Localization for high dimensional data assimilation and MCMC

Xin T Tong

National University of Singapore Joint work with Matthias Morzfeld and Youssef Marzouk

Potsdam 20/07/2018

- Ensemble Kalman filter (EnKF)
- High dimensional challenges for EnKF.
- Sparse/Localized scenario:
 - EnKF with domain localization,
 - with a stable localized structure
 - \blacksquare reaches its proclaimed performance,
 - if the ensemble size $K > C_L \log d$ for a constant C_L .
- Localization for inverse problems.
- Gibbs sampler on Gaussian distributions.
- l-MwG for inverse problems.

Signal-observation system

Signal:
$$X_{n+1} = A_n X_n + B_n + \xi_{n+1}, \quad \xi_{n+1} \sim \mathcal{N}(0, \Sigma_n)$$

Observation: $Y_{n+1} = H X_{n+1} + \zeta_{n+1}, \quad \zeta_{n+1} \sim \mathcal{N}(0, \sigma_o^2 I_q)$

Goal: estimate X_n based on Y_1, \ldots, Y_n

Weather forecast

- Signal: $X_{n+1} = A_n X_n + B_n + \xi_{n+1}$, Observation: $Y_{n+1} = H X_{n+1} + \zeta_{n+1}$.
- Weather forecast:
 Signal: atmosphere and ocean, "follows" a PDE.
 Obs: weather station, satellite, sensors.....

• Main challenge: high dimension, $d \sim 10^6 - 10^8$.

Kalman filter

- Use Gaussian: $X_n|_{Y_{1...n}} \sim \mathcal{N}(m_n, R_n)$
- Forecast step: $\hat{m}_{n+1} = A_n m_n + B_n, \hat{R}_{n+1} = A_n R_n A_n^T + \Sigma_n.$
- Assimilation step: apply the Kalman update rule

$$m_{n+1} = \hat{m}_{n+1} + \mathcal{G}(\widehat{R}_{n+1})(Y_{n+1} - H\hat{m}_{n+1}), \quad R_{n+1} = \mathcal{K}(\widehat{R}_{n+1})$$
$$\mathcal{G}(C) = CH^T (\sigma_o^2 I_q + HCH^T)^{-1}, \quad \mathcal{K}(C) = C - \mathcal{G}(C)HC$$
Complexity: $O(d^3).$

■ Monte Carlo: use samples to represent a distribution:

$$X^{(1)}, \dots, X^{(K)} \sim p, \quad \frac{1}{K} \sum_{k=1}^{K} \delta_{X^{(k)}} \approx p.$$

• Ensemble $\{X_n^{(k)}\}_{k=1}^K$ to represent $\mathcal{N}(\overline{X}_n, C_n)$

$$\overline{X}_n = \frac{\sum X_n^{(k)}}{K}, \quad C_n = \frac{1}{K-1} \sum_k (X_n^{(k)} - \overline{X}_n) \otimes (X_n^{(k)} - \overline{X}_n).$$

Ensemble Kalman filter

Forecast step

$$\widehat{X}_{n+1}^{(k)} = A_n X_n^{(k)} + B_n + \xi_{n+1}^{(k)}, \quad \widehat{C}_{n+1} = \frac{\widehat{S}_{n+1} \widehat{S}_{n+1}^T}{K - 1}.$$

Assimilation step

$$\begin{aligned} X_{n+1}^{(k)} &= \widehat{X}_{n+1}^{(k)} + \mathcal{G}(\widehat{C}_{n+1})(Y_{n+1} - H\widehat{X}_{n+1}^{(k)} + \zeta_{n+1}^{(k)}).\\ \text{Gain matrix: } \mathcal{G}(C) &= CH^T (\sigma_o^2 I_q + HCH^T)^{-1}.\\ \text{Complexity } O(K^2 d). \end{aligned}$$

NUS National University of Singapore

Application:

- Successful weather forecast and oil reservoir management.
- Recently been applied to deep neural networks.
- K = 50 ensembles can forecast $d = 10^6$ dimensional systems.
- Extreme savings: $10^{10} = dK^2 \ll d^3 = 10^{18}$.

Theoretical Literature

- Focused on showing ensemble version $(\overline{X}_n, C_n) \to (m_n, R_n)$
- Require $K \to \infty$ (Mandel, Cobb, Beezley 11)
- Fixed d sufficiently large K, |A| < 1 (Del Moral, Tugaut 16)
- Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
- Fixed K, well definedness $\mathbb{E}|X_n^{(k)}|^2 < \infty$ (Law, Kelly, Stuart, 14)
- \blacksquare Fixed K, boundedness $\sup_n \mathbb{E} |X_n^{(k)}|^2 < \infty$ (Tong, Majda, Kelly 15)
- Continuous version (de Wilijes, Reich, Stannat 17)

Gap: dependence or independence of K on d.

8 / 45

NUS National University of Singapore

Application:

- Successful weather forecast and oil reservoir management.
- Recently been applied to deep neural networks.
- K = 50 ensembles can forecast $d = 10^6$ dimensional systems.
- Extreme savings: $10^{10} = dK^2 \ll d^3 = 10^{18}$.

Theoretical Literature

- Focused on showing ensemble version $(\overline{X}_n, C_n) \to (m_n, R_n)$
- Require $K \to \infty$ (Mandel, Cobb, Beezley 11)
- \blacksquare Fixed d sufficiently large $K,\,|A|<1$ (Del Moral, Tugaut 16)
- Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
- Fixed K, well definedness $\mathbb{E}|X_n^{(k)}|^2 < \infty$ (Law, Kelly, Stuart, 14)
- Fixed K, boundedness $\sup_n \mathbb{E} |X_n^{(k)}|^2 < \infty$ (Tong, Majda, Kelly 15)
- Continuous version (de Wilijes, Reich, Stannat 17)

Gap: dependence or independence of K on d.

8 / 45

NUS National University of Singapore

Application:

- Successful weather forecast and oil reservoir management.
- Recently been applied to deep neural networks.
- K = 50 ensembles can forecast $d = 10^6$ dimensional systems.
- Extreme savings: $10^{10} = dK^2 \ll d^3 = 10^{18}$.

Theoretical Literature

- Focused on showing ensemble version $(\overline{X}_n, C_n) \to (m_n, R_n)$
- Require $K \to \infty$ (Mandel, Cobb, Beezley 11)
- \blacksquare Fixed d sufficiently large $K,\,|A|<1$ (Del Moral, Tugaut 16)
- Perturbation interpretation (Bishop, Del Moral, Pathiraja 17)
- \blacksquare Fixed K, well definedness $\mathbb{E}|X_n^{(k)}|^2 < \infty$ (Law, Kelly, Stuart, 14)
- \blacksquare Fixed K, boundedness $\sup_n \mathbb{E} |X_n^{(k)}|^2 < \infty$ (Tong, Majda, Kelly 15)
- Continuous version (de Wilijes, Reich, Stannat 17)

Gap: dependence or independence of K on d.

Ensemble size K to represent uncertainty of dimension d:

• Spurious correlation in high dimension. Suppose $X_n^{(k)} \sim \mathcal{N}(0, I_d)$ i.i.d, by Bai-Yin's law

 $||C_n - I_d|| \approx \sqrt{d/K}$ with large probability

• Rank deficiency:
$$C_n = \frac{\sum_{k=1}^{K} (X_n^{(k)} - \overline{X}_n) (X_n^{(k)} - \overline{X}_n)^T}{K-1}$$

Has rank $(C_n) \leq K - 1$, see as $\begin{bmatrix} C_n & 0 \\ 0 & 0 \end{bmatrix}$ } K-1
J d-K+1

We need conditions! Answers from practitioners

- Low effective dimension.
- Localized covariance structure.

As comparison: for high dimensional numerical problems,

- Low rank structure
- Sparse structure

can be exploited for efficient computation.

Local interaction

- High dimension often comes from dense grids.
- Interaction often is local: PDE discritization:

$$\partial_x x(t) \Rightarrow \frac{1}{2h} (x_{i+1}(t) - x_{i-1}(t)).$$

■ Example: Lorenz 96 model

$$\dot{x}_i(t) = (x_{i+1} - x_{i-2})x_{i-1} - x_i dt + F, \quad i = 1, \cdots, d$$

■ Information travels along interaction, and is dissipated.

Sparsity: local covariance

- Correlation depends on information propagation.
- Correlation decays quickly with the distance.
- Covariance is localized with a structure Φ , e.g. $\Phi(x) = \rho^x$

$$[\widehat{C}_n]_{i,j} \propto \Phi(|i-j|)$$

 $\Phi(x) \in [0,1]$ is decreasing. Distance can be general.

Correlation of Lorenz 96

X.Tong

Localization

- Spurious correlation may exist for far away terms.
- Localization: simply ignore far away correlations.
- Implementation: Schur product with a mask

$$[\widehat{C}_n \circ \mathbf{D}_L]_{i,j} = [\widehat{C}_n]_{i,j} \cdot [\mathbf{D}_L]_{i,j}$$

Use $\widehat{C}_n \circ \mathbf{D}_L$ to describe uncertainty

- $[\mathbf{D}_L]_{i,j} = \phi(|i-j|)$, with a radius L. Gaspari-Cohn matrix: $\phi(x) = \exp(-4x^2/L^2)\mathbf{1}_{|i-j| \le L}$. Cutoff/Branding matrix: $\phi(x) = \mathbf{1}_{|i-j| \le L}$.
- Also resolves rank deficiency, e.g.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.2 \\ 0 & 0.2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.2 \\ 0 & 0.2 & 1 \end{bmatrix}.$$

Two types LEnKF: Domain localization and covariance tempering.

Domain localization with radius l: Assume H is a partial observation matrix Use information in $\mathcal{I}_i = \{j : |i - j| \leq l\}$ to update component i

Intuitively, ignoring the long distance covariance terms, reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

If $X^{(1)}, \ldots, X^{(K)} \sim \mathcal{N}(0, \Sigma)$, denote $C = \frac{1}{K} \sum_{k=1}^{K} X^{(k)} \otimes X^{(k)}$. $\|\mathbf{D}_L\|_1 = \max_i \sum_j |\mathbf{D}_L|_{i,j}$. There is a constant c, and for any t > 0

 $\mathbb{P}(\|C \circ \mathbf{D}_L - \Sigma \circ \mathbf{D}_L\| > \|\mathbf{D}_L\|_1 t) \le 8 \exp(2\log d - cK\min\{t, t^2\})$

This indicates that $K \propto \|\mathbf{D}_L\|_1^2 \log d$ is the necessary sample size.

