exp(—30°(|&]|?) ~ exp(—30°d).
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Where is the problem?

m Let’s look at RWM, assume x; = 0.
m Propose X' = o€,
m Accept with probability exp(—30°(|&]|?) ~ exp(—30°d).

m If we keep 0 = 1, “never” accept if d > 20.

m If we want acceptance at a constant rate, o = d-=.
But then x’ = x;, + 0§}, is highly correlated with xy.
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Where is the problem?

m Let’s look at RWM, assume x; = 0.
m Propose X' = o€,
m Accept with probability exp(—30°(|&]|?) ~ exp(—30°d).

If we keep o = 1, “never” accept if d > 20.

If we want acceptance at a constant rate, o = d-=.
But then x’ = x;, + 0§}, is highly correlated with xy.

Similar for MALA, o = d~*/3. Hamiltonian MCMC, o = d~1/4.

Is it possible to break this curse of dimensionality?

Is high dimensionality an issue in other related fields?
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From EnKF to MCM

m Localization for EnKF:

m Update only in small local blocks.
m Works when covariance have local structure.

How to apply localization to MCMC?

m How to update x* component by component?
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From EnKF to MCM

m Localization for EnKF:

m Update only in small local blocks.
m Works when covariance have local structure.

How to apply localization to MCMC?

m How to update x* component by component?

m Gibbs sampling implements this idea exactly!

] Write x' = [Xi,xﬁf" ) m]

m x. can be of dimension g, then d = gm.

m Cenerate xi! Np(X1|X27X3 : »Xm)_

m Generate x57 ~ p(xz|xit x5 -+ x%).
.-

m Generate x5! ~ p(Xm|X21+17 XZQ-H e :;LH1)
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How efficient is Gibbs?

First just test with p = NV(0, I,,)

m Generate x} ~ p(x;|xb, x5 -+ ,x%) = N(0, ).

m Generate x5 ~ p(xa|xit x4 -+ x3) = N(0,1,).

. .

m Generate x%H ~ p(x,, [xi x5 - xIL ) = NV(0, 1,).

X.Tong Localization 32 / 45



How efficient is Gibbs?

First just test with p = NV(0, I,,)

m Generate x} ~ p(x;|xb, x5 -+ ,x%) = N(0, ).

m Generate x5 ~ p(xa|xit x4 -+ x3) = N(0,1,).

. ..

m Generate x%H ~ p(x,, [xi x5 - xIL ) = NV(0, 1,).

Gibbs naturally exploits the component independence.
It works efficiently against the dimension.
How about component with sparse/local independence?
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Block tridiagonal matrix

Local covariance matrix C:
[C];,; decays to zero quickly when |i — j| becomes large.

m Localized covariance matrix C:
[Cli,; = 0 when [i — j| > L. C has a bandwidth 2L.

m We will see "local” is a perturbation of ”localized”
m We can choose ¢ = L in x" =[x}, x5, -+ ,x%,],

Then C is block tridiagonal.
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Localized covariance

Theorem (Morzfeld, T., Marzouk)

Apply Gibbs sampler with block-size q to p = N (m, C). Suppose C is
q-block-tridiagonal. Then the distribution of x* converges to p
geometrically fast in all coordinates, and we can couple x* and a
sample z ~ N (m, C) such that

E|C™?(x* — 2)|* < (1 + [|C™2(x* — m)[|?),
where o
< 21-c1)=C ’
1+2(1—C-1)2ct
with C being the condition number of C.

Localized covariance+mild condition=- dimension free covergence.
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Localized precision

Theorem (Morzfeld, T., Marzouk)

Apply Gibbs sampler with block-size g to p = N (m, C). Suppose

¥ = C~! is g-block-tridiagonal. Then the distribution of x* converges
to p geometrically fast in all coordinates, and we can couple x* and a
sample z ~ N (m, C) such that

E|CT2(x" — 2)|]* < 6%d(1 + |CTV2(x* — m)||?),
where i
B < M,
1+C(1—-C1)?
with C being the condition number of C.

Localized precision+mild condition=- dimension free covergence.
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Covariance v.s. Precision

Why both localized covariance and precision?
m A lemma in Bickle & Lindner 2012.
m Localized covariance+mild condition = local precision.
m Localized precision+mild condition = local covariance.

m We will see "local” is a perturbation of ”localized”
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Covariance v.s. Precision

Why both localized covariance and precision?
m A lemma in Bickle & Lindner 2012.
m Localized covariance+mild condition = local precision.
m Localized precision+mild condition = local covariance.
m We will see "local” is a perturbation of ”localized”

For computation of Gibbs sampler, localized precision is superior:
k41 -1 k+1 -1 k —1
T~ N my = D 070 (T - my) = Y050 (- my), Q)
i<j i>j

When 2 is sparse, meaning fast computation.
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Generalization

m Gibbs works for Gaussian sampling, with localized covariance or
precision.

m How about Bayesian inverse problem?
y=hx)+v, v~N(0R),x~p)=Nm,C).

