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Question: How to make a weather forecast?

You will need...

• A theoretical model:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹 𝑡𝑡, 𝑢𝑢 𝑡𝑡

𝑢𝑢: unknown variable representing the 
state of the atmosphere (velocity 
field, temperature, moisture, ...).

• Observational measurements.
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• Data Assimilation combines the theoretical 
model with information from observations 
in order to obtain a good approximation of 
the state of the physical system at a certain 
future time. 

• Numerous applications: meteorology, 
oceanography, oil industry, neuroscience, 
etc.

• Several approaches:
▫ Nudging.
▫ Kalman Filter (KF).
▫ Ensemble Kalman Filter (EnKF).

▫ Local Ensemble Transform Kalman Filter (LