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The stratosphere - troposphere coupling
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Figure: Schematic of dynamical mechanism adapted from Haynes (2005)
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Downward influence

How does stratosphere influence the tropospheric dynamics?
Theory still does not provide good understanding... however

Downward influence is hinted at by observations.

Might be missing key to explain some tropospheric seasonal patterns

Numerical simulations show improved seasonal forecast skills for
troposphere when better stratosphere implemented
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Coupling in the Southern Hemisphere (SH)

Vertical coupling in the SH is detectable by looking
at circulation variability.

(Variability = statistical behaviour of difference between weather and
climatology, i.e. expected average climate.)

Features of SH variability:

Maximises between October to December (beginning of austral summer)
Especially at high-latitudes [90 : 50]◦S
Large at both stratosphere and troposphere
Why relevant?
Prominent seasonal phenomena affected (Southern Annular Mode, El
Niño Southern Oscillation).
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Tropospheric variability

Variable : Eddy-driven Jet(Jet), west-to-east wind current confined at
mid/high latitude. This jet is generated by momentum convergence of small
scale turbulence.
Climatology: the Jet shifts its center of mass towards the equator
Variability: very variable timing of shift

Figure: Heigh integrate zonal-mean zonal wind 〈[u]〉(t, lat) in ms−1(grey) and its max
as a Jet proxy (white). Early and late timing for the shift. From Byrne (2017).
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In the mean time...Stratospheric variability
Variable : Polar Vortex (PoV), large-scale region of air contained by a strong
west-to-east jet stream circling the polar region. Exists only in winter.
Climatology: PoV experiences its springtime breakdown (loses strength
due to increased solar absorption).

Variability: Notably, its timing is highly variable too
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PoV associated with Jet shift

Studies on reanalysis data (Black 2007; Byrne 2017,2018) show
PoV breakdown strongly associated with Jet shift.
Qualitative analysis: composite and dripping paint plots (not shown);
quantitative: correlations (Figure).
Physical arguments (backed by some numerical experiments, Sun 2009)
suggest association is likely to be a downward influence.

Figure: Correlation between PoV breakdown dates and tropospheric DJF circulation
anomalies: significant at high latitudes. From Byrne et al.(2018)
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Lagged correlation to quantify predictability
Byrne et al. (2018) want to quantify potential predictability of troposphere
given the state of the stratosphere.
They perform a statistical analysis of observations(reanalysis) using lagged
correlations:

entry = ρ
(
Xm,Ym+lag

)

(a) ρ
(
PoVm, Jetm+lag

)
(b) ρ

(
Jetm, Jetm+lag

)
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Problematic aspects of the works presented so far:

qualitative analysis (Baldwin 2001; Black 2007; Byrne 2017) : only
show qualitative association between PoV and Jet. No influence, no
directionality.

use of lagged correlation to infer predictability / causation (Byrne
2018): is unfit for purpose as prone to biases!

Goal:

Use reanalysis data to infer direction, strength and time-scale of the coupling
dynamics using a quantitative and casual approach.
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Misuse of lagged cross-correlation

Figure: Gu et al. (2011)

In many meteorological studies,
max of the lagged cross correlation
used to detect time scale , direction and
strength of influence between pairs of
variables.
However...

Lagged cross correlation

Given a pair of jointly wide sense stationary processes (Xt,Yt) :

ρ (Xt,Yt+τ) �
Cov [Xt,Yt+τ]

σXσY
∀t

• Measure of linear relation⇒ Max of ρ = delayed signals best aligned
• Effective in context of signal processing (GPS, radar echolocation)
• No causation (depends on joint probability)
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Causal Discovery via Bayesian networks
Big data + computational power available + Earth’s climate is a high
dimensional complex systems ... perfect for

Causal discovery: given observations for N variables evolving in time
and interacting via some unknown relations, can we infer dependencies?

Cannot use lagged cross-correlation: many links would be spurious!
Use Information Theory measures on Bayesian Causal Networks
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Definition of Time-series Causal graph

Be a N-variate process X with set of components V.

X is associated to its time-series causal graph G = (V × Z,E)
where

node (v, t) :
each individual variable v ∈ V at a specific time t ∈ Z
link e ∈ E :
lag-specific causal link between variables Xt−τ and Yt if
and only if

τ > 0 and Xt−τ 6yYt |X−t \ {Xt−τ}

where 6y means not independent and X−t := (Xt−1,Xt−2, . . . )
is the past of the whole process.
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Figure: Representation of time-series causal graph, under the hypothesis of causal
stationarity.

In words, a link (→) exists if there is some information flowing from
Xt−τ to Yt that is not already contained in any of the nodes in the past
of the process.
If each link exist for all t i.e. causal graph is invariant under time
translation : causal stationarity.
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How to measure X ⊥ Y | Z?

