Assimilating data with outer probability measures

Jérémie Houssineau

Department of Statistics The University of Warwick

April 9, 2019

Joint work with: Emmanuel Delande (Texas Uni), Branko Ristić (RMIT), Neil Chada (NUS) and Adrian Bishop (UTS/CSIRO).

Outline

- 1 A motivating example
 - Multi-target tracking
 - Applications
- 2 Outer probability measures
 - Fundamentals
 - Properties
 - Asymptotic properties
- **③** Inference and applications
 - Bayesian inference
 - Sequential inference
 - Applications

Conclusion

Outline

- 1 A motivating example
 - Multi-target tracking
 - Applications
- 2 Outer probability measures
 - Fundamentals
 - Properties
 - Asymptotic properties
- 3 Inference and applications
 - Bayesian inference
 - Sequential inference
 - Applications

Conclusion

Consider two target trajectories.

Consider two target trajectories.

Consider two target trajectories.

Consider two target trajectories.

• Number of objects changes in time (birth/death process)

• Observation process:

- FN Observation of a given object might fail
- **TP** When successful, it is prone to errors $\rightarrow \ell(y \mid x)$
- FP Some observations originate from background noise
- Data association is unknown a priori
- States and observations are represented by a point process (random counting measure)

$$\mathcal{X}_n = \sum_{i=1}^N \delta_{X_n^i}$$
 and $\mathcal{Y}_n = \sum_{i=1}^M \delta_{Y_n^i}$

• Interest: first-moment of the state point process (intensity measure)

$$F_n(B) = \mathbb{E}(\mathcal{X}_n(B)) = \mathbb{E}\left(\sum_{i=1}^N \mathbf{1}_B(X_n^i)\right)$$

- Number of objects changes in time (birth/death process)
- Observation process:
 - FN Observation of a given object might fail
 - TP When successful, it is prone to errors $\rightarrow \ell(y | x)$
 - FP Some observations originate from background noise
- Data association is unknown a priori
- States and observations are represented by a point process (random counting measure)

$$\mathcal{X}_n = \sum_{i=1}^N \delta_{X_n^i}$$
 and $\mathcal{Y}_n = \sum_{i=1}^M \delta_{Y_n^i}$

• Interest: first-moment of the state point process (intensity measure)

$$F_n(B) = \mathbb{E}(\mathcal{X}_n(B)) = \mathbb{E}\left(\sum_{i=1}^N \mathbf{1}_B(X_n^i)\right)$$

- Number of objects changes in time (birth/death process)
- Observation process:
 - FN Observation of a given object might fail
 - TP When successful, it is prone to errors $\rightarrow \ell(y | x)$
 - FP Some observations originate from background noise
- Data association is unknown a priori
- States and observations are represented by a point process (random counting measure)

$$\mathcal{X}_n = \sum_{i=1}^N \delta_{X_n^i}$$
 and $\mathcal{Y}_n = \sum_{i=1}^M \delta_{Y_n^i}$

• Interest: first-moment of the state point process (intensity measure)

$$F_n(B) = \mathbb{E}(\mathcal{X}_n(B)) = \mathbb{E}\left(\sum_{i=1}^N \mathbf{1}_B(X_n^i)\right)$$

- Number of objects changes in time (birth/death process)
- Observation process:
 - FN Observation of a given object might fail
 - TP When successful, it is prone to errors $\rightarrow \ell(y | x)$
 - FP Some observations originate from background noise
- Data association is unknown a priori
- States and observations are represented by a point process (random counting measure)

$$\mathcal{X}_n = \sum_{i=1}^N \delta_{X_n^i}$$
 and $\mathcal{Y}_n = \sum_{i=1}^M \delta_{Y_n^i}$

• Interest: first-moment of the state point process (intensity measure)

$$F_n(B) = \mathbb{E}(\mathcal{X}_n(B)) = \mathbb{E}\left(\sum_{i=1}^N \mathbf{1}_B(X_n^i)\right)$$

- Number of objects changes in time (birth/death process)
- Observation process:
 - FN Observation of a given object might fail
 - TP When successful, it is prone to errors $\rightarrow \ell(y | x)$
 - FP Some observations originate from background noise
- Data association is unknown a priori
- States and observations are represented by a point process (random counting measure)

$$\mathcal{X}_n = \sum_{i=1}^N \delta_{X_n^i}$$
 and $\mathcal{Y}_n = \sum_{i=1}^M \delta_{Y_n^i}$

• Interest: first-moment of the state point process (intensity measure)

$$F_n(B) = \mathbb{E}(\mathcal{X}_n(B)) = \mathbb{E}\left(\sum_{i=1}^N \mathbf{1}_B(X_n^i)\right)$$

PHD filter

Update equation at time step n

$$F_n(x \mid \mathcal{Y}_{1:n}) = p_{\text{FN}} F_n(x \mid \mathcal{Y}_{1:n-1}) + \sum_{y \in \mathcal{Y}_n} \frac{p_{\text{TP}}\ell(y \mid x)F_n(x \mid \mathcal{Y}_{1:n-1})}{F_{\text{FP}}(y) + p_{\text{TP}}\int\ell(y \mid x')F_n(x' \mid \mathcal{Y}_{1:n-1})\mathrm{d}x'}$$

R.P.S. Mahler. "Multitarget Bayes filtering via first-order multitarget moments". In: *IEEE Transactions on Aerospace and Electronic systems* 39.4 (2003)

Jérémie Houssineau (Warwick)

PHD filter

Update equation at time step n

$$F_n(x \mid \mathcal{Y}_{1:n}) = p_{\text{FN}} F_n(x \mid \mathcal{Y}_{1:n-1}) + \sum_{y \in \mathcal{Y}_n} \frac{p_{\text{TP}}\ell(y \mid x)F_n(x \mid \mathcal{Y}_{1:n-1})}{F_{\text{FP}}(y) + p_{\text{TP}}\int\ell(y \mid x')F_n(x' \mid \mathcal{Y}_{1:n-1})\mathrm{d}x'}$$

R.P.S. Mahler. "Multitarget Bayes filtering via first-order multitarget moments". In: *IEEE Transactions on Aerospace and Electronic systems* 39.4 (2003)

Jérémie Houssineau (Warwick)

PHD filter

Update equation at time step n

$$F_n(x \mid \mathcal{Y}_{1:n}) = p_{\text{FN}} F_n(x \mid \mathcal{Y}_{1:n-1}) + \sum_{y \in \mathcal{Y}_n} \frac{p_{\text{TP}}\ell(y \mid x)F_n(x \mid \mathcal{Y}_{1:n-1})}{F_{\text{FP}}(y) + p_{\text{TP}}\int\ell(y \mid x')F_n(x' \mid \mathcal{Y}_{1:n-1})\mathrm{d}x'}$$

R.P.S. Mahler. "Multitarget Bayes filtering via first-order multitarget moments". In: *IEEE Transactions on Aerospace and Electronic systems* 39.4 (2003)

Jérémie Houssineau (Warwick)

Application: Life sciences

(a) Fluorescence microscopy

(b) Microfluidics for water safety

Application: Space Situational Awareness

http://astria.tacc.utexas.edu/AstriaGraph/

Jérémie Houssineau (Warwick)

Application: Surveillance and defence

(a) Radar data from a ship

(b) Surveillance of a harbour area

- The distribution of false positives can vary dramatically in time
- There is often no prior information on the location of objects
- The observation process is difficult to describe in a standard way

- The distribution of false positives can vary dramatically in time
- There is often no prior information on the location of objects
- The observation process is difficult to describe in a standard way

- The distribution of false positives can vary dramatically in time
- There is often no prior information on the location of objects
- The observation process is difficult to describe in a standard way

- The distribution of false positives can vary dramatically in time
- There is often no prior information on the location of objects
- The observation process is difficult to describe in a standard way

Radar cross section of an A-26 Invader (Wikipedia)

Outline

- A motivating example
 - Multi-target tracking
 - Applications

2 Outer probability measures

- Fundamentals
- Properties
- Asymptotic properties
- 3 Inference and applications
 - Bayesian inference
 - Sequential inference
 - Applications

Conclusion

Assuming:

- A r.v. X on ${\bf X}$ with conditional probability distribution $p(\cdot \,|\, \theta)$
- No knowledge about $\theta\in\Theta$

Then

 $\mathbb{P}(X \in B) \le \sup_{\theta \in \Theta} p(B \,|\, \theta)$

With $f: \Theta \to [0,1]$ such that $\sup_{\theta} f(\theta) = 1$

Definition

The set function \overline{P} in [0,1] is an outer probability measure since

1. $\bar{P}(\emptyset) = 0$ and $\bar{P}(\mathbf{X}) = 1$

2. monotone: $A \subseteq B$ implies $\overline{P}(A) \leq \overline{P}(B)$

J. H. "Parameter estimation with a class of outer probability measures". In: arXiv:1801.00569~(2018)

Assuming:

- A r.v. X on ${\bf X}$ with conditional probability distribution $p(\cdot \,|\, \theta)$
- No knowledge about $\theta\in\Theta$

Then

 $\mathbb{P}(X \in B) \le \sup_{\theta \in \Theta} p(B \,|\, \theta) \mathbf{1}_A(\theta)$

With $f: \Theta \to [0, 1]$ such that $\sup_{\theta} f(\theta) = 1$

Definition

The set function \overline{P} in [0,1] is an outer probability measure since

1. $\bar{P}(\emptyset) = 0$ and $\bar{P}(\mathbf{X}) = 1$

2. monotone: $A \subseteq B$ implies $\overline{P}(A) \leq \overline{P}(B)$

J. H. "Parameter estimation with a class of outer probability measures". In: arXiv:1801.00569~(2018)

Assuming:

- A r.v. X on ${\bf X}$ with conditional probability distribution $p(\cdot \,|\, \theta)$
- No knowledge about $\theta\in\Theta$

Then

 $\mathbb{P}(X \in B) \leq \sup_{\theta \in \Theta} p(B \,|\, \theta) f(\theta)$

With $f: \Theta \to [0, 1]$ such that $\sup_{\theta} f(\theta) = 1$

Definition

The set function \overline{P} in [0,1] is an outer probability measure since

1. $\bar{P}(\emptyset) = 0$ and $\bar{P}(\mathbf{X}) = 1$

2. monotone: $A \subseteq B$ implies $\overline{P}(A) \leq \overline{P}(B)$

J. H. "Parameter estimation with a class of outer probability measures". In: arXiv:1801.00569~(2018)

Assuming:

- A r.v. X on ${\bf X}$ with conditional probability distribution $p(\cdot \,|\, \theta)$
- No knowledge about $\theta\in\Theta$

Then

 $\mathbb{P}(X \in B) \leq \sup_{\theta \in \Theta} p(B \mid \theta) f(\theta)$

With $f: \Theta \to [0,1]$ such that $\sup_{\theta} f(\theta) = 1$

Definition

The set function \overline{P} in [0,1] is an outer probability measure since

1. $\bar{P}(\emptyset) = 0$ and $\bar{P}(\mathbf{X}) = 1$

2. monotone: $A \subseteq B$ implies $\overline{P}(A) \leq \overline{P}(B)$

J. H. "Parameter estimation with a class of outer probability measures". In: arXiv:1801.00569~(2018)

Assuming:

- A r.v. X on ${\bf X}$ with conditional probability distribution $p(\cdot \,|\, \theta)$
- No knowledge about $\theta\in\Theta$

Then

$$\mathbb{P}(X \in B) \leq \sup_{\theta \in \Theta} p(B \mid \theta) f(\theta) = \overline{P}(B)$$

With $f: \Theta \to [0,1]$ such that $\sup_{\theta} f(\theta) = 1$

Definition

The set function \overline{P} in [0,1] is an outer probability measure since

1. $\bar{P}(\emptyset) = 0$ and $\bar{P}(\mathbf{X}) = 1$

2. monotone: $A \subseteq B$ implies $\overline{P}(A) \leq \overline{P}(B)$

J. H. "Parameter estimation with a class of outer probability measures". In: arXiv:1801.00569~(2018)

Assuming:

- A r.v. X on ${\bf X}$ with conditional probability distribution $p(\cdot \,|\, \theta)$
- No knowledge about $\theta\in\Theta$

Then

$$\mathbb{P}(X \in B) \le \sup_{\theta \in \Theta} p(B \mid \theta) f(\theta) = \bar{P}(B)$$

With $f: \Theta \to [0,1]$ such that $\sup_{\theta} f(\theta) = 1$

Definition

The set function \overline{P} in [0, 1] is an outer probability measure since

1.
$$\bar{P}(\emptyset) = 0$$
 and $\bar{P}(\mathbf{X}) = 1$

- 2. monotone: $A \subseteq B$ implies $\overline{P}(A) \leq \overline{P}(B)$
- 3. sub-additive: $\bar{P}(A \cup B) \leq \bar{P}(A) + \bar{P}(B)$ for any $A, B \subseteq \mathbf{X}$

J. H. "Parameter estimation with a class of outer probability measures". In: arXiv:1801.00569 (2018)

Possibility function

	Parameter(s)	Function of $x \in \mathbb{R}$
Uniform $\bar{\mathcal{U}}([a,b])$	$a, b \in \mathbb{R}, a < b$	$1_{[a,b]}(x)$
Gaussian $\bar{\mathcal{N}}(\mu, \sigma^2)$	$\mu\in\mathbb{R},\sigma^2>0$	$\exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$
Student's t	$\nu > 0$	$\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$
Cauchy	$x_0 \in \mathbb{R}, \gamma > 0$	$\frac{\gamma^2}{(x-x_0)^2+\gamma^2}$
Gamma	$k \ge 0, \theta > 0$	$\left(\frac{x}{k\theta}\right)^k \exp\left(-\frac{x}{\theta}+k\right)$

Possibility function

	Parameter(s)	Function of $x \in \mathbb{R}$
Uniform $\bar{\mathcal{U}}([a,b])$	$a, b \in \mathbb{R}, a < b$	$1_{[a,b]}(x)$
Gaussian $\bar{\mathcal{N}}(\mu, \sigma^2)$	$\mu\in\mathbb{R},\sigma^2>0$	$\exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$
Student's t	$\nu > 0$	$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$
Cauchy	$x_0 \in \mathbb{R}, \gamma > 0$	$\frac{\gamma^2}{(x-x_0)^2+\gamma^2}$
Gamma	$k \ge 0, \theta > 0$	$\left(\frac{x}{k\theta}\right)^k \exp\left(-\frac{x}{\theta}+k\right)$

Uncertain variable

Ingredients:

- A sample space $\Omega_{\rm u}$ for deterministic but uncertainty phenomena
- A probability space $(\Omega_r, \mathcal{F}, \mathbb{P}(\cdot | \omega_u))$ for any $\omega_u \in \Omega_u$
- \bullet A state space ${\bf X}$ and a parameter space Θ

Definition

An uncertain variable (u.v.) is a mapping

$$X: \Omega_{\mathbf{u}} \times \Omega_{\mathbf{r}} \to \Theta \times \mathbf{X}$$
$$(\omega_{\mathbf{u}}, \omega_{\mathbf{r}}) \mapsto (X_{\mathbf{u}}(\omega_{\mathbf{u}}), X_{\mathbf{r}}(\omega_{r}))$$

such that

• $X_{\rm r}: \Omega_{\rm r} \to \mathbf{X}$ is a random variable

• $\mathbb{P}(X_{\mathbf{r}}^{-1}(B) | \cdot)$ is constant over $X_{\mathbf{u}}^{-1}[\theta]$ for any $B \subseteq \mathbf{X}$ and $\theta \in \Theta$

- 1. implies that θ is sufficiently informative about X_r
- 2. can deduce the conditional distribution $p(\cdot \mid \theta)$

Uncertain variable

Ingredients:

- A sample space $\Omega_{\rm u}$ for deterministic but uncertainty phenomena
- A probability space $(\Omega_r, \mathcal{F}, \mathbb{P}(\cdot | \omega_u))$ for any $\omega_u \in \Omega_u$
- \bullet A state space ${\bf X}$ and a parameter space Θ

Definition

An uncertain variable (u.v.) is a mapping

$$\begin{aligned} X: \Omega_{\mathbf{u}} \times \Omega_{\mathbf{r}} &\to \Theta \times \mathbf{X} \\ (\omega_{\mathbf{u}}, \omega_{\mathbf{r}}) &\mapsto (X_{\mathbf{u}}(\omega_{\mathbf{u}}), X_{\mathbf{r}}(\omega_{r})) \end{aligned}$$

such that

• $X_{\rm r}: \Omega_{\rm r} \to \mathbf{X}$ is a random variable

• $\mathbb{P}(X_{\mathbf{r}}^{-1}(B) \mid \cdot)$ is constant over $X_{\mathbf{u}}^{-1}[\theta]$ for any $B \subseteq \mathbf{X}$ and $\theta \in \Theta$

- 1. implies that θ is sufficiently informative about X_r
- 2. can deduce the conditional distribution $p(\cdot \mid \theta)$

Uncertain variable

Ingredients:

- A sample space $\Omega_{\rm u}$ for deterministic but uncertainty phenomena
- A probability space $(\Omega_r, \mathcal{F}, \mathbb{P}(\cdot | \omega_u))$ for any $\omega_u \in \Omega_u$
- \bullet A state space ${\bf X}$ and a parameter space Θ

Definition

An uncertain variable (u.v.) is a mapping

$$\begin{aligned} X: \Omega_{\mathbf{u}} \times \Omega_{\mathbf{r}} &\to \Theta \times \mathbf{X} \\ (\omega_{\mathbf{u}}, \omega_{\mathbf{r}}) &\mapsto (X_{\mathbf{u}}(\omega_{\mathbf{u}}), X_{\mathbf{r}}(\omega_{r})) \end{aligned}$$

such that

- $X_{\rm r}: \Omega_{\rm r} \to \mathbf{X}$ is a random variable
- $\mathbb{P}(X_{\mathbf{r}}^{-1}(B) | \cdot)$ is constant over $X_{\mathbf{u}}^{-1}[\theta]$ for any $B \subseteq \mathbf{X}$ and $\theta \in \Theta$
 - 1. implies that θ is sufficiently informative about X_r
 - 2. can deduce the conditional distribution $p(\cdot \mid \theta)$

Assumption & basic concepts

Assumption Henceforth: $p(\cdot | \theta) = \delta_{\theta}$ and $\Theta = \mathbf{X}$

Concept

The (deterministic) u.v.s X and Y are (weakly) independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Even if X and Y are not independent $\sqrt{f_X \times f_Y}$ is a valid description of (X, Y) with

$$f_X(x) = \sup_y f_{X,Y}(x,y) \quad \text{and} \quad f_Y(y) = \sup_x f_{X,Y}(x,y)$$

 \rightarrow information loss

Assumption & basic concepts

Assumption Henceforth: $p(\cdot | \theta) = \delta_{\theta}$ and $\Theta = \mathbf{X}$

Concept

The (deterministic) u.v.s X and Y are (weakly) independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Even if X and Y are not independent $\sqrt{f_X \times f_Y}$ is a valid description of (X, Y) with

$$f_X(x) = \sup_y f_{X,Y}(x,y) \quad \text{and} \quad f_Y(y) = \sup_x f_{X,Y}(x,y)$$

 \rightarrow information loss
Assumption & basic concepts

Assumption Henceforth: $p(\cdot | \theta) = \delta_{\theta}$ and $\Theta = \mathbf{X}$

Concept

The (deterministic) u.v.s X and Y are (weakly) independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Even if X and Y are not independent $\sqrt{f_X \times f_Y}$ is a valid description of (X, Y) with

$$f_X(x) = \sup_y f_{X,Y}(x,y) \quad \text{and} \quad f_Y(y) = \sup_x f_{X,Y}(x,y)$$

 \rightarrow information loss

Assumption & basic concepts

Assumption Henceforth: $p(\cdot | \theta) = \delta_{\theta}$ and $\Theta = \mathbf{X}$

Concept

The (deterministic) u.v.s X and Y are (weakly) independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Even if X and Y are not independent $\sqrt{f_X \times f_Y}$ is a valid description of (X, Y) with

$$f_X(x) = \sup_y f_{X,Y}(x,y) \quad \text{and} \quad f_Y(y) = \sup_x f_{X,Y}(x,y)$$

 \rightarrow information loss

Pros & cons

• Does not require a reference measure

• Standard operations apply directly: if (X, Y) u.v. described by $f_{X,Y}$

$$f_Y(y) = \sup_x f_{X,Y}(x,y)$$
 and $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

- Can be truncated, discretized
- Straightforward to introduce new possibility functions
- Easy to extent existing concepts, e.g. a collection of u.v.s $\{X_n\}_n$ is a (weak) Markov chain if

$$f_{X_n}(\cdot \,|\, X_{1:n-1}) = f_{X_n}(\cdot \,|\, X_{n-1})$$

- \bullet Less obvious for distribution on $\mathbb N$
- Cannot sample

Pros & cons

- Does not require a reference measure
- Standard operations apply directly: if (X, Y) u.v. described by $f_{X,Y}$

$$f_Y(y) = \sup_x f_{X,Y}(x,y)$$
 and $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