If h is linear, p is also Gaussian, Gibbs is directly applicable.

m What to do when C e.t.c. are not localized but local?
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Metropolis within Gibbs

m Add in Metropolis steps to incorporate information
m Generate X ~ po(x1]X2,X5 - ,X,,)
m Accept as x0T with o (x4, %1, Xb.0m)

i st Y mind 1
al(xl>x17 x2:m) = min ’

where x’ = (x},x5.,,,).
m Repeat for all 2,...,m blocks
m When A has a dimension free Lipschitz constant,
ly — h(x")||% — lly — h(x")||% is independent of d.
m Dimension independent acceptance rate.

m Should have fast convergence, though proof is unclear.
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Localization

Often © and h are local

m [QQ]; ; decays to zero quickly when |i — j| increases.

m [h(x)]; depends significantly only over a few x;.

Fast sparse computation is possible with localized parameters

m [, ; decays to zero quickly when |i — j| increases.

m [h(x)]; depends significantly only over a few x;.
Localization: truncate the near zero terms, Q — QF, h — AL,
We call MwG with localization as I-MwG.

Theorem (Morzfeld, T., Marzouk 2018)

The perturbation to the inverse problem is of order

e {152 - 0 s, o~ HE)E — HEYTL ).
1Al = maxi<j<a Sy [Aig)-
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Comparison with function space MCMC

Function space MCMC: MCMC for local problems:
m Discretization refines, domain m Domain size increases,
const. discretization is const.

m Number of obs. const. m Number of obs. increases.
m Effective dimension const. m Effective dimension increases.
m Low-rank priors. m High-rank, sparse priors.
m Low-rank prior to posterior m High-rank prior to posterior
update. update.
Solved by dimension reduction. Solved by localization.
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Example I: image deblurring

m Truth x ~ N(0,67'L~2), L is Laplacian.
m Defocus obs: y = Ax + 1,1 ~ N (0, \711).

m Dimension is large O(10%).

32 x 32
10 20 30
10 20 30
X.Tong

§4 x 64 128 x 128 256 x 256

e
@

-5

20 40 60 80 100120 50 100 150 200 250

20 40 60 80 100120

50 100 150 200 250
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Example I: image deblurring

0 Q= /\ATA + 0Lz — 32x32 — 64x64 —128x128
200y ° o “tj~‘-‘::\j'Posterior
400 E _ '
600 E_} " \'\\\ Prior
800
‘0006\\ 200 460 600 860 1000 10° 10! 102 10° 10*
Eigenvalue index
Precision is sparse. Effective dimension is large.
Image size 32x32 64x64 128x 128 256 x 256
Dimension 1,024 4,096 16,348 16,536
Eff. Dimension ~ 4.8-108 74 -10° 12 -101! -
IACT (Gibbs) 292 297 1.74 1.11
Blocksize (Gibbs) 16 16 32 64
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Example II: Lorenz 96 inverse

m Truth x¢ ~ pg, po is Gaussian Climatology.
m U, xg X dx; = (K41 — Xi—2)X-1 —X; + 8
m Observe every other x;, y = H(W:(x0)) + &.
MALA  pCN  I-MwG-B2 1-MwG-B4 1-MwG-B8

n=40 686 1051 55 60 266
n =400 3,153 3257 43 81 257

=== 500 prior samples === 500 posterior samples ==== True state ® Observations
t=0
|

-10 | i
L ‘ ‘
50 100 150 200 250 300 350 400
Variable index j

| t=02
10 |4 !
«
S 0
=
-10
’> 1 1
50 100 150 200 250 300 350 400

Variable index j
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Summary

m Most MCMC suffers from high dimensionality due to degenerate
acceptance.

m Localization technique in EnKF significantly reduces sampling
complexity.

m Gibbs sampler has dimension free convergence sampling local
Gaussian dist.

m Local proposals help MCMC has dimension free acceptance.
m Different setting comparing with functional space MCMC.

m Successful applications with image deblurring and Lorenz inverse
problem.
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Reference

m Localization for MCMC: sampling high-dimensional posterior
distributions with local structure. arXiv:1710.07747

m Performance analysis of local ensemble Kalman filter. to appear
on J. Nonlinear Science.

Links and slides can be found at www.math.nus.edu.sg/~mattxin.

Thank you!
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