Conditional Mutual Information (CMI)

I (X,Y | Z) �
∫ ∫ ∫

p(x, y, z) log
[

p(x,y|z)
p(x|z)p(y|z)

]
dxdydz

Good because X y Y | Z ⇐⇒ I (X,Y | Z) = 0

Therefore ILINK
X→Y (τ) � I

(
Xt−τ,Yt | X−t \ {Xt−τ}

)
measure for link existence

To remove spurious links it is sufficient to evaluate the Momentary
Information Transfer (MIT)(Runge et al. (2012))

IMIT
X→Y (τ) � I

(
Xt−τ,Yt | PYt \ {Xt−τ} ∪ PXt−τ

)
where parents of a variable are PYt � {Zt−τ : Z ∈ X , τ > 0 , Zt−τ → Yt}.

1. IMIT = 0⇐⇒ ILINK = 0
2. IMIT ≥ ILINK so MIT more detectable
3. Computing MIT doable for large networks, as dimensionality of conditions

is reduced
4. MIT is reliable estimate for link strength (see theorems on coupling-strength

autonomy )
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Causal Discovery algorithm, Runge et al.(2014,2018)

Idea of PCMCI: for each pair of lagged Xt and Yt−τ compute I(X,Y | Z).
Choose Z a low-dimensional set made of X and Y’s “potential parents” .

1. PC-step:

Start from a fully connected t.s. graph
for each variable {Xi}Ni=1 :

reduce full past process Zi → Zi∗ =potential parents
(via few low dimensional cond. independence tests)

2. MCI-step:

for each pair (Xi
t−τ,Xj

t) and τ = 0, 1, ..τmax :
compute I

(
Xi

t−τ,Xj
t | Zt

j∗ ∪ Zt−τ
i∗
)
→ (value, p-val)

if p-val < α:
assign link Xt−τ → Yt

Parameters:
implementation for CI test (linear, non-linear, nearest-neighbour)
significance level α, max lag τmax
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Interpretation and caveats

A link Xt−τ → Yt stands for conditional independence between Xt−τ and Yt

is unlikely within the dataset:

Not necessarily physical causation: no experiment available

Ok for hypothesis testing

Ok for identification of optimal predictors within dataset

Causal discovery is well posed only if :

Separation in the graph equivalent to independence in the process

All common drivers are included in data

And the PCMCI implementation is suitable if:

Causal stationarity, adequate choice of CI test, no measurement errors
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Vertical coupling in the SH: data

1. stratospheric polar vortex index:

PoV(day) = [u]
(
day, φ = −60o, press = 50hPa

)
(ms−1) (1)

2. tropospheric eddy-driven jet index:

Jet(day) =

−65o∑
φ=−50o

sin(φ) [u] (day, φ, press = 850hPa) (ms−1). (2)

where day ∈ [01/01/1979 : 31/12/2016] and
[u] is the daily measure of the zonal-mean ([]) zonal-wind (u) field.

ERA-Interim reanalysis data for u.
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Yearly time-series (grey) and climatologies (black):

Figure: Red: year 2002, outlier because is the only SH stratospheric sudden warming
on record.
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Causal analysis 1: month-to-month time selection

For X,Y ∈ {PoV , Jet} and m ∈ {A, S,O,N,D} , lag ∈ [+1 : +5] compare:

1 Correlation : ρ(Xm,Ym+lag)

2 Causation via ParCorr-MIT : ρ(Xm,Ym+lag |Z)

Z found with PCMCI algorithm
CI test chosen is Partial Correlation
ρ(X,Y | Z) � ρ(XZ ,YZ) where XZ ,YZ residual of linear
regression of X,Y onto Z.

Why ParCorr-MIT?
Being consistent with Corr⇒ test for linear dependency
⇒ I(X,Y | Z) = − 1

2 log
(
1 − ρ(X,Y | Z)2

)
.

Because linear CMI = 0⇔ ParCorr = 0, then ParCorr-MIT equivalent to MIT
to detect link.
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Correlation matrices

1 2 3 4 5
PoV in +lag (months)

A

S

O

N

D

Po
V 

in
 m

on
th

0.29 -0.14 0.01 0.07 0.09

0.23 0.32 0.34 0.15 -0.08

0.81 0.65 0.45 0.14 0.04

0.85 0.45 0.32 -0.05 -0.00

0.68 0.32 -0.06 0.11 0.10

(a) PoV

1 2 3 4 5
Jet in +lag (months)

A

S

O

N

D

Po
V 
in
 m

on
th

0.28 0.00 0.09 -0.21 0.05

0.25 0.14 -0.05 -0.01 -0.06

0.39 0.44 0.40 0.15 0.07

0.45 0.36 0.31 0.10 0.06

0.50 0.19 0.13 0.11 0.32

(b) PoV before Jet

1 2 3 4 5
PoV in +lag (months)

A

S

O

N

D

Je
t i
n 
m
on

th

0.44 0.23 0.24 0.19 0.30

0.05 0.18 0.22 0.08 -0.11

0.47 0.46 0.21 0.03 -0.25

0.51 0.17 0.20 0.02 0.06

0.46 0.09 -0.06 0.12 0.04

(c) Jet before PoV

1 2 3 4 5
Jet in +lag (months)