- Can be truncated, discretized
- Straightforward to introduce new possibility functions
- Easy to extent existing concepts, e.g. a collection of u.v.s $\{X_n\}_n$ is a (weak) Markov chain if

$$f_{X_n}(\cdot \,|\, X_{1:n-1}) = f_{X_n}(\cdot \,|\, X_{n-1})$$

- $\bullet\,$ Less obvious for distribution on $\mathbb N$
- Cannot sample

Pros & cons

- Does not require a reference measure
- Standard operations apply directly: if (X, Y) u.v. described by $f_{X,Y}$

$$f_Y(y) = \sup_x f_{X,Y}(x,y)$$
 and $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

- Can be truncated, discretized
- Straightforward to introduce new possibility functions
- Easy to extent existing concepts, e.g. a collection of u.v.s $\{X_n\}_n$ is a (weak) Markov chain if

$$f_{X_n}(\cdot \,|\, X_{1:n-1}) = f_{X_n}(\cdot \,|\, X_{n-1})$$

- $\bullet\,$ Less obvious for distribution on $\mathbb N$
- Cannot sample

Pros & cons

- Does not require a reference measure
- Standard operations apply directly: if (X, Y) u.v. described by $f_{X,Y}$

$$f_Y(y) = \sup_x f_{X,Y}(x,y)$$
 and $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

- Can be truncated, discretized
- Straightforward to introduce new possibility functions
- Easy to extent existing concepts, e.g. a collection of u.v.s $\{X_n\}_n$ is a (weak) Markov chain if

$$f_{X_n}(\cdot \,|\, X_{1:n-1}) = f_{X_n}(\cdot \,|\, X_{n-1})$$

- $\bullet\,$ Less obvious for distribution on $\mathbb N$
- Cannot sample

Pros & cons

- Does not require a reference measure
- Standard operations apply directly: if (X, Y) u.v. described by $f_{X,Y}$

$$f_Y(y) = \sup_x f_{X,Y}(x,y)$$
 and $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

- Can be truncated, discretized
- Straightforward to introduce new possibility functions
- Easy to extent existing concepts, e.g. a collection of u.v.s $\{X_n\}_n$ is a (weak) Markov chain if

$$f_{X_n}(\cdot \,|\, X_{1:n-1}) = f_{X_n}(\cdot \,|\, X_{n-1})$$

- \bullet Less obvious for distribution on $\mathbb N$
- Cannot sample

1

Pros & cons

- Does not require a reference measure
- Standard operations apply directly: if (X, Y) u.v. described by $f_{X,Y}$

$$f_Y(y) = \sup_x f_{X,Y}(x,y)$$
 and $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

- Can be truncated, discretized
- Straightforward to introduce new possibility functions
- Easy to extent existing concepts, e.g. a collection of u.v.s $\{X_n\}_n$ is a (weak) Markov chain if

$$f_{X_n}(\cdot \,|\, X_{1:n-1}) = f_{X_n}(\cdot \,|\, X_{n-1})$$

- \bullet Less obvious for distribution on $\mathbb N$
- Cannot sample

1

Pros & cons

- Does not require a reference measure
- Standard operations apply directly: if (X, Y) u.v. described by $f_{X,Y}$

$$f_Y(y) = \sup_x f_{X,Y}(x,y)$$
 and $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$

- Can be truncated, discretized
- Straightforward to introduce new possibility functions
- Easy to extent existing concepts, e.g. a collection of u.v.s $\{X_n\}_n$ is a (weak) Markov chain if

$$f_{X_n}(\cdot \mid X_{1:n-1}) = f_{X_n}(\cdot \mid X_{n-1})$$

- $\bullet\,$ Less obvious for distribution on $\mathbb N$
- Cannot sample

1

By identification

For a given function φ

 $\bar{\mathbb{E}}_f(\varphi(X)) = \sup_{x \in \mathbf{X}} \varphi(x) f(x)$

Intuitively

$$\mathbb{E}_f^*(X) = \operatorname*{argmax}_x f(x)$$

By identification

For a given function φ

$$\bar{\mathbb{E}}_f(\varphi(X)) = \sup_{x \in \mathbf{X}} \varphi(x) f(x)$$

Example: Define the self-information as $\overline{I}(x) = -\log f(x)$ then

$$\bar{\mathrm{H}}(X) = \bar{\mathbb{E}}_f(\bar{\mathrm{I}}(X)) = \sup_{x \in \mathbf{X}} \left(-f(x)\log f(x) \right)$$

 \rightarrow meaningful on uncountable spaces

Intuitively

$$\mathbb{E}_f^*(X) = \operatorname*{argmax}_x f(x)$$

Jérémie Houssineau (Warwick)

By identification

For a given function φ

$$\bar{\mathbb{E}}_f(\varphi(X)) = \sup_{x \in \mathbf{X}} \varphi(x) f(x)$$

Intuitively

$$\mathbb{E}_{f}^{*}(X) = \operatorname*{argmax}_{x} f(x)$$

By identification

For a given function φ

$$\bar{\mathbb{E}}_f(\varphi(X)) = \sup_{x \in \mathbf{X}} \varphi(x) f(x)$$

Intuitively

$$\mathbb{E}_f^*(X) = \operatorname*{argmax}_x f(x)$$

Example: Maximum-likelihood estimate with i.i.d. samples $y_1, \ldots, y_n \sim p(\cdot | x)$

$$\mathbb{E}_{f}^{*}(X \mid y_{1:n}) = \operatorname*{argmax}_{x} f(x) \prod_{i=1}^{n} p(y_{i} \mid x)$$

 \rightarrow can justify profile likelihood

Statement

Consider:

- Some u.v.s X_1, X_2, \ldots on \mathbb{R}^d i.i.d. by f
- The u.v. $S_n = n^{-1} \sum_{i=1}^n X_n$ described by

$$f_{S_n}(y) = \sup \left\{ \prod_{i=1}^n f(x_i) : \frac{1}{n} (x_1 + \dots + x_n) = y \right\}.$$

Proposition

Let f be a possibility function such that $f(x) \to 0$ when $||x|| \to \infty$ and $\operatorname{argmax}_x f(x) = \mu$. If f verifies some additional regularity conditions then it holds that

$$\lim_{n\to\infty}f_{S_n}=\mathbf{1}_{\mu},$$

where the limit is considered point-wise.

\rightarrow Confirms the intuitive definition of expectation

Statement

Consider:

- Some u.v.s X_1, X_2, \ldots on \mathbb{R}^d i.i.d. by f
- The u.v. $S_n = n^{-1} \sum_{i=1}^n X_n$ described by

$$f_{S_n}(y) = \sup \Big\{ \prod_{i=1}^n f(x_i) : \frac{1}{n} (x_1 + \dots + x_n) = y \Big\}.$$

Proposition

Let f be a possibility function such that $f(x) \to 0$ when $||x|| \to \infty$ and $\operatorname{argmax}_x f(x) = \mu$. If f verifies some additional regularity conditions then it holds that

$$\lim_{n\to\infty}f_{S_n}=\mathbf{1}_{\mu},$$

where the limit is considered point-wise.

 \rightarrow Confirms the intuitive definition of expectation

Statement

Consider:

- Some u.v.s X_1, X_2, \ldots on \mathbb{R}^d i.i.d. by f
- The u.v. $S_n = n^{-1} \sum_{i=1}^n X_n$ described by

$$f_{S_n}(y) = \sup \Big\{ \prod_{i=1}^n f(x_i) : \frac{1}{n} (x_1 + \dots + x_n) = y \Big\}.$$

Proposition

Let f be a possibility function such that $f(x) \to 0$ when $||x|| \to \infty$ and $\operatorname{argmax}_x f(x) = \mu$. If f verifies some additional regularity conditions then it holds that

$$\lim_{n \to \infty} f_{S_n} = \mathbf{1}_{\mu},$$

where the limit is considered point-wise.

 \rightarrow Confirms the intuitive definition of expectation

Statement

Consider:

- Some u.v.s X_1, X_2, \ldots on \mathbb{R}^d i.i.d. by f
- The u.v. $S_n = n^{-1} \sum_{i=1}^n X_n$ described by

$$f_{S_n}(y) = \sup \Big\{ \prod_{i=1}^n f(x_i) : \frac{1}{n} (x_1 + \dots + x_n) = y \Big\}.$$

Proposition

Let f be a possibility function such that $f(x) \to 0$ when $||x|| \to \infty$ and $\operatorname{argmax}_x f(x) = \mu$. If f verifies some additional regularity conditions then it holds that

$$\lim_{n \to \infty} f_{S_n} = \mathbf{1}_{\mu},$$

where the limit is considered point-wise.

 \rightarrow Confirms the intuitive definition of expectation

Law of large numbers Example

- 1. Consider observations Y, Y_1, Y_2, \ldots i.i.d. by $f_Y(\cdot | \theta) = \overline{\mathcal{N}}(\cdot; \theta, \sigma^2)$
- 2. The sample average $S_n = n^{-1} \sum_{i=1}^n Y_i$ is a sufficient statistics, i.e.

$$f_{Y_{1:n}}(y_1, \dots, y_n \mid \theta) = \prod_{i=1}^n f_Y(y_i \mid \theta) = \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - s_n)^2\right) \exp\left(-\frac{n}{2\sigma^2} (\theta - s_n)^2\right)$$

3. Consider instead the likelihood

$$f_{S_n}(s \mid \theta) = \sup_{\substack{y_1, \dots, y_n \\ n^{-1} \sum_i y_i = s}} f_{Y_{1:n}}(y_1, \dots, y_n \mid \theta) = \exp\left(-\frac{n}{2\sigma^2}(\theta - s)^2\right)$$

 \rightarrow tends to $\mathbf{1}_{\theta}$ as *n* grows by the LLN

Example

- 1. Consider observations Y, Y_1, Y_2, \ldots i.i.d. by $f_Y(\cdot | \theta) = \overline{\mathcal{N}}(\cdot; \theta, \sigma^2)$
- 2. The sample average $S_n = n^{-1} \sum_{i=1}^n Y_i$ is a sufficient statistics, i.e.

$$f_{Y_{1:n}}(y_1, \dots, y_n | \theta) = \prod_{i=1}^n f_Y(y_i | \theta)$$

= $\exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - s_n)^2\right) \exp\left(-\frac{n}{2\sigma^2} (\theta - s_n)^2\right)$

3. Consider instead the likelihood

$$f_{S_n}(s \mid \theta) = \sup_{\substack{y_1, \dots, y_n \\ n^{-1} \sum_i y_i = s}} f_{Y_{1:n}}(y_1, \dots, y_n \mid \theta) = \exp\left(-\frac{n}{2\sigma^2}(\theta - s)^2\right)$$

 \rightarrow tends to $\mathbf{1}_{\theta}$ as *n* grows by the LLN

Example

- 1. Consider observations Y, Y_1, Y_2, \ldots i.i.d. by $f_Y(\cdot | \theta) = \overline{\mathcal{N}}(\cdot; \theta, \sigma^2)$
- 2. The sample average $S_n = n^{-1} \sum_{i=1}^n Y_i$ is a sufficient statistics, i.e.

$$f_{Y_{1:n}}(y_1, \dots, y_n \mid \theta) = \prod_{i=1}^n f_Y(y_i \mid \theta)$$

= $\exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - s_n)^2\right) \exp\left(-\frac{n}{2\sigma^2} (\theta - s_n)^2\right)$

3. Consider instead the likelihood

$$f_{S_n}(s \mid \theta) = \sup_{\substack{y_1, \dots, y_n \\ n^{-1} \sum_i y_i = s}} f_{Y_{1:n}}(y_1, \dots, y_n \mid \theta) = \exp\left(-\frac{n}{2\sigma^2}(\theta - s)^2\right)$$

 \rightarrow tends to $\mathbf{1}_{\theta}$ as *n* grows by the LLN

Statement

Proposition

If $\mathbb{E}_{f}^{*}(X) = \{\mu\}$ and if f is strictly log-concave and twice differentiable at μ , then the possibility function f_{n} describing the u.v. $\sqrt{n}(S_{n} - \mu)$ verifies

$$\lim_{n \to \infty} f_n(x) = \exp\left(-\frac{1}{2}|f''(\mu)|(x-\mu)^2\right)$$

for any x in the domain of f.

Consequences:

- Recover exactly the Laplace approximation
- Can study asymptotic properties of estimators like MLE

Statement

Proposition

If $\mathbb{E}_{f}^{*}(X) = \{\mu\}$ and if f is strictly log-concave and twice differentiable at μ , then the possibility function f_{n} describing the u.v. $\sqrt{n}(S_{n} - \mu)$ verifies

$$\lim_{n \to \infty} f_n(x) = \exp\left(-\frac{1}{2}|f''(\mu)|(x-\mu)^2\right)$$

for any x in the domain of f.

Consequences:

- Recover exactly the Laplace approximation
- Can study asymptotic properties of estimators like MLE

Variance

Variance of an u.v.

CLT suggests a definition of the variance as

$$\mathbb{V}_f^*(X) = -\frac{1}{f^{\prime\prime}(\mathbb{E}_f^*(X))}$$

Example (Gamma possibility function on $(0,\infty)$)

$$\mathbb{E}_{f}^{*}(X) = k\theta$$
 and $\mathbb{V}_{f}^{*}(X) = k\theta^{2}$,

with shape parameter $k \ge 0$ and scale parameter $\theta > 0$

Example (Cauchy possibility function on \mathbb{R})

$$\mathbb{E}_f^*(X) = x_0$$
 and $\mathbb{V}_f^*(X) = \frac{\gamma^2}{2}$,

with location parameter $x_0 \in \mathbb{R}$ and scale parameter $\gamma > 0$

Jérémie Houssineau (Warwick)

Variance

Variance of an u.v.

