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A motivating example Multi-target tracking

Multi-target tracking

Consider two target trajectories.

Simple scenario

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 4 / 37



A motivating example Multi-target tracking

Multi-target tracking

Consider two target trajectories.

Simple scenario

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 4 / 37



A motivating example Multi-target tracking

Multi-target tracking

Consider two target trajectories.

Simple scenario

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 4 / 37



A motivating example Multi-target tracking

Multi-target tracking

Consider two target trajectories.

Simple scenario

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 4 / 37



A motivating example Multi-target tracking

Modelling
Number of objects changes in time (birth/death process)

Observation process:
FN Observation of a given object might fail
TP When successful, it is prone to errors → `(y |x)
FP Some observations originate from background noise

Data association is unknown a priori

States and observations are represented by a point process (random
counting measure)

Xn =
N∑
i=1

δXin and Yn =
M∑
i=1

δY in

Interest: first-moment of the state point process (intensity measure)

Fn(B) = E(Xn(B)) = E
( N∑
i=1

1B(Xi
n)
)
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A motivating example Multi-target tracking

PHD filter
Update equation at time step n

Fn(x | Y1:n) = pFN Fn(x | Y1:n−1) +
∑
y∈Yn

pTP`(y |x)Fn(x | Y1:n−1)
FFP(y) + pTP

∫
`(y |x′)Fn(x′ | Y1:n−1)dx′

R.P.S. Mahler. “Multitarget Bayes filtering via first-order multitarget moments”. In: IEEE
Transactions on Aerospace and Electronic systems 39.4 (2003)
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A motivating example Applications

Application: Life sciences

(a) Fluorescence microscopy (b) Microfluidics for water safety
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A motivating example Applications

Application: Space Situational Awareness

http://astria.tacc.utexas.edu/AstriaGraph/
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A motivating example Applications

Application: Surveillance and defence

(a) Radar data from a ship (b) Surveillance of a harbour area
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A motivating example Applications

Fundamental limitations

The distribution of false positives can vary dramatically in time

There is often no prior information on the location of objects

The observation process is difficult to describe in a standard way
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A motivating example Applications

Fundamental limitations

The distribution of false positives can vary dramatically in time

There is often no prior information on the location of objects

The observation process is difficult to describe in a standard way

Radar cross section of an A-26 Invader (Wikipedia)
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Outer probability measures Fundamentals

Outer probability measure

Assuming:
A r.v. X on X with conditional probability distribution p(· | θ)
No knowledge about θ ∈ Θ

Then
P(X ∈ B) ≤ sup

θ∈Θ
p(B | θ)

With f : Θ→ [0, 1] such that supθ f(θ) = 1

Definition
The set function P̄ in [0, 1] is an outer probability measure since
1. P̄ (∅) = 0 and P̄ (X) = 1
2. monotone: A ⊆ B implies P̄ (A) ≤ P̄ (B)
3. sub-additive: P̄ (A ∪B) ≤ P̄ (A) + P̄ (B) for any A,B ⊆ X

J. H. “Parameter estimation with a class of outer probability measures”. In:
arXiv:1801.00569 (2018)
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Outer probability measures Fundamentals

Possibility function

Parameter(s) Function of x ∈ R

Uniform Ū([a, b]) a, b ∈ R, a < b 1[a,b](x)

Gaussian N̄ (µ, σ2) µ ∈ R, σ2 > 0 exp
(
− 1

2
(x− µ)2

σ2

)
Student’s t ν > 0

(
1 + x2

ν

)− ν+1
2

Cauchy x0 ∈ R, γ > 0 γ2

(x− x0)2 + γ2

Gamma k ≥ 0, θ > 0
(
x

kθ

)k
exp
(
− x

θ
+ k
)
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− 1

2
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Student’s t ν > 0 Γ( ν+1

2 )
√
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Outer probability measures Fundamentals

Uncertain variable
Ingredients:

A sample space Ωu for deterministic but uncertainty phenomena
A probability space (Ωr,F ,P(· |ωu)) for any ωu ∈ Ωu