A

S

O

N

D

Je
t i

n 
m

on
th

0.36 0.07 0.21 0.02 0.25

-0.04 0.15 -0.07 -0.11 -0.04

0.21 0.14 0.10 0.02 -0.19

0.42 -0.11 0.12 0.10 0.08

0.36 0.09 0.15 0.19 0.33

(d) Jet

Jet before PoV also significant!E.Saggioro (UoR) SFB-1294 16 Nov 2018 20 / 29



Partial Correlations matrices

1 2 3 4 5
PoV in +lag (months)

A

S

O

N

D

Po
V 

in
 m

on
th

0.18 -0.13 0.14 0.09 0.02

0.59 -0.03 -0.10 -0.01 -0.17

0.78 -0.18 0.36 -0.02 0.03

0.73 -0.38 0.28 -0.31 0.18

0.64 -0.06 -0.20 0.29 0.07

(e) PoV→ PoV

1 2 3 4 5
Jet in +lag (months)

A

S

O

N

D

Po
V 
in
 m

on
th

0.21 -0.12 -0.02 -0.15 0.16

0.24 0.00 -0.19 -0.36 -0.22

0.39 0.15 0.12 -0.18 0.00

0.13 -0.25 0.36 -0.06 0.03

0.40 -0.12 0.03 0.10 0.44

(f) PoV9 Jet !

1 2 3 4 5
PoV in +lag (months)

A

S

O

N

D

Je
t i
n 
m
on

th

0.43 0.26 -0.02 -0.02 0.35

-0.08 0.09 0.15 -0.29 -0.28

0.05 0.11 -0.03 0.04 -0.27

0.16 -0.16 0.16 -0.05 0.09

0.05 -0.06 -0.03 0.18 0.07

(g) Jet ∼9 PoV

1 2 3 4 5
Jet in +lag (months)

A

S

O

N

D

Je
t i

n 
m

on
th

0.20 -0.11 0.08 -0.06 0.25

-0.47 0.03 -0.05 -0.41 -0.16

-0.02 -0.08 -0.03 -0.07 -0.18

0.25 -0.43 0.01 -0.12 0.11

0.12 -0.09 0.06 0.23 0.31

(h) Jet ∼9 Jet
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Why Cross-correlations are biased

• Large PoV auto-dependency strongly inflates the values of both
lagged cross-correlations:1

Strong auto-dependence detected is on PoV, so is the main confounding
effect removed by ParCorr-MIT:

ρ(PoVm, Jetm+lag) >> 0 becomes ρ(PoVm, Jetm+lag | PoVm−1) ∼ 0

and same ρ(Jetm, PoVm+lag | PoVm+lag−1) ∼ 0.

• Are PoV and Jet decoupled on this time scale? Not necessarily!
Can be due to low sample size used in month-to-month matrices
(37 data points for each entry) .

...With larger sample-size might be able to detect other links.

1Inflation of cross-corr due to strong auto-corr is proved in linear theory on MIT (Runge 2013).
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Causal analysis 2: breakdown-dependent time-window
Except timing, assume physical mechanisms explaining spring-to-summer
variability should be the same each year (causal stationarity).
The transition starts about 2-3 months before the breakdown .
⇒ In each year j select the days [tj − 70 : tj + 20] with tj = Polar Vortex
breakdown date.
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δP
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 [m
s−

1]

1980 1985 1990 1995 2000 2005 2010 2015
time [30D]

−7.5
−5.0
−2.5
0.0
2.5
5.0
7.5

δJ
et
 [m

s−
1]

Figure: Total sample size 111 days (black).
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Intra-seasonal Causal Network

PCMCI gives 4 ParCorr-MIT values significant at 0.025 confidence level (red).
Compared with correlation values (black).
NB: Because assumed causal stationarity, measures are only function of lag.

Which translates into graph:
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Intra-seasonal shift modelled by VAR(1)

CI = ParCorr⇒ the Causal Network approximates a VAR(1) :

δPoVt = a δPoVt−1 + εP
t

δJett = b δJett−1 + c δPoVt−1 + εJ
t

with linear coefficients and covariance matrix of 2d noise term 2:

a = 0.68 ± 0.06 ; b = 0.19 ± 0.09 ; c = 0.37 ± 0.09;

Σ =

[
σ2

P σPJ

σPJ σ2
J

]
=

[
0.53 0.24
0.24 0.75

]

2Coeffs. form linear fit of each variable onto its “parents” + 2d Gaussian fit on residuals.
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A first validation using lagged correlations

Lagged correlations of VAR(1) synthetic time series vs data?
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Conclusions

1 PoV strong auto-correlation inflates all cross-correlations .
2 Found intra-seasonal causal link from PoV to Jet when enough

statistics and adequate time-window selection ( PoV-breakdown
dependent ) .

3 PoV linear statistical predictor of Jet ? It does reproduce well
correlations...
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Future work

Short term : explore implications of VAR(1) in the SH context.

Long term 1 : how can we improve confidence in results from small
sample size data? (eg Knock-off (Barber2015))

Long term 2 : apply CEN techniques to climate models’ outputs.
Do models reproduce observed causal paths (rather than correlations)?
Can we use it to constraint inter-model spread in long term projection?
How to account for model error?
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