CLT suggests a definition of the variance as

$$\mathbb{V}_f^*(X) = -\frac{1}{f^{\prime\prime}(\mathbb{E}_f^*(X))}$$

Example (Gamma possibility function on $(0,\infty)$)

$$\mathbb{E}_{f}^{*}(X) = k\theta$$
 and $\mathbb{V}_{f}^{*}(X) = k\theta^{2}$,

with shape parameter $k \ge 0$ and scale parameter $\theta > 0$

Example (Cauchy possibility function on \mathbb{R})

$$\mathbb{E}_f^*(X) = x_0$$
 and $\mathbb{V}_f^*(X) = \frac{\gamma^2}{2}$

with location parameter $x_0 \in \mathbb{R}$ and scale parameter $\gamma > 0$

Jérémie Houssineau (Warwick)

Variance

Variance of an u.v.

CLT suggests a definition of the variance as

$$\mathbb{V}_f^*(X) = -\frac{1}{f^{\prime\prime}(\mathbb{E}_f^*(X))}$$

Example (Gamma possibility function on $(0,\infty)$)

$$\mathbb{E}_{f}^{*}(X) = k\theta$$
 and $\mathbb{V}_{f}^{*}(X) = k\theta^{2}$,

with shape parameter $k \ge 0$ and scale parameter $\theta > 0$

Example (Cauchy possibility function on \mathbb{R})

$$\mathbb{E}_f^*(X) = x_0$$
 and $\mathbb{V}_f^*(X) = \frac{\gamma^2}{2}$,

with location parameter $x_0 \in \mathbb{R}$ and scale parameter $\gamma > 0$

Outline

- A motivating example
 - Multi-target tracking
 - Applications
- 2 Outer probability measures
 - Fundamentals
 - Properties
 - Asymptotic properties
- **③** Inference and applications
 - Bayesian inference
 - Sequential inference
 - Applications

Conclusion

Ingredients:

- $\bullet\,$ Unknown: u.v. X on ${\bf X}$ represented by a prior f
- \bullet Observation: u.v. Y represented by a likelihood $h(\cdot\,|\,x)$

Bayes' rule

$$f(x \mid y) = \frac{h(y \mid x)f(x)}{\sup_{x' \in \mathbf{X}} h(y \mid x')f(x')}$$

for some realisation y of Y

Connection with optimisation

Estimating $\mathbb{E}^*_{f(\cdot \mid y)}(X)$ is the same as

$$x^* = \operatorname*{argmax}_{x \in \mathbf{X}} \log h(y \mid x) + \log f(x)$$

Ingredients:

- $\bullet\,$ Unknown: u.v. X on ${\bf X}$ represented by a prior f
- Observation: u.v. Y represented by a likelihood $h(\cdot | x)$

Bayes' rule

$$f(x \mid y) = \frac{h(y \mid x)f(x)}{\sup_{x' \in \mathbf{X}} h(y \mid x')f(x')}$$

for some realisation y of Y

Connection with optimisation

Estimating $\mathbb{E}^*_{f(\cdot \mid y)}(X)$ is the same as

$$x^* = \operatorname*{argmax}_{x \in \mathbf{X}} \log h(y \,|\, x) + \log f(x)$$

Ingredients:

- $\bullet\,$ Unknown: u.v. X on ${\bf X}$ represented by a prior f
- \bullet Observation: u.v. Y represented by a likelihood $h(\cdot\,|\,x)$

Bayes' rule

$$f(x \mid y) = \frac{h(y \mid x)f(x)}{\sup_{x' \in \mathbf{X}} h(y \mid x')f(x')}$$

for some realisation y of Y

Connection with optimisation

Estimating $\mathbb{E}^*_{f(\cdot \mid y)}(X)$ is the same as

$$x^* = \operatorname*{argmax}_{x \in \mathbf{X}} \log h(y \,|\, x) + \log f(x)$$

Ingredients:

- $\bullet\,$ Unknown: u.v. X on ${\bf X}$ represented by a prior f
- \bullet Observation: u.v. Y represented by a likelihood $h(\cdot\,|\,x)$

Bayes' rule

$$f(x \mid y) = \frac{h(y \mid x)f(x)}{\sup_{x' \in \mathbf{X}} h(y \mid x')f(x')}$$

for some realisation y of Y

Connection with optimisation

Estimating $\mathbb{E}^*_{f(\cdot \mid y)}(X)$ is the same as

$$x^* = \operatorname*{argmax}_{x \in \mathbf{X}} \log h(y \mid x) + \log f(x)$$

Filtering for possibility functions

A state space model

Consider a partially-observed Markov chain $\{X_n\}_n$ on **X** such that

 $X_n = G(X_{n-1}) + V_n$ $Y_n = H(X_n) + W_n$

with $\{V_n\}_n$ and $\{W_n\}_n$ i.i.d. such that

 $f_{X_n}(\cdot | X_{n-1}) = g(\cdot | X_{n-1})$ and $f_{Y_n}(\cdot | X_n) = h(\cdot | X_n)$

Filtering equations

$$\begin{cases} f_{X_n}(x \mid y_{1:n-1}) = \sup_{x' \in \mathbf{X}} g(x \mid x') f_{X_{n-1}}(x' \mid y_{1:n-1}) \\ \\ f_{X_n}(x \mid y_{1:n}) = \frac{h(y_n \mid x) f_{X_n}(x \mid y_{1:n-1})}{\sup_{x' \in \mathbf{X}} h(y_n \mid x') f_{X_n}(x' \mid y_{1:n-1})} \end{cases}$$

Filtering for possibility functions

A state space model

Consider a partially-observed Markov chain $\{X_n\}_n$ on **X** such that

 $X_n = G(X_{n-1}) + V_n$ $Y_n = H(X_n) + W_n$

with $\{V_n\}_n$ and $\{W_n\}_n$ i.i.d. such that

 $f_{X_n}(\cdot | X_{n-1}) = g(\cdot | X_{n-1})$ and $f_{Y_n}(\cdot | X_n) = h(\cdot | X_n)$

Filtering equations

$$\begin{cases} f_{X_n}(x \mid y_{1:n-1}) = \sup_{x' \in \mathbf{X}} g(x \mid x') f_{X_{n-1}}(x' \mid y_{1:n-1}) \\ f_{X_n}(x \mid y_{1:n}) = \frac{h(y_n \mid x) f_{X_n}(x \mid y_{1:n-1})}{\sup_{x' \in \mathbf{X}} h(y_n \mid x') f_{X_n}(x' \mid y_{1:n-1})}. \end{cases}$$

Kalman filter

Recursion

$$f_{n-1}(x \mid y_{1:n-1}) = \bar{\mathcal{N}}(x; m_{n-1}, \Sigma_{n-1})$$
$$g(x \mid x') = \bar{\mathcal{N}}(x; Fx', Q)$$
$$h(y \mid x) = \bar{\mathcal{N}}(y; Hx, R)$$

 \rightarrow Same means $m_{n|n-1}$, m_n and spreads $\Sigma_{n|n-1}$, Σ_n

Different marginal likelihood

$$f_{Y_n}(y_n) = \exp\left(-\frac{1}{2}(y_n - Hm_{n|n-1})^T S_n^{-1}(y_n - Hm_{n|n-1})\right)$$
$$= H\Sigma_{n|n-1}H^T + R$$

J. H. and A. Bishop. "Smoothing and filtering with a class of outer measures". In: SIAM Journal on Uncertainty Quantification 6.2 (2018)

Kalman filter

Recursion

$$f_{n-1}(x \mid y_{1:n-1}) = \bar{\mathcal{N}}(x; m_{n-1}, \Sigma_{n-1})$$
$$g(x \mid x') = \bar{\mathcal{N}}(x; Fx', Q)$$
$$h(y \mid x) = \bar{\mathcal{N}}(y; Hx, R)$$

 \rightarrow Same means $m_{n|n-1}$, m_n and spreads $\Sigma_{n|n-1}$, Σ_n

Different marginal likelihood

$$f_{Y_n}(y_n) = \exp\left(-\frac{1}{2}(y_n - Hm_{n|n-1})^T S_n^{-1}(y_n - Hm_{n|n-1})\right)$$

with $S_n = H\Sigma_{n|n-1}H^T + R$

J. H. and A. Bishop. "Smoothing and filtering with a class of outer measures". In: SIAM Journal on Uncertainty Quantification 6.2 (2018)

Non-linear filtering

Particle approximation of f:

1. Find the probability distribution

$$p^* = \operatorname*{argmax}_{p \in \mathcal{P}(\mathbf{X})} \mathbf{H}(p)$$

such that $\mathbf{1}_B(x)p(x)dx \leq \sup_{x \in B} f(x)$ for any $B \subseteq \mathbf{X}$

- 2. Get N samples x_1, \ldots, x_n from p^*
- 3. Weight the samples as $w_i = f(x_i), i \in \{1, \ldots, N\}$

J. H. and B. Ristić. "Sequential Monte Carlo algorithms for a class of outer measures". In: arXiv preprint arXiv:1704.01233 (2017)

Non-linear filtering

 $Particle \ approximation \ of \ f:$

1. Find the probability distribution

 $p^* = \operatorname*{argmax}_{p \in \mathcal{P}(\mathbf{X})} \mathrm{H}(p)$

such that $\mathbf{1}_B(x)p(x)dx \leq \sup_{x \in B} f(x)$ for any $B \subseteq \mathbf{X}$

- 2. Get N samples x_1, \ldots, x_n from p^*
- 3. Weight the samples as $w_i = f(x_i), i \in \{1, \ldots, N\}$

J. H. and B. Ristić. "Sequential Monte Carlo algorithms for a class of outer measures". In: arXiv preprint arXiv:1704.01233 (2017)
Non-linear filtering

 $Particle \ approximation \ of \ f:$

1. Find the probability distribution

 $p^* = \operatorname*{argmax}_{p \in \mathcal{P}(\mathbf{X})} \mathbf{H}(p)$

such that $\mathbf{1}_B(x)p(x)dx \leq \sup_{x \in B} f(x)$ for any $B \subseteq \mathbf{X}$

2. Get N samples x_1, \ldots, x_n from p^*

3. Weight the samples as $w_i = f(x_i), i \in \{1, \ldots, N\}$

J. H. and B. Ristić. "Sequential Monte Carlo algorithms for a class of outer measures". In: $arXiv\ preprint\ arXiv:1704.01233\ (2017)$

Jérémie Houssineau (Warwick)

Non-linear filtering

 $Particle \ approximation \ of \ f:$

1. Find the probability distribution

$$p^* = \operatorname*{argmax}_{p \in \mathcal{P}(\mathbf{X})} \mathbf{H}(p)$$

such that $\mathbf{1}_B(x)p(x)dx \leq \sup_{x \in B} f(x)$ for any $B \subseteq \mathbf{X}$

- 2. Get N samples x_1, \ldots, x_n from p^*
- 3. Weight the samples as $w_i = f(x_i), i \in \{1, \ldots, N\}$

J. H. and B. Ristić. "Sequential Monte Carlo algorithms for a class of outer measures". In: $arXiv\ preprint\ arXiv:1704.01233\ (2017)$

Jérémie Houssineau (Warwick)

Bearings-only tracking: Robustness

Standard scenario with measurement noise:

- modelled as Gaussian
- $\bullet\,$ simulated as Student's t with ν d.f.

 ν 3
 5
 8
 ∞

 probability
 43.6
 21.2
 12.4
 5.4

 possibility
 21.0
 6.2
 1.8
 0.6

N = 5000

3		8	00
34.0	11.6	6.2	0.6
17.8	2.8	0.4	

B. Ristić, J. H., and S. Arulampalam. "Robust target motion analysis using the possibility Particle filter". In: $IET\ Radar\ Sonar\ Navigation\ (2018)$

Jérémie Houssineau (Warwick)

Assimilating data with o.p.m.s

Bearings-only tracking: Robustness

Standard scenario with measurement noise:

- modelled as Gaussian
- simulated as Student's t with ν d.f.

 $N\,=\,2000$

ν	3	5	8	∞
probability	43.6	21.2	12.4	5.4
possibility	21.0	6.2	1.8	0.6

N = 5000

3		8	00
34.0	11.6	6.2	0.6
17.8	2.8	0.4	

B. Ristić, J. H., and S. Arulampalam. "Robust target motion analysis using the possibility Particle filter". In: *IET Radar Sonar Navigation* (2018)

Jérémie Houssineau (Warwick)

Assimilating data with o.p.m.s

Bearings-only tracking: Robustness

Standard scenario with measurement noise:

- modelled as Gaussian
- simulated as Student's t with ν d.f.

N = 2000

ν	3	5	8	∞
probability	43.6	21.2	12.4	5.4
possibility	21.0	6.2	1.8	0.6

N = 5000

ν	3	5	8	∞
probability	34.0	11.6	6.2	0.6
possibility	17.8	2.8	0.4	0

B. Ristić, J. H., and S. Arulampalam. "Robust target motion analysis using the possibility Particle filter". In: *IET Radar Sonar Navigation* (2018)

Jérémie Houssineau (Warwick)

Assimilating data with o.p.m.s

Natural language processing: Bike theft

Figure: Map of the surroundings (Google Maps). Red-dotted rectangle: area of interest, red dot: location of bike theft.

A. Bishop, J. H., D. Angley, and B. Ristić. "Spatio-temporal tracking from natural language statements using outer probability theory". In: *Elsevier Information Sciences* 463–464 (2018)

Natural language processing: Bike theft

Information to be confirmed:

- 1. *Suspect alibi*: "I was with a friend at the tram stop on the intersection of La Trobe St. and Elizabeth St."
- 2. CCTV: Recording of the theft

The witnesses' declarations are:

- 1. "The suspect has been seen on Elizabeth St. around 2.07p.m."
- 2. "The suspect turned at the intersection of Swanston and Abeckett St. between 2.25p.m. and 2.35p.m."
- 3. "The suspect has been seen near RMIT building 80 around 2.35p.m."