A state space X and a parameter space Θ

Definition
An uncertain variable (u.v.) is a mapping

X : Ωu × Ωr → Θ×X
(ωu, ωr) 7→ (Xu(ωu), Xr(ωr))

such that
Xr : Ωr → X is a random variable
P(X−1

r (B) | ·) is constant over X−1
u [θ] for any B ⊆ X and θ ∈ Θ

1. implies that θ is sufficiently informative about Xr
2. can deduce the conditional distribution p(· | θ)
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Outer probability measures Properties

Assumption & basic concepts

Assumption
Henceforth: p(· | θ) = δθ and Θ = X

Concept
The (deterministic) u.v.s X and Y are (weakly) independent if

fX,Y (x, y) = fX(x)fY (y)

Even if X and Y are not independent
√
fX × fY is a valid description of

(X,Y ) with

fX(x) = sup
y
fX,Y (x, y) and fY (y) = sup

x
fX,Y (x, y)

→ information loss
Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 15 / 37
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Outer probability measures Properties

Possibility function

Pros & cons
Does not require a reference measure
Standard operations apply directly: if (X,Y ) u.v. described by fX,Y

fY (y) = sup
x
fX,Y (x, y) and fX|Y (x | y) = fX,Y (x, y)

fY (y)

Can be truncated, discretized
Straightforward to introduce new possibility functions
Easy to extent existing concepts, e.g. a collection of u.v.s {Xn}n is a
(weak) Markov chain if

fXn(· |X1:n−1) = fXn(· |Xn−1)

Less obvious for distribution on N
Cannot sample
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Outer probability measures Properties

Expectation

By identification
For a given function ϕ

Ēf (ϕ(X)) = sup
x∈X

ϕ(x)f(x)

Intuitively

E∗f (X) = argmax
x

f(x)

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 17 / 37



Outer probability measures Properties

Expectation

By identification
For a given function ϕ
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For a given function ϕ

Ēf (ϕ(X)) = sup
x∈X

ϕ(x)f(x)

Intuitively

E∗f (X) = argmax
x

f(x)

Example: Maximum-likelihood estimate with i.i.d. samples y1, . . . , yn ∼ p(· |x)

E∗f (X | y1:n) = argmax
x

f(x)
n∏
i=1

p(yi |x)

→ can justify profile likelihood
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Outer probability measures Asymptotic properties

Law of large numbers
Statement

Consider:
Some u.v.s X1, X2, . . . on Rd i.i.d. by f
The u.v. Sn = n−1∑n

i=1Xn described by

fSn(y) = sup
{ n∏
i=1

f(xi) : 1
n

(x1 + · · ·+ xn) = y
}
.

Proposition
Let f be a possibility function such that f(x)→ 0 when ‖x‖ → ∞ and
argmaxx f(x) = µ. If f verifies some additional regularity conditions then it
holds that

lim
n→∞

fSn = 1µ,

where the limit is considered point-wise.

→ Confirms the intuitive definition of expectation
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Outer probability measures Asymptotic properties

Law of large numbers
Example

1. Consider observations Y, Y1, Y2, . . . i.i.d. by fY (·|θ) = N̄ (· ; θ, σ2)
2. The sample average Sn = n−1∑n

i=1 Yi is a sufficient statistics, i.e.

fY1:n(y1, . . . , yn | θ) =
n∏
i=1

fY (yi | θ)

= exp
(
− 1

2σ2

n∑
i=1

(yi − sn)2
)

exp
(
− n

2σ2 (θ − sn)2
)

3. Consider instead the likelihood

fSn(s | θ) = sup
y1,...,yn

n−1
∑

i
yi=s

fY1:n(y1, . . . , yn | θ) = exp
(
− n

2σ2 (θ − s)2
)

→ tends to 1θ as n grows by the LLN
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Outer probability measures Asymptotic properties

Central limit theorem
Statement

Proposition
If E∗f (X) = {µ} and if f is strictly log-concave and twice differentiable at µ,
then the possibility function fn describing the u.v.

√
n(Sn − µ) verifies

lim
n→∞

fn(x) = exp
(
− 1

2 |f
′′(µ)|(x− µ)2

)
for any x in the domain of f .

Consequences:
Recover exactly the Laplace approximation
Can study asymptotic properties of estimators like MLE
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Outer probability measures Asymptotic properties

Central limit theorem
Variance

Variance of an u.v.
CLT suggests a definition of the variance as

V∗f (X) = − 1
f ′′(E∗f (X))

Example (Gamma possibility function on (0,∞))

E∗f (X) = kθ and V∗f (X) = kθ2,

with shape parameter k ≥ 0 and scale parameter θ > 0

Example (Cauchy possibility function on R)

E∗f (X) = x0 and V∗f (X) = γ2

2 ,

with location parameter x0 ∈ R and scale parameter γ > 0

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 21 / 37



Outer probability measures Asymptotic properties

Central limit theorem
Variance

Variance of an u.v.
CLT suggests a definition of the variance as

V∗f (X) = − 1
f ′′(E∗f (X))

Example (Gamma possibility function on (0,∞))

E∗f (X) = kθ and V∗f (X) = kθ2,

with shape parameter k ≥ 0 and scale parameter θ > 0

Example (Cauchy possibility function on R)

E∗f (X) = x0 and V∗f (X) = γ2

2 ,

with location parameter x0 ∈ R and scale parameter γ > 0

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 21 / 37



Outer probability measures Asymptotic properties

Central limit theorem
Variance

Variance of an u.v.
CLT suggests a definition of the variance as

V∗f (X) = − 1
f ′′(E∗f (X))

Example (Gamma possibility function on (0,∞))

E∗f (X) = kθ and V∗f (X) = kθ2,

with shape parameter k ≥ 0 and scale parameter θ > 0

Example (Cauchy possibility function on R)

E∗f (X) = x0 and V∗f (X) = γ2

2 ,

with location parameter x0 ∈ R and scale parameter γ > 0

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 21 / 37



Inference and applications

Outline
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Multi-target tracking
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Inference and applications Bayesian inference

Bayesian inference
Ingredients:

Unknown: u.v. X on X represented by a prior f
Observation: u.v. Y represented by a likelihood h(· |x)

Bayes’ rule

f(x | y) = h(y |x)f(x)
supx′∈X h(y |x′)f(x′)

for some realisation y of Y

Connection with optimisation
Estimating E∗f(· | y)(X) is the same as

x∗ = argmax
x∈X

log h(y |x) + log f(x)

with log f some regularisation
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Inference and applications Sequential inference

Filtering for possibility functions

A state space model
Consider a partially-observed Markov chain {Xn}n on X such that

Xn = G(Xn−1) + Vn

Yn = H(Xn) +Wn

with {Vn}n and {Wn}n i.i.d. such that

fXn(· |Xn−1) = g(· |Xn−1) and fYn(· |Xn) = h(· |Xn)

Filtering equations
fXn(x | y1:n−1) = sup

x′∈X
g(x |x′)fXn−1(x′ | y1:n−1)

fXn(x | y1:n) = h(yn |x)fXn(x | y1:n−1)
supx′∈X h(yn |x′)fXn(x′ | y1:n−1) .
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Inference and applications Sequential inference

Kalman filter

Recursion

fn−1(x | y1:n−1) = N̄ (x;mn−1,Σn−1)
g(x |x′) = N̄ (x;Fx′, Q)
h(y |x) = N̄ (y;Hx,R)

→ Same means mn|n−1, mn and spreads Σn|n−1, Σn

Different marginal likelihood

fYn(yn) = exp
(
− 1

2(yn −Hmn|n−1)TS−1
n (yn −Hmn|n−1)

)
with Sn = HΣn|n−1H

T +R

J. H. and A. Bishop. “Smoothing and filtering with a class of outer measures”. In: SIAM
Journal on Uncertainty Quantification 6.2 (2018)
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Inference and applications Sequential inference

Non-linear filtering
Particle approximation of f :
1. Find the probability distribution

p∗ = argmax
p∈P(X)

H(p)

such that 1B(x)p(x)dx ≤ supx∈B f(x) for any B ⊆ X
2. Get N samples x1, . . . , xn from p∗

3. Weight the samples as wi = f(xi), i ∈ {1, . . . , N}

J. H. and B. Ristić. “Sequential Monte Carlo algorithms for a class of outer measures”. In:
arXiv preprint arXiv:1704.01233 (2017)
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Inference and applications Applications

Bearings-only tracking: Robustness

Standard scenario with measurement noise:
modelled as Gaussian
simulated as Student’s t with ν d.f.

N = 2000

ν 3 5 8 ∞
probability 43.6 21.2 12.4 5.4
possibility 21.0 6.2 1.8 0.6

N = 5000

ν 3 5 8 ∞
probability 34.0 11.6 6.2 0.6
possibility 17.8 2.8 0.4 0

B. Ristić, J. H., and S. Arulampalam. “Robust target motion analysis using the possibility
Particle filter”. In: IET Radar Sonar Navigation (2018)
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Inference and applications Applications

Natural language processing: Bike theft

Figure: Map of the surroundings (Google Maps). Red-dotted rectangle: area of
interest, red dot: location of bike theft.

A. Bishop, J. H., D. Angley, and B. Ristić. “Spatio-temporal tracking from natural language
statements using outer probability theory”. In: Elsevier Information Sciences 463–464 (2018)
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Inference and applications Applications

Natural language processing: Bike theft

Information to be confirmed:
1. Suspect alibi: “I was with a friend at the tram stop on the intersection of La

Trobe St. and Elizabeth St.”
2. CCTV: Recording of the theft

The witnesses’ declarations are:
1. “The suspect has been seen on Elizabeth St. around 2.07p.m.”
2. “The suspect turned at the intersection of Swanston and Abeckett St. between

2.25p.m. and 2.35p.m.”
3. “The suspect has been seen near RMIT building 80 around 2.35p.m.”
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Inference and applications Applications
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Inference and applications Applications

A negative example: track before detect

Principle:
Use full image instead of extracted point measurements
Model the background noise and the signal directly

Attempt:
Use possibility function to bring robustness
Not informative enough

Possible direction:
→ Use outer probability measures of the form

P̄ (B) = sup
θ∈B

p(B | θ)f(θ)

→ More informative model that still retains some robustness
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Conclusion

Back to the motivating example
Multi-target tracking with possibility functions

Ingredients:
Uncertain counting measure described by fn

Represented by the intensity measure

F̄n(B) = Ēfn

(
max

1≤i≤N
1B(Xi

n)
)

Update equation:

F̄n(x | Y1:n) = aFNF̄n(x | Y1:n−1) ∨ max
y∈Yn

aTPh(y |x)F̄n(x | Y1:n−1)
F̄FP(y) ∨ aTP supx′ h(y |x′)F̄n(x′ | Y1:n−1)

with aFN ∨ aTP = 1
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Back to the motivating example
Multi-target tracking with possibility functions

Advantages:
Only a lower bound on the probability of detection is required, e.g.

aFN = 0.2 and aTP = 1 =⇒ pTP ∈ [0.8, 1]

The distribution of the false positives does not need to be fully known

Challenges:
Track extraction is less obvious
At least some information is required on the false positives

→ proceed by negation?
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Conclusion

Concluding remarks

Most of the introduced ideas extend to outer probability measures like P̄

Discussions about the nature of uncertainty become practical

There is an opportunity to provide justification for heuristics
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Thank you!

jeremie.houssineau@warwick.ac.uk
jeremiehoussineau.com

Jérémie Houssineau (Warwick) Assimilating data with o.p.m.s April 9, 2019 37 / 37

mailto:jeremie.houssineau@warwick.ac.uk
jeremiehoussineau.com

	A motivating example
	Multi-target tracking
	Applications

	Outer probability measures
	Fundamentals
	Properties
	Asymptotic properties

	Inference and applications
	Bayesian inference
	Sequential inference
	Applications

	Conclusion