 $\|\mathbf{D}_L\|$ is independent of d, e.g, the cut-off/branding matrix, $[\mathbf{D}_{cut}^L]_{i,j} = \mathbf{1}_{|i-j| \leq L}, \|\mathbf{D}_{cut}^L\|_1 \approx 2L.$

15 / 45

Intuitively, ignoring the long distance covariance terms, reduces the sampling difficulty, and necessary sampling size.

Theorem (Bickel, Levina 08)

If $X^{(1)}, \ldots, X^{(K)} \sim \mathcal{N}(0, \Sigma)$, denote $C = \frac{1}{K} \sum_{k=1}^{K} X^{(k)} \otimes X^{(k)}$. $\|\mathbf{D}_L\|_1 = \max_i \sum_j |\mathbf{D}_L|_{i,j}$. There is a constant c, and for any t > 0

 $\mathbb{P}(\|C \circ \mathbf{D}_L - \Sigma \circ \mathbf{D}_L\| > \|\mathbf{D}_L\|_1 t) \le 8 \exp(2\log d - cK\min\{t, t^2\})$

This indicates that $K \propto \|\mathbf{D}_L\|_1^2 \log d$ is the necessary sample size.

 $\|\mathbf{D}_L\|$ is independent of d, e.g, the cut-off/branding matrix, $[\mathbf{D}_{cut}^L]_{i,j} = \mathbf{1}_{|i-j| \leq L}, \|\mathbf{D}_{cut}^L\|_1 \approx 2L.$

Theorem (T. 18)

Suppose the system coefficients have bandwidth l, and the LEnKF ensemble covariance admits a stable localized structure, then for any $\delta > 0$, LEnKf reaches its proclaimed performance with high probability $1 - O(\delta)$:

$$1 - \frac{1}{T} \sum_{t=1}^{T} \mathbb{P}(\mathbb{E}_S \hat{e}_n \otimes \hat{e}_n \preceq (1+\delta)(\widehat{C}_n \circ \mathbf{D}_{cut}^{4l} + \rho I_d)) \leq \frac{1}{T} D_0 + D_1 \delta,$$

if the sample size $K > D_{l,\delta} \log d$.

 \mathbb{E}_S conditioned on the information of the sampling noise realization.

Theorem (T. 18)

Suppose the system coefficients have bandwidth l, and the LEnKF ensemble covariance admits a stable localized structure, then for any $\delta > 0$, LEnKf reaches its proclaimed performance with high probability $1 - O(\delta)$:

$$1 - \frac{1}{T} \sum_{t=1}^{T} \mathbb{P}(\mathbb{E}_{S} \hat{e}_{n} \otimes \hat{e}_{n} \preceq (1+\delta) (\widehat{C}_{n} \circ \mathbf{D}_{cut}^{4l} + \rho I_{d})) \leq \frac{1}{T} D_{0} + D_{1} \delta,$$

if the sample size $K > D_{l,\delta} \log d$.

 \mathbb{E}_S conditioned on the information of the sampling noise realization.

Proclaimed/estimated performance

- EnKF estimates X_n by $\overline{X}_n = \frac{1}{K} \sum X_n^{(k)}$.
- Error $e_n = \overline{X}_n X_n$. Covariance : $\mathbb{E}e_n e_n^T = \mathbb{E}e_n \otimes e_n$.
- EnKF estimates its performance by ensemble covariance C_n^{ρ} .

• Can it captures the error covariance?

$$\mathbb{E}C_n^{\rho} \succeq \mathbb{E}e_n \otimes e_n$$

$$1 - \frac{1}{T} \sum_{t=1}^{T} \mathbb{P}(\mathbb{E}_{S} \hat{e}_{n} \otimes \hat{e}_{n} \leq (1+\delta) (\widehat{C}_{n} \circ \mathbf{D}_{cut}^{4l} + \rho I_{d})) \leq \frac{1}{T} D_{0} + D_{1} \delta,$$

Proclaimed/estimated performance

- EnKF estimates X_n by $\overline{X}_n = \frac{1}{K} \sum X_n^{(k)}$.
- Error $e_n = \overline{X}_n X_n$. Covariance : $\mathbb{E}e_n e_n^T = \mathbb{E}e_n \otimes e_n$.
- EnKF estimates its performance by ensemble covariance C_n^{ρ} .
- Can it captures the error covariance?

$$\mathbb{E}C_n^{\rho} \succeq \mathbb{E}e_n \otimes e_n$$

$$1 - \frac{1}{T} \sum_{t=1}^{T} \mathbb{P}(\mathbb{E}_{S} \hat{e}_{n} \otimes \hat{e}_{n} \preceq (1+\delta) (\widehat{C}_{n} \circ \mathbf{D}_{cut}^{4l} + \rho I_{d})) \leq \frac{1}{T} D_{0} + D_{1} \delta,$$

17 / 45

- Intuitively, we need some conditions on the covariance structure.
- Stable localized structure: with local structure function Φ , e.g. $\Phi(x) = \lambda^x$,

$$[\widehat{C}_n]_{i,j} \le M_n \Phi(|i-j|), \quad \sum_{n=1}^T \mathbb{E}M_n \le TM_*.$$

M_n describes how localized the sample covariance matrix is.Why is this necessary?

LEnKF inconsistency

An intrinsic bias/inconsistency in LEnKF.

- Localization creates a bias.
- Target covariance by Bayes formula

$$(I - \mathcal{G}^L(\widehat{C}_n)H)[\widehat{C}_n \circ \mathbf{D}_L](I - \mathcal{G}^L(\widehat{C}_n)H)^T + \sigma_o^2 \mathcal{G}^L(\mathcal{G}^L)^T.$$

■ LEnKF implementation

$$X_n^{(k)} = \widehat{X}_n^{(k)} + \mathcal{G}^L(\widehat{C}_n)(Y_n - H\widehat{X}_n^{(k)} + \zeta_n^{(k)})$$

■ Average ensemble covariance

$$C_n \circ \mathbf{D}_L = [(I - \mathcal{G}^L(\widehat{C}_n)H)\widehat{C}_n(I - \mathcal{G}^L(\widehat{C}_n)H)^T + \sigma_o^2 \mathcal{G}^L(\mathcal{G}^L)^T] \circ \mathbf{D}_L.$$

- Difference: commuting the localization and Kalman update.
- Previously investigated numerically by Nerger 2015, the inconsistency can lead to error growth.

- localization is applied, covariance is assumed localized.
- Given localized structure Φ , find M_n so that

$$[\widehat{C}_n]_{i,j} \le M_n \Phi(|i-j|).$$

• Interestingly, when \mathbf{D}_L is \mathbf{D}_{4l}^{cut} , the

Localization inconsistency $\leq CM_n \Phi(2l)$.

If 2l is large, $\Phi(x) = \lambda^x$, this difference can be controlled.

- Localized covariance leads to small localization inconsistency.
- Therefore, we need M_n to be a stable sequence,

$$\sum_{n=1}^{T} \mathbb{E}M_n \le TM_*.$$

- localization is applied, covariance is assumed localized.
- Given localized structure Φ , find M_n so that

$$[\widehat{C}_n]_{i,j} \le M_n \Phi(|i-j|).$$

• Interestingly, when \mathbf{D}_L is \mathbf{D}_{4l}^{cut} , the

Localization inconsistency $\leq CM_n \Phi(2l)$.

If 2*l* is large, $\Phi(x) = \lambda^x$, this difference can be controlled.

- Localized covariance leads to small localization inconsistency.
- Therefore, we need M_n to be a stable sequence,

$$\sum_{n=1}^{T} \mathbb{E}M_n \le TM_*.$$

20 / 45

Practical perspective

- Simply assumed.
- Numerically checked.

Theoretical perspective: does covariance localize for any stochastic system?

- Linear system: covariance can be computed.
- Nonlinear: difficult, e.g. Lorenz 96.
- LEnKF: difficult since assimilation is nonlinear.
- Under strong conditions:
 - Weak local interaction, strong dissipation.
 - Sparse observation for simplicity.
- Also scales with the noise strength.

Practical perspective

- Simply assumed.
- Numerically checked.

Theoretical perspective: does covariance localize for any stochastic system?

- Linear system: covariance can be computed.
- Nonlinear: difficult, e.g. Lorenz 96.
- LEnKF: difficult since assimilation is nonlinear.
- Under strong conditions:
 - Weak local interaction, strong dissipation.
 - Sparse observation for simplicity.
- Also scales with the noise strength.

21 / 45

Theorem

Suppose the following, then a stable localized structure with $\Phi(x) = \lambda_A^x$

- 1) The system noise is diagonal and the observations are sparse $\Sigma_n = \sigma_{\varepsilon}^2 I_d, \quad \mathbf{d}(o_i, o_j) > 2l, \quad \forall i \neq j.$
- 2) There is a $\lambda_A < r^{-1}$, $\max_i \left\{ \sum_{k=1}^d |[A_n]_{i,k}| \lambda_A^{-\mathbf{d}(i,k)} \right\} \leq \lambda_A$.
- 3) There are constants such that $\psi_{\lambda_A}(M_*, \delta_*) \leq M_*$

$$0 < \delta_* < \min\{0.25, \frac{1}{2}(\lambda_A^{-1} - r)\}, \quad M_* \ge \frac{(r + 2\delta_*)\sigma_{\xi}^2}{1 - \lambda_A}$$

 $\psi_{\lambda_A}(M,\delta) = (r+\delta) \max\left\{\lambda_A M \left(1 + \sigma_o^{-2} M\right)^2 + \lambda_A \sigma_o^{-2} M^2, \lambda_A^2 M + \sigma_\xi^2\right\}.$

4) Denote $n_* = 2L + \lceil \frac{\log 4\delta_*^{-1}}{\log \lambda^{-1}} \rceil$. The sample size K exceeds

$$K > \max\left\{-\frac{1}{c\delta_*^2\lambda_A^{2L}}\log(16d^2n_*\delta_*^{-2}), \Gamma(2r\delta_*^{-1}, d)\right\}.$$

A stochastically forced dissipative advection equation:

$$\frac{\partial u(x,t)}{\partial t} = c \frac{\partial u(x,t)}{\partial x} - \nu u(x,t) + \mu \frac{\partial^2 u(x,t)}{\partial x^2} + \sigma_x \dot{W}(x,t).$$

Discretization

$$X_{n+1,i} = a_{-}X_{n,i-1} + a_{0}X_{n,i} + a_{+}X_{n,i+1} + \sigma_{x}\sqrt{\Delta t}W_{n+1,i}, \quad i = 1, \dots, d;$$
$$a_{-} = \frac{\mu\Delta t}{h^{2}} - \frac{c\Delta t}{2h}, \quad a_{0} = 1 - \frac{2\mu\Delta t}{h^{2}} - \nu\Delta t, \quad a_{+} = \frac{\mu\Delta t}{h^{2}} + \frac{c\Delta t}{2h}.$$

Observe $Y_{n,k} = X_{n,p(k-1)+1} + \sigma_o B_{n,k}$.