Natural language processing: Bike theft

Information to be confirmed:

- 1. Suspect alibi: "I was with a friend at the tram stop on the intersection of La Trobe St. and Elizabeth St."
- 2. *CCTV*: Recording of the theft

The witnesses' declarations are:

- 1. "The suspect has been seen on Elizabeth St. around 2.07p.m."
- 2. "The suspect turned at the intersection of Swanston and Abeckett St. between 2.25p.m. and 2.35p.m."
- 3. "The suspect has been seen near RMIT building 80 around 2.35p.m."

A negative example: track before detect

Principle:

- Use full image instead of extracted point measurements
- Model the background noise and the signal directly

Attempt:

- Use possibility function to bring robustness
- Not informative enough

Possible direction:

 $\rightarrow\,$ Use outer probability measures of the form

$$\bar{P}(B) = \sup_{\theta \in B} p(B \mid \theta) f(\theta)$$

 $\rightarrow\,$ More informative model that still retains some robustness

A negative example: track before detect

Principle:

- Use full image instead of extracted point measurements
- Model the background noise and the signal directly

Attempt:

- Use possibility function to bring robustness
- Not informative enough

Possible direction:

 \rightarrow Use outer probability measures of the form

$$\bar{P}(B) = \sup_{\theta \in B} p(B \mid \theta) f(\theta)$$

 $\rightarrow\,$ More informative model that still retains some robustness

A negative example: track before detect

Principle:

- Use full image instead of extracted point measurements
- Model the background noise and the signal directly

Attempt:

- Use possibility function to bring robustness
- Not informative enough

Possible direction:

 $\rightarrow~$ Use outer probability measures of the form

$$\bar{P}(B) = \sup_{\theta \in B} p(B \mid \theta) f(\theta)$$

 $\rightarrow\,$ More informative model that still retains some robustness

Conclusion

Outline

- A motivating example
 - Multi-target tracking
 - Applications
- 2 Outer probability measures
 - Fundamentals
 - Properties
 - Asymptotic properties
- 3 Inference and applications
 - Bayesian inference
 - Sequential inference
 - Applications

Conclusion

Multi-target tracking with possibility functions

Ingredients:

- Uncertain counting measure described by \boldsymbol{f}_n
- Represented by the intensity measure

$$\bar{F}_n(B) = \bar{\mathbb{E}}_{\boldsymbol{f}_n} \left(\max_{1 \le i \le N} \mathbf{1}_B(X_n^i) \right)$$

Update equation:

$$\bar{F}_n(x \mid \mathcal{Y}_{1:n}) = a_{\text{FN}} \bar{F}_n(x \mid \mathcal{Y}_{1:n-1}) \lor \max_{y \in \mathcal{Y}_n} \frac{a_{\text{TP}} h(y \mid x) \bar{F}_n(x \mid \mathcal{Y}_{1:n-1})}{\bar{F}_{\text{FP}}(y) \lor a_{\text{TP}} \sup_{x'} h(y \mid x') \bar{F}_n(x' \mid \mathcal{Y}_{1:n-1})}$$

Jérémie Houssineau (Warwick)

J. H. "Detection and estimation of partially-observed dynamical systems: an outer-measure approach". In: *arXiv:1801:00571* (2018)

Multi-target tracking with possibility functions

Ingredients:

- Uncertain counting measure described by \boldsymbol{f}_n
- Represented by the intensity measure

$$\bar{F}_n(B) = \bar{\mathbb{E}}_{\boldsymbol{f}_n} \left(\max_{1 \le i \le N} \mathbf{1}_B(X_n^i) \right)$$

Update equation:

$$\bar{F}_n(x \mid \mathcal{Y}_{1:n}) = a_{\text{FN}} \bar{F}_n(x \mid \mathcal{Y}_{1:n-1}) \vee \max_{y \in \mathcal{Y}_n} \frac{a_{\text{TP}} h(y \mid x) \bar{F}_n(x \mid \mathcal{Y}_{1:n-1})}{\bar{F}_{\text{FP}}(y) \vee a_{\text{TP}} \sup_{x'} h(y \mid x') \bar{F}_n(x' \mid \mathcal{Y}_{1:n-1})}$$

with $a_{\text{FN}} \vee a_{\text{TP}} = 1$

Jérémie Houssineau (Warwick)

J. H. "Detection and estimation of partially-observed dynamical systems: an outer-measure approach". In: arXiv:1801:00571 (2018)

Multi-target tracking with possibility functions

Advantages:

• Only a lower bound on the probability of detection is required, e.g.

$$a_{\rm FN} = 0.2$$
 and $a_{\rm TP} = 1 \implies p_{\rm TP} \in [0.8, 1]$

• The distribution of the false positives does not need to be fully known

Challenges:

- Track extraction is less obvious
- At least *some* information is required on the false positives

 \rightarrow proceed by negation?

J. H. "Detection and estimation of partially-observed dynamical systems: an outer-measure approach". In: $arXiv:1801:00571\ (2018)$

Multi-target tracking with possibility functions

Advantages:

• Only a lower bound on the probability of detection is required, e.g.

$$a_{\rm FN} = 0.2$$
 and $a_{\rm TP} = 1 \implies p_{\rm TP} \in [0.8, 1]$

• The distribution of the false positives does not need to be fully known

Challenges:

- Track extraction is less obvious
- At least *some* information is required on the false positives

 \rightarrow proceed by negation?

J. H. "Detection and estimation of partially-observed dynamical systems: an outer-measure approach". In: $arXiv:1801:00571\ (2018)$

Concluding remarks

$\bullet\,$ Most of the introduced ideas extend to outer probability measures like \bar{P}

• Discussions about the nature of uncertainty become practical

• There is an opportunity to provide justification for heuristics

Concluding remarks

- $\bullet\,$ Most of the introduced ideas extend to outer probability measures like \bar{P}
- Discussions about the nature of uncertainty become practical
- There is an opportunity to provide justification for heuristics

Concluding remarks

- $\bullet\,$ Most of the introduced ideas extend to outer probability measures like \bar{P}
- Discussions about the nature of uncertainty become practical
- There is an opportunity to provide justification for heuristics

References

A. Bishop, J. H., D. Angley, and B. Ristić. "Spatio-temporal tracking from natural language statements using outer probability theory". In: *Elsevier Information Sciences* 463–464 (2018).

J. H. "Detection and estimation of partially-observed dynamical systems: an outer-measure approach". In: arXiv:1801:00571 (2018).

J. H. "Parameter estimation with a class of outer probability measures". In: arXiv:1801.00569 (2018).

J. H. and A. Bishop. "Smoothing and filtering with a class of outer measures". In: *SIAM Journal on Uncertainty Quantification* 6.2 (2018).

J. H. and B. Ristić. "Sequential Monte Carlo algorithms for a class of outer measures". In: *arXiv preprint arXiv:1704.01233* (2017).

R.P.S. Mahler. "Multitarget Bayes filtering via first-order multitarget moments". In: *IEEE Transactions on Aerospace and Electronic systems* 39.4 (2003).

B. Ristić, J. H., and S. Arulampalam. "Robust target motion analysis using the possibility Particle filter". In: *IET Radar Sonar Navigation* (2018).

Thank you!

jeremie.houssineau@warwick.ac.uk jeremiehoussineau.com