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Content

Ensemble Kalman filter (EnKF)

High dimensional challenges for EnKF.

Sparse/Localized scenario:

EnKF with domain localization,
with a stable localized structure
reaches its proclaimed performance,
if the ensemble size K > CL log d for a constant CL.

Localization for inverse problems.

Gibbs sampler on Gaussian distributions.

l-MwG for inverse problems.
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Filtering

Signal-observation system

Signal: Xn+1 = AnXn +Bn + ξn+1, ξn+1 ∼ N (0,Σn)

Observation: Yn+1 = HXn+1 + ζn+1, ζn+1 ∼ N (0, σ2
oIq)

Goal: estimate Xn based on Y1, . . . , Yn
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Weather forecast

Signal: Xn+1 = AnXn +Bn + ξn+1,
Observation: Yn+1 = HXn+1 + ζn+1.

Weather forecast:
Signal: atmosphere and ocean, “follows” a PDE.
Obs: weather station, satellite, sensors.....

Main challenge: high dimension, d ∼ 106 − 108.
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Kalman filter

Use Gaussian: Xn|Y1...n
∼ N (mn, Rn)

Forecast step: m̂n+1 = Anmn +Bn, R̂n+1 = AnRnA
T
n + Σn.

Assimilation step: apply the Kalman update rule

mn+1 = m̂n+1 + G(R̂n+1)(Yn+1 −Hm̂n+1), Rn+1 = K(R̂n+1)

G(C) = CHT (σ2
oIq +HCHT )−1, K(C) = C − G(C)HC

Complexity: O(d3).

Posterior at t = n

forecast

Prior+Obs at t = n+ 1

assimilate

Posterior at t = n+ 1

X.Tong Localization 5 / 45



Sampling+Gaussian

Monte Carlo: use samples to represent a distribution:

X(1), . . . , X(K) ∼ p, 1

K

K∑

k=1

δX(k) ≈ p.

Ensemble {X(k)
n }Kk=1 to represent N (Xn, Cn)

Xn =

∑
X

(k)
n

K
, Cn =

1

K − 1

∑

k

(X(k)
n −Xn)⊗ (X(k)

n −Xn).
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Ensemble Kalman filter

Forecast step

X̂
(k)
n+1 = AnX

(k)
n +Bn + ξ

(k)
n+1, Ĉn+1 =

Ŝn+1Ŝ
T
n+1

K − 1
.

Assimilation step

X
(k)
n+1 = X̂

(k)
n+1 + G(Ĉn+1)(Yn+1 −HX̂(k)

n+1 + ζ
(k)
n+1).

Gain matrix: G(C) = CHT (σ2
oIq +HCHT )−1.

Complexity O(K2d).

Posterior at t = n

forecast: M.C.X
(k)
n

X̂
(k)
n+1

Prior+Obs at t = n+ 1

assimilate
X

(k)
n+1

Posterior at t = n+ 1
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Application and theory of EnKF

Application:

Successful weather forecast and oil reservoir management.

Recently been applied to deep neural networks.

K = 50 ensembles can forecast d = 106 dimensional systems.

Extreme savings: 1010 = dK2 � d3 = 1018.

Theoretical Literature

Focused on showing ensemble version (Xn, Cn)→ (mn, Rn)

Require K →∞ (Mandel, Cobb, Beezley 11)

Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)

Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)

Fixed K, well definedness E|X(k)
n |2 <∞ (Law, Kelly, Stuart, 14)

Fixed K, boundedness supn E|X
(k)
n |2 <∞ (Tong, Majda, Kelly 15)

Continuous version (de Wilijes, Reich, Stannat 17)

Gap: dependence or independence of K on d.
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Challenges from high dimension

Ensemble size K to represent uncertainty of dimension d:

Spurious correlation in high dimension.

Suppose X
(k)
n ∼ N (0, Id) i.i.d, by Bai-Yin’s law

‖Cn − Id‖ ≈
√
d/K with large probability

Rank deficiency: Cn =
∑K

k=1(X(k)
n −Xn)(X(k)

n −Xn)T

K−1

Has rank(Cn)≤ K − 1, see as

[
Cn 0
0 0

]
} K-1
} d-K+1
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Heuristic answers

We need conditions! Answers from practitioners

Low effective dimension.

Localized covariance structure.

As comparison: for high dimensional numerical problems,

Low rank structure

Sparse structure

can be exploited for efficient computation.
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Local interaction

High dimension often comes from dense grids.

Interaction often is local: PDE discritization:

∂xx(t)⇒ 1

2h
(xi+1(t)− xi−1(t)).

Example: Lorenz 96 model

ẋi(t) = (xi+1 − xi−2)xi−1 − xidt+ F, i = 1, · · · , d

Information travels along interaction, and is dissipated.
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Sparsity: local covariance

Correlation depends on information propagation.
Correlation decays quickly with the distance.
Covariance is localized with a structure Φ, e.g. Φ(x) = ρx

[Ĉn]i,j ∝ Φ(|i− j|)
Φ(x) ∈ [0, 1] is decreasing. Distance can be general.
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Covariance Localization

Spurious correlation may exist for far away terms.

Localization: simply ignore far away correlations.

Implementation: Schur product with a mask

[Ĉn ◦DL]i,j = [Ĉn]i,j · [DL]i,j

Use Ĉn ◦DL to describe uncertainty

[DL]i,j = φ(|i− j|), with a radius L.
Gaspari-Cohn matrix: φ(x) = exp(−4x2/L2)1|i−j|≤L.
Cutoff/Branding matrix: φ(x) = 1|i−j|≤L.

Also resolves rank deficiency, e.g.




1 1 1
1 1 1
1 1 1


 ◦




1 0.2 0
0.2 1 0.2
0 0.2 1


 =




1 0.2 0
0.2 1 0.2
0 0.2 1


 .
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Domain localization

Two types LEnKF: Domain localization and covariance tempering.

Domain localization with radius l:
Assume H is a partial observation matrix
Use information in Ii = {j : |i− j| ≤ l} to update component i

Ci = PIiCPIi , Gi(C) = CiHT (σ2
oIq +HCiHT )−1

GL(C) =
∑

eie
T
i Gi(C)

X(k)
n = X̂(k)

n + GL(Ĉn)(Yn −HX̂(k)
n + ζ(k)

n ).
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Advantage with localization

Intuitively, ignoring the long distance covariance terms,
reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

If X(1), . . . , X(K) ∼ N (0,Σ), denote C = 1
K

∑K
k=1X

(k) ⊗X(k).
‖DL‖1 = maxi

∑
j |DL|i,j.There is a constant c, and for any t > 0

P(‖C ◦DL − Σ ◦DL‖ > ‖DL‖1t) ≤ 8 exp(2 log d− cK min{t, t2})

This indicates that K ∝ ‖DL‖21 log d is the necessary sample size.

‖DL‖ is independent of d, e.g, the cut-off/branding matrix,
[DL

cut]i,j = 1|i−j|≤L, ‖DL
cut‖1 ≈ 2L.
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Main result: localized EnKF

Theorem (T. 18)

Suppose the system coefficients have bandwidth l, and the LEnKF
ensemble covariance admits a stable localized structure, then for any
δ > 0, LEnKf reaches its proclaimed performance with high probability
1−O(δ):

1− 1

T

T∑

t=1

P(ES ên ⊗ ên � (1 + δ)(Ĉn ◦D4l
cut + ρId)) ≤

1

T
D0 +D1δ,

if the sample size K > Dl,δ log d.

ES conditioned on the information of the sampling noise realization.
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Proclaimed performance

Proclaimed/estimated performance

EnKF estimates Xn by Xn = 1
K

∑
X

(k)
n .

Error en = Xn −Xn. Covariance : EeneTn = Een ⊗ en.

EnKF estimates its performance by ensemble covariance Cρn.

Can it captures the error covariance?

ECρn � Een ⊗ en

1− 1

T

T∑

t=1

P(ES ên ⊗ ên � (1 + δ)(Ĉn ◦D4l
cut + ρId)) ≤

1

T
D0 +D1δ,
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Stable localized structure

Intuitively, we need some conditions on the covariance structure.

Stable localized structure: with local structure function Φ, e.g.
Φ(x) = λx,

[Ĉn]i,j ≤MnΦ(|i− j|),
T∑

n=1

EMn ≤ TM∗.

Mn describes how localized the sample covariance matrix is.

Why is this necessary?
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LEnKF inconsistency

An intrinsic bias/inconsistency in LEnKF.

Localization creates a bias.

Target covariance by Bayes formula

(I − GL(Ĉn)H)[Ĉn ◦DL](I − GL(Ĉn)H)T + σ2
oGL(GL)T .

LEnKF implementation

X(k)
n = X̂(k)

n + GL(Ĉn)(Yn −HX̂(k)
n + ζ(k)

n )

Average ensemble covariance

Cn ◦DL = [(I−GL(Ĉn)H)Ĉn(I−GL(Ĉn)H)T +σ2
oGL(GL)T ]◦DL.

Difference: commuting the localization and Kalman update.

Previously investigated numerically by Nerger 2015,
the inconsistency can lead to error growth.

X.Tong Localization 19 / 45



When is the inconsistency small?

localization is applied, covariance is assumed localized.

Given localized structure Φ, find Mn so that

[Ĉn]i,j ≤MnΦ(|i− j|).

Interestingly, when DL is Dcut
4l , the

Localization inconsistency ≤ CMnΦ(2l).

If 2l is large, Φ(x) = λx, this difference can be controlled.

Localized covariance leads to small localization inconsistency.

Therefore, we need Mn to be a stable sequence,

T∑

n=1

EMn ≤ TM∗.
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When is covariance localized?

Practical perspective

Simply assumed.

Numerically checked.

Theoretical perspective: does covariance localize for any stochastic
system?

Linear system: covariance can be computed.

Nonlinear: difficult, e.g. Lorenz 96.

LEnKF: difficult since assimilation is nonlinear.

Under strong conditions:

Weak local interaction, strong dissipation.
Sparse observation for simplicity.

Also scales with the noise strength.
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Stable local structure

Theorem

Suppose the following, then a stable localized structure with Φ(x) = λxA

1) The system noise is diagonal and the observations are sparse
Σn = σ2

ξId, d(oi, oj) > 2l, ∀i 6= j.

2) There is a λA < r−1, maxi

{∑d
k=1 |[An]i,k|λ−d(i,k)

A

}
≤ λA.

3) There are constants such that ψλA
(M∗, δ∗) ≤M∗

0 < δ∗ < min{0.25, 1
2 (λ−1

A − r)}, M∗ ≥
(r + 2δ∗)σ

2
ξ

1− λA
,

ψλA
(M, δ) = (r+δ) max

{
λAM

(
1 + σ−2

o M
)2

+ λAσ
−2
o M2, λ2

AM + σ2
ξ

}
.

4) Denote n∗ = 2L+ d log 4δ−1
∗

log λ−1
A

e. The sample size K exceeds

K > max

{
− 1

cδ2
∗λ

2L
A

log(16d2n∗δ
−2
∗ ),Γ(2rδ−1

∗ , d)

}
.
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A real example

A stochastically forced dissipative advection equation:

∂u(x, t)

∂t
= c

∂u(x, t)

∂x
− νu(x, t) + µ

∂2u(x, t)

∂x2
+ σxẆ (x, t).

Discretization

Xn+1,i = a−Xn,i−1 + a0Xn,i + a+Xn,i+1 + σx
√

∆tWn+1,i, i = 1, . . . , d;

a− = µ∆t
h2 − c∆t

2h , a0 = 1− 2µ∆t
h2 − ν∆t, a+ = µ∆t

h2 + c∆t
2h .

Observe Yn,k = Xn,p(k−1)+1 + σoBn,k.
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Stable regime

Strong damping+weak advection

h = 1, ∆t = 0.1, p = 5, ν = 5, c = 0.1, µ = 0.1, σx = σo = 1.

Direct verification of the conditions is possible.

X.Tong Localization 24 / 45



Strong advection regime

Weak damping+strong advection

h = 0.2, ∆t = 0.1, p = 5, ν = 0.1, c = 2, µ = 0.1, σx = σo = 1.

Direct verification of the conditions is not possible.
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Extension of localization

Localization has made EnKF very effective for high dimensional
DA problems.

Various generalization to particle filters.

Often relies on Gaspari Cohn matrices.

Makes non-Gaussian application difficult.

Non-ad hoc ways generalize localization to PF?

Can we apply localization to other UQ problem?
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Bayesian inverse problem

Suppose x ∼ p0 = N (m,C), we observe

y = h(x) + v, v ∼ N (0, R).

Try to recover the value and uncertainty of x.

Possible applications:

x is the real image, h defocus map.
x initial condition, h forward map of a PDE.
x model parameters, h gives model outcome.

Often x is high dimension.

Bayesian approach: try to sample the posterior

p(x|y) ∝ p0(x)pl(y|x).

pl(y|x) = N (h(x), R).
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MCMC sampler

Given a target distribution p(x), generate a sequence of samples

x(1),x(2), · · · ,x(N)

Use sample statistics to approximate population ones.

Standard MCMC steps

Generate proposals x′ ∼ q(x(k),x′)
Accept with prob.
α(x,x′) = min{1, p(x′)q(x′,x(k))/q(x(k),x′)p(x)}

Popular choices of proposals ξk ∼ N (0, Id).

RWM: x′ = xk + σξk
MALA: x′ = xk + σ2

2
∇ log p(xk) + σξk.

pCN: ∆x′k+1 =
√

1− β2∆xk + β ξk.

Also emcee and Hamiltonian MCMC.
σ, β are tuning parameters.
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How does MCMC work in high dim?

Sample isotropic Gaussian p = N (0, Id).
Measurement of efficiency: integrated auto-correlation time (IACT)
Measure how many iterations to get an “uncorrelated” sample.
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Where is the problem?

Let’s look at RWM, assume xk = 0.

Propose x′ = σξk
Accept with probability exp(− 1

2
σ2‖ξk‖2) ∼ exp(− 1

2
σ2d).

If we keep σ = 1, “never” accept if d > 20.

If we want acceptance at a constant rate, σ = d−
1
2 .

But then x′ = xk + σξk is highly correlated with xk.

Similar for MALA, σ = d−1/3. Hamiltonian MCMC, σ = d−1/4.

Is it possible to break this curse of dimensionality?

Is high dimensionality an issue in other related fields?
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From EnKF to MCMC?

Localization for EnKF:

Update only in small local blocks.
Works when covariance have local structure.

How to apply localization to MCMC?

How to update xi component by component?

Gibbs sampling implements this idea exactly!

Write xi = [xi1,x
i
2, · · · ,xim].

xik can be of dimension q, then d = qm.
Generate xi+1

1 ∼ p(x1|xi2,xi3 · · · ,xim).
Generate xi+1

2 ∼ p(x2|xi+1
1 ,xi3 · · · ,xim).

· · ·
Generate xi+1

m ∼ p(xm|xi+1
1 ,xi+1

2 · · · ,xi+1
m−1).
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xik can be of dimension q, then d = qm.
Generate xi+1

1 ∼ p(x1|xi2,xi3 · · · ,xim).
Generate xi+1

2 ∼ p(x2|xi+1
1 ,xi3 · · · ,xim).

· · ·
Generate xi+1

m ∼ p(xm|xi+1
1 ,xi+1

2 · · · ,xi+1
m−1).
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How efficient is Gibbs?

First just test with p = N (0, In)

Generate xi+1
1 ∼ p(x1|xi2,xi3 · · · ,xim) = N (0, Iq).

Generate xi+1
2 ∼ p(x2|xi+1

1 ,xi3 · · · ,xim) = N (0, Iq).

· · ·
Generate xi+1

m ∼ p(xm|xi+1
1 ,xi+1

2 · · · ,xi+1
m−1) = N (0, Iq).

Gibbs naturally exploits the component independence.
It works efficiently against the dimension.
How about component with sparse/local independence?
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Block tridiagonal matrix

Local covariance matrix C:
[C]i,j decays to zero quickly when |i− j| becomes large.

Localized covariance matrix C:
[C]i,j = 0 when |i− j| > L. C has a bandwidth 2L.

We will see ”local” is a perturbation of ”localized”

We can choose q = L in xi = [xi1,x
i
2, · · · ,xim],

Then C is block tridiagonal.
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Localized covariance

Theorem (Morzfeld, T., Marzouk)

Apply Gibbs sampler with block-size q to p = N (m,C). Suppose C is
q-block-tridiagonal. Then the distribution of xk converges to p
geometrically fast in all coordinates, and we can couple xk and a
sample z ∼ N (m,C) such that

E‖C−1/2(xk − z)‖2 ≤ βkd(1 + ‖C−1/2(x0 −m)‖2),

where

β ≤ 2(1− C−1)2C4

1 + 2(1− C−1)2C4
,

with C being the condition number of C.

Localized covariance+mild condition⇒ dimension free covergence.
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Localized precision

Theorem (Morzfeld, T., Marzouk)

Apply Gibbs sampler with block-size q to p = N (m,C). Suppose
Σ = C−1 is q-block-tridiagonal. Then the distribution of xk converges
to p geometrically fast in all coordinates, and we can couple xk and a
sample z ∼ N (m,C) such that

E‖C−1/2(xk − z)‖2 ≤ βkd(1 + ‖C−1/2(x0 −m)‖2),

where

β ≤ C(1− C−1)2

1 + C(1− C−1)2
,

with C being the condition number of C.

Localized precision+mild condition⇒ dimension free covergence.

X.Tong Localization 35 / 45



Covariance v.s. Precision

Why both localized covariance and precision?

A lemma in Bickle & Lindner 2012.

Localized covariance+mild condition ⇒ local precision.

Localized precision+mild condition ⇒ local covariance.

We will see ”local” is a perturbation of ”localized”

For computation of Gibbs sampler, localized precision is superior:

xk+1
j ∼ N


mj −

∑

i<j

Ω−1
j,jΩj,i(x

k+1
i −mi)−

∑

i>j

Ω−1
j,jΩj,i(x

k
i −mi),Ω

−1
j,j


 .

When Ω is sparse, meaning fast computation.
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Generalization

Gibbs works for Gaussian sampling, with localized covariance or
precision.

How about Bayesian inverse problem?

y = h(x) + v, v ∼ N (0, R),x ∼ p0 = N (m,C).

If h is linear, p is also Gaussian, Gibbs is directly applicable.

What to do when C e.t.c. are not localized but local?
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Metropolis within Gibbs

Add in Metropolis steps to incorporate information

Generate x′1 ∼ p0(x1|xi2,xi3 · · · ,xim)
Accept as xi+1

1 with α1(xi1,x
′
1,x

i
2:m)

α1(xi1,x
′
1,x

i
2:m) = min

{
1,

exp(− 1
2
‖y − h(x′)‖2R)

exp(− 1
2
‖y − h(xi)‖2R)

}
,

where x′ = (x′1,x
i
2:m).

Repeat for all 2, ...,m blocks

When h has a dimension free Lipschitz constant,
‖y − h(x′)‖2R − ‖y − h(xi)‖2R is independent of d.

Dimension independent acceptance rate.

Should have fast convergence, though proof is unclear.
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Localization

Often Ω and h are local

[Ω]i,j decays to zero quickly when |i− j| increases.

[h(x)]j depends significantly only over a few xi.

Fast sparse computation is possible with localized parameters

[Ω]i,j decays to zero quickly when |i− j| increases.

[h(x)]j depends significantly only over a few xi.

Localization: truncate the near zero terms, Ω→ ΩL, h→ hL.
We call MwG with localization as l-MwG.

Theorem (Morzfeld, T., Marzouk 2018)

The perturbation to the inverse problem is of order

max

{
‖Ω− ΩL‖1,

√
‖(H −HL)(H −HL)T ‖1

}
.

‖A‖1 = max1≤j≤d
∑d
i=1 |Ai,j |.
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Comparison with function space MCMC

Function space MCMC:

Discretization refines, domain
const.

Number of obs. const.

Effective dimension const.

Low-rank priors.

Low-rank prior to posterior
update.

Solved by dimension reduction.

MCMC for local problems:

Domain size increases,
discretization is const.

Number of obs. increases.

Effective dimension increases.

High-rank, sparse priors.

High-rank prior to posterior
update.

Solved by localization.
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Example I: image deblurring

Truth x ∼ N (0, δ−1L−2), L is Laplacian.

Defocus obs: y = Ax + η, η ∼ N (0, λ−1I).

Dimension is large O(104).
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Example I: image deblurring

Precision is sparse. Effective dimension is large.

X.Tong Localization 42 / 45



Example II: Lorenz 96 inverse

Truth x0 ∼ p0, p0 is Gaussian Climatology.
Ψt : x0 7→ xt : dxi = (xi+1 − xi−2)xi−1 − xi + 8
Observe every other xt, y = H(Ψt(x0)) + ξ.
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Summary

Most MCMC suffers from high dimensionality due to degenerate
acceptance.

Localization technique in EnKF significantly reduces sampling
complexity.

Gibbs sampler has dimension free convergence sampling local
Gaussian dist.

Local proposals help MCMC has dimension free acceptance.

Different setting comparing with functional space MCMC.

Successful applications with image deblurring and Lorenz inverse
problem.
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Reference

Localization for MCMC: sampling high-dimensional posterior
distributions with local structure. arXiv:1710.07747

Performance analysis of local ensemble Kalman filter. to appear
on J. Nonlinear Science.

Links and slides can be found at www.math.nus.edu.sg/∼mattxin.

Thank you!
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