Strong damping+weak advection

h = 1, $\Delta t = 0.1$, p = 5, $\nu = 5$, c = 0.1, $\mu = 0.1$, $\sigma_x = \sigma_o = 1$.

Direct verification of the conditions is possible.

Strong advection regime

Weak damping+strong advection

 $h = 0.2, \quad \Delta t = 0.1, \quad p = 5, \quad \nu = 0.1, \quad c = 2, \quad \mu = 0.1, \quad \sigma_x = \sigma_o = 1.$

Direct verification of the conditions is **not** possible.

- Localization has made EnKF very effective for high dimensional DA problems.
- Various generalization to particle filters.
- Often relies on Gaspari Cohn matrices.
- Makes non-Gaussian application difficult.
- Non-ad hoc ways generalize localization to PF?
- Can we apply localization to other UQ problem?

• Suppose
$$\mathbf{x} \sim p_0 = \mathcal{N}(\mathbf{m}, \mathbf{C})$$
, we observe

$$\mathbf{y} = h(\mathbf{x}) + \mathbf{v}, \quad \mathbf{v} \sim \mathcal{N}(0, R).$$

Try to recover the value and uncertainty of \mathbf{x} .

- Possible applications:
 - **x** is the real image, h defocus map.
 - **• x** initial condition, h forward map of a PDE.
 - \blacksquare x model parameters, h gives model outcome.

Often \mathbf{x} is high dimension.

Bayesian approach: try to sample the posterior

```
p(\mathbf{x}|\mathbf{y}) \propto p_0(\mathbf{x})p_l(\mathbf{y}|\mathbf{x}).
```

 $p_l(\mathbf{y}|\mathbf{x}) = \mathcal{N}(h(\mathbf{x}), R).$

• Suppose
$$\mathbf{x} \sim p_0 = \mathcal{N}(\mathbf{m}, \mathbf{C})$$
, we observe

$$\mathbf{y} = h(\mathbf{x}) + \mathbf{v}, \quad \mathbf{v} \sim \mathcal{N}(0, R).$$

Try to recover the value and uncertainty of \mathbf{x} .

- Possible applications:
 - **• x** is the real image, h defocus map.
 - **x** initial condition, h forward map of a PDE.
 - \blacksquare **x** model parameters, h gives model outcome.

Often \mathbf{x} is high dimension.

Bayesian approach: try to sample the posterior

 $p(\mathbf{x}|\mathbf{y}) \propto p_0(\mathbf{x})p_l(\mathbf{y}|\mathbf{x}).$

 $p_l(\mathbf{y}|\mathbf{x}) = \mathcal{N}(h(\mathbf{x}), R).$

• Suppose
$$\mathbf{x} \sim p_0 = \mathcal{N}(\mathbf{m}, \mathbf{C})$$
, we observe

$$\mathbf{y} = h(\mathbf{x}) + \mathbf{v}, \quad \mathbf{v} \sim \mathcal{N}(0, R).$$

Try to recover the value and uncertainty of \mathbf{x} .

- Possible applications:
 - \mathbf{x} is the real image, h defocus map.
 - **x** initial condition, h forward map of a PDE.
 - \blacksquare **x** model parameters, h gives model outcome.

Often \mathbf{x} is high dimension.

Bayesian approach: try to sample the posterior

```
p(\mathbf{x}|\mathbf{y}) \propto p_0(\mathbf{x}) p_l(\mathbf{y}|\mathbf{x}).
```

 $p_l(\mathbf{y}|\mathbf{x}) = \mathcal{N}(h(\mathbf{x}), R).$

• Given a target distribution $p(\mathbf{x})$, generate a sequence of samples

$$\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(N)}$$

Use sample statistics to approximate population ones.

- Standard MCMC steps
 - Generate proposals $\mathbf{x}' \sim q(\mathbf{x}^{(k)}, \mathbf{x}')$
 - Accept with prob. $\alpha(\mathbf{x}, \mathbf{x}') = \min\{1, p(\mathbf{x}')q(\mathbf{x}', \mathbf{x}^{(k)})/q(\mathbf{x}^{(k)}, \mathbf{x}')p(\mathbf{x})\}$

• Popular choices of proposals $\xi_k \sim \mathcal{N}(0, I_d)$.

• RWM:
$$\mathbf{x}' = \mathbf{x}_k + \sigma \xi_k$$

• MALA:
$$\mathbf{x}' = \mathbf{x}_k + \frac{\sigma^2}{2} \nabla \log p(\mathbf{x}_k) + \sigma \xi_k.$$

• pCN:
$$\Delta \mathbf{x}'_{k+1} = \sqrt{1 - \beta^2} \Delta \mathbf{x}_k + \beta \xi_k.$$

Also emcee and Hamiltonian MCMC. σ, β are tuning parameters.

Sample isotropic Gaussian $p = \mathcal{N}(0, I_d)$. Measurement of efficiency: integrated auto-correlation time (IACT) Measure how many iterations to get an "uncorrelated" sample.

increases with dimension

- Let's look at RWM, assume $\mathbf{x}_k = \mathbf{0}$.
 - Propose $\mathbf{x}' = \sigma \xi_k$
 - Accept with probability $\exp(-\frac{1}{2}\sigma^2 ||\xi_k||^2) \sim \exp(-\frac{1}{2}\sigma^2 d)$.

If we keep $\sigma = 1$, "never" accept if d > 20.

- If we want acceptance at a constant rate, $\sigma = d^{-\frac{1}{2}}$. But then $\mathbf{x}' = \mathbf{x}_k + \sigma \xi_k$ is highly correlated with \mathbf{x}_k .
- Similar for MALA, $\sigma = d^{-1/3}$. Hamiltonian MCMC, $\sigma = d^{-1/4}$.
- Is it possible to break this curse of dimensionality?
- Is high dimensionality an issue in other related fields?

- Let's look at RWM, assume $\mathbf{x}_k = \mathbf{0}$.
 - Propose $\mathbf{x}' = \sigma \xi_k$
 - Accept with probability $\exp(-\frac{1}{2}\sigma^2 ||\xi_k||^2) \sim \exp(-\frac{1}{2}\sigma^2 d)$.
- If we keep $\sigma = 1$, "never" accept if d > 20.
- If we want acceptance at a constant rate, $\sigma = d^{-\frac{1}{2}}$. But then $\mathbf{x}' = \mathbf{x}_k + \sigma \xi_k$ is highly correlated with \mathbf{x}_k .
- Similar for MALA, $\sigma = d^{-1/3}$. Hamiltonian MCMC, $\sigma = d^{-1/4}$.
- Is it possible to break this curse of dimensionality?
- Is high dimensionality an issue in other related fields?

- Let's look at RWM, assume $\mathbf{x}_k = \mathbf{0}$.
 - Propose $\mathbf{x}' = \sigma \xi_k$
 - Accept with probability $\exp(-\frac{1}{2}\sigma^2 ||\xi_k||^2) \sim \exp(-\frac{1}{2}\sigma^2 d)$.
- If we keep $\sigma = 1$, "never" accept if d > 20.
- If we want acceptance at a constant rate, $\sigma = d^{-\frac{1}{2}}$. But then $\mathbf{x}' = \mathbf{x}_k + \sigma \xi_k$ is highly correlated with \mathbf{x}_k .
- Similar for MALA, $\sigma = d^{-1/3}$. Hamiltonian MCMC, $\sigma = d^{-1/4}$.
- Is it possible to break this curse of dimensionality?
- Is high dimensionality an issue in other related fields?

• Localization for EnKF:

- Update only in small local blocks.
- Works when covariance have local structure.

How to apply localization to MCMC?

• How to update \mathbf{x}^i component by component?

Gibbs sampling implements this idea exactly!

• Write
$$\mathbf{x}^i = [\mathbf{x}_1^i, \mathbf{x}_2^i, \cdots, \mathbf{x}_m^i].$$

- \mathbf{x}_k^i can be of dimension q, then d = qm.
- Generate $\mathbf{x}_{1}^{i+1} \sim p(\mathbf{x}_{1} | \mathbf{x}_{2}^{i}, \mathbf{x}_{3}^{i} \cdots, \mathbf{x}_{m}^{i}).$
- Generate $\mathbf{x}_2^{i+1} \sim p(\mathbf{x}_2 | \mathbf{x}_1^{i+1}, \mathbf{x}_3^i \cdots, \mathbf{x}_m^i).$

Generate
$$\mathbf{x}_m^{i+1} \sim p(\mathbf{x}_m | \mathbf{x}_1^{i+1}, \mathbf{x}_2^{i+1} \cdots, \mathbf{x}_{m-1}^{i+1}).$$

• Localization for EnKF:

- Update only in small local blocks.
- Works when covariance have local structure.

How to apply localization to MCMC?

• How to update \mathbf{x}^i component by component?

Gibbs sampling implements this idea exactly!

- Write $\mathbf{x}^i = [\mathbf{x}_1^i, \mathbf{x}_2^i, \cdots, \mathbf{x}_m^i].$
- \mathbf{x}_k^i can be of dimension q, then d = qm.
- Generate $\mathbf{x}_1^{i+1} \sim p(\mathbf{x}_1 | \mathbf{x}_2^i, \mathbf{x}_3^i \cdots, \mathbf{x}_m^i).$
- Generate $\mathbf{x}_2^{i+1} \sim p(\mathbf{x}_2 | \mathbf{x}_1^{i+1}, \mathbf{x}_3^i \cdots, \mathbf{x}_m^i).$
- • •

Generate
$$\mathbf{x}_m^{i+1} \sim p(\mathbf{x}_m | \mathbf{x}_1^{i+1}, \mathbf{x}_2^{i+1} \cdots, \mathbf{x}_{m-1}^{i+1}).$$

First just test with $p = \mathcal{N}(0, I_n)$

- Generate $\mathbf{x}_1^{i+1} \sim p(\mathbf{x}_1 | \mathbf{x}_2^i, \mathbf{x}_3^i \cdots, \mathbf{x}_m^i) = \mathcal{N}(0, I_q).$
- Generate $\mathbf{x}_2^{i+1} \sim p(\mathbf{x}_2 | \mathbf{x}_1^{i+1}, \mathbf{x}_3^i \cdots, \mathbf{x}_m^i) = \mathcal{N}(0, I_q).$
- ••••

Generate
$$\mathbf{x}_m^{i+1} \sim p(\mathbf{x}_m | \mathbf{x}_1^{i+1}, \mathbf{x}_2^{i+1} \cdots, \mathbf{x}_{m-1}^{i+1}) = \mathcal{N}(0, I_q).$$

Gibbs naturally exploits the component independence. It works efficiently against the dimension. How about component with sparse/local independence?

First just test with $p = \mathcal{N}(0, I_n)$

- Generate $\mathbf{x}_1^{i+1} \sim p(\mathbf{x}_1 | \mathbf{x}_2^i, \mathbf{x}_3^i \cdots, \mathbf{x}_m^i) = \mathcal{N}(0, I_q).$
- Generate $\mathbf{x}_2^{i+1} \sim p(\mathbf{x}_2 | \mathbf{x}_1^{i+1}, \mathbf{x}_3^i \cdots, \mathbf{x}_m^i) = \mathcal{N}(0, I_q).$
- • •

• Generate $\mathbf{x}_m^{i+1} \sim p(\mathbf{x}_m | \mathbf{x}_1^{i+1}, \mathbf{x}_2^{i+1} \cdots, \mathbf{x}_{m-1}^{i+1}) = \mathcal{N}(0, I_q).$

Gibbs naturally exploits the component independence. It works efficiently against the dimension.

How about component with sparse/local independence?

32 / 45

Block tridiagonal matrix

- Local covariance matrix C: $[\mathbf{C}]_{i,j}$ decays to zero quickly when |i - j| becomes large.
- Localized covariance matrix C:

 $[\mathbf{C}]_{i,j} = 0$ when |i - j| > L. **C** has a bandwidth 2L.

- We will see "local" is a perturbation of "localized"
- We can choose q = L in $\mathbf{x}^i = [\mathbf{x}_1^i, \mathbf{x}_2^i, \cdots, \mathbf{x}_m^i]$, Then **C** is block tridiagonal.

Theorem (Morzfeld, T., Marzouk)

Apply Gibbs sampler with block-size q to $p = \mathcal{N}(\mathbf{m}, \mathbf{C})$. Suppose \mathbf{C} is q-block-tridiagonal. Then the distribution of \mathbf{x}^k converges to p geometrically fast in all coordinates, and we can couple \mathbf{x}^k and a sample $\mathbf{z} \sim \mathcal{N}(\mathbf{m}, \mathbf{C})$ such that

$$\mathbb{E} \| \mathbf{C}^{-1/2} (\mathbf{x}^k - \mathbf{z}) \|^2 \le \beta^k d(1 + \| \mathbf{C}^{-1/2} (\mathbf{x}^0 - \mathbf{m}) \|^2),$$

where

$$\beta \leq \frac{2(1-\mathcal{C}^{-1})^2 \mathcal{C}^4}{1+2(1-\mathcal{C}^{-1})^2 \mathcal{C}^4},$$

with C being the condition number of C.

Localized covariance+mild condition \Rightarrow dimension free covergence.

45

Theorem (Morzfeld, T., Marzouk)

Apply Gibbs sampler with block-size q to $p = \mathcal{N}(\mathbf{m}, \mathbf{C})$. Suppose $\Sigma = \mathbf{C}^{-1}$ is q-block-tridiagonal. Then the distribution of \mathbf{x}^k converges to p geometrically fast in all coordinates, and we can couple \mathbf{x}^k and a sample $\mathbf{z} \sim \mathcal{N}(\mathbf{m}, \mathbf{C})$ such that

$$\mathbb{E} \| \mathbf{C}^{-1/2} (\mathbf{x}^k - \mathbf{z}) \|^2 \le \beta^k d(1 + \| \mathbf{C}^{-1/2} (\mathbf{x}^0 - \mathbf{m}) \|^2),$$

where

$$\beta \leq \frac{\mathcal{C}(1-\mathcal{C}^{-1})^2}{1+\mathcal{C}(1-\mathcal{C}^{-1})^2},$$

with C being the condition number of C.

Localized precision+mild condition \Rightarrow dimension free covergence.

Why both localized covariance and precision?

- A lemma in Bickle & Lindner 2012.
- Localized covariance+mild condition \Rightarrow local precision.
- Localized precision+mild condition \Rightarrow local covariance.
- We will see "local" is a perturbation of "localized"

For computation of Gibbs sampler, localized precision is superior:

$$\mathbf{x}_j^{k+1} \sim \mathcal{N}\left(\mathbf{m}_j - \sum_{i < j} \mathbf{\Omega}_{j,j}^{-1} \mathbf{\Omega}_{j,i} (\mathbf{x}_i^{k+1} - \mathbf{m}_i) - \sum_{i > j} \mathbf{\Omega}_{j,j}^{-1} \mathbf{\Omega}_{j,i} (\mathbf{x}_i^k - \mathbf{m}_i), \mathbf{\Omega}_{j,j}^{-1}
ight)$$

When Ω is sparse, meaning fast computation.

36 / 45

Why both localized covariance and precision?

- A lemma in Bickle & Lindner 2012.
- Localized covariance+mild condition \Rightarrow local precision.
- Localized precision+mild condition \Rightarrow local covariance.
- We will see "local" is a perturbation of "localized"

For computation of Gibbs sampler, localized precision is superior:

$$\mathbf{x}_{j}^{k+1} \sim \mathcal{N}\left(\mathbf{m}_{j} - \sum_{i < j} \mathbf{\Omega}_{j,j}^{-1} \mathbf{\Omega}_{j,i} (\mathbf{x}_{i}^{k+1} - \mathbf{m}_{i}) - \sum_{i > j} \mathbf{\Omega}_{j,j}^{-1} \mathbf{\Omega}_{j,i} (\mathbf{x}_{i}^{k} - \mathbf{m}_{i}), \mathbf{\Omega}_{j,j}^{-1}\right)$$

When Ω is sparse, meaning fast computation.

- Gibbs works for Gaussian sampling, with localized covariance or precision.
- How about Bayesian inverse problem?

$$\mathbf{y} = h(\mathbf{x}) + \mathbf{v}, \quad \mathbf{v} \sim \mathcal{N}(0, R), \mathbf{x} \sim p_0 = \mathcal{N}(\mathbf{m}, \mathbf{C}).$$

If h is linear, p is also Gaussian, Gibbs is directly applicable.
What to do when C e.t.c. are not localized but local?

- Add in Metropolis steps to incorporate information
 - Generate $\mathbf{x}'_1 \sim p_0(\mathbf{x}_1 | \mathbf{x}^i_2, \mathbf{x}^i_3 \cdots, \mathbf{x}^i_m)$ Accept as \mathbf{x}^{i+1}_1 with $\alpha_1(\mathbf{x}^i_1, \mathbf{x}'_1, \mathbf{x}^i_{2,m})$

$$\alpha_1(\mathbf{x}_1^i, \mathbf{x}_1^i, \mathbf{x}_{2:m}^i) = \min\left\{1, \frac{\exp(-\frac{1}{2}\|\mathbf{y} - h(\mathbf{x}^i)\|_R^2)}{\exp(-\frac{1}{2}\|\mathbf{y} - h(\mathbf{x}^i)\|_R^2)}\right\},\$$

where $\mathbf{x}' = (\mathbf{x}'_1, \mathbf{x}^i_{2:m}).$

- \blacksquare Repeat for all 2,...,m blocks
- When h has a dimension free Lipschitz constant, $\|\mathbf{y} - h(\mathbf{x}')\|_R^2 - \|\mathbf{y} - h(\mathbf{x}^i)\|_R^2$ is independent of d.
- Dimension independent acceptance rate.
- Should have fast convergence, though proof is unclear.

Often ${\boldsymbol \Omega}$ and h are local

- $[\mathbf{\Omega}]_{i,j}$ decays to zero quickly when |i-j| increases.
- $[h(\mathbf{x})]_j$ depends significantly only over a few \mathbf{x}_i .

Fast sparse computation is possible with $localized\ parameters$

- $[\mathbf{\Omega}]_{i,j}$ decays to zero quickly when |i-j| increases.
- $[h(\mathbf{x})]_j$ depends significantly only over a few \mathbf{x}_i .

Localization: truncate the near zero terms, $\Omega \to \Omega^L$, $h \to h^L$. We call MwG with localization as l-MwG.

Theorem (Morzfeld, T., Marzouk 2018)

The perturbation to the inverse problem is of order

$$\max\left\{\|\Omega - \Omega^L\|_1, \sqrt{\|(H - H^L)(H - H^L)^T\|_1}\right\}.$$

 $||A||_1 = \max_{1 \le j \le d} \sum_{i=1}^d |A_{i,j}|.$

Comparison with function space MCMC

Function space MCMC:

- Discretization refines, domain const.
- Number of obs. const.
- Effective dimension const.
- Low-rank priors.
- Low-rank prior to posterior update.

Solved by dimension reduction.

MCMC for local problems:

- Domain size increases, discretization is const.
- Number of obs. increases.
- Effective dimension increases.
- High-rank, sparse priors.
- High-rank prior to posterior update.

Solved by localization.

Example I: image deblurring

- Truth $\mathbf{x} \sim \mathcal{N}(0, \delta^{-1}L^{-2}), L$ is Laplacian.
- Defocus obs: $\mathbf{y} = A\mathbf{x} + \eta, \eta \sim \mathcal{N}(0, \lambda^{-1}\mathbf{I}).$
- Dimension is large $O(10^4)$.

Precision is sparse. Effective dimension is large.

Image size	32 x 32	64 x 64	128 x 128	256 x 256
Dimension	1,024	4,096	16,348	16,536
Eff. Dimension	$4.8 \cdot 10^{8}$	$7.4 \cdot 10^{9}$	$1.2 \cdot 10^{11}$	-
IACT (Gibbs)	2.92	2.97	1.74	1.11
Blocksize (Gibbs)	16	16	32	64

Example II: Lorenz 96 inverse

- Truth $\mathbf{x}_0 \sim p_0$, p_0 is Gaussian Climatology.
- $\Psi_t: \mathbf{x}_0 \mapsto \mathbf{x}_t: d\mathbf{x}_i = (\mathbf{x}_{i+1} \mathbf{x}_{i-2})\mathbf{x}_{i-1} \mathbf{x}_i + 8$
- Observe every other \mathbf{x}_t , $\mathbf{y} = H(\Psi_t(\mathbf{x}_0)) + \xi$.

- Most MCMC suffers from high dimensionality due to degenerate acceptance.
- Localization technique in EnKF significantly reduces sampling complexity.
- Gibbs sampler has dimension free convergence sampling local Gaussian dist.
- Local proposals help MCMC has dimension free acceptance.
- Different setting comparing with functional space MCMC.
- Successful applications with image deblurring and Lorenz inverse problem.

44 / 45

Reference

- Localization for MCMC: sampling high-dimensional posterior distributions with local structure. arXiv:1710.07747
- Performance analysis of local ensemble Kalman filter. to appear on J. Nonlinear Science.

Links and slides can be found at www.math.nus.edu.sg/~mattxin.

Thank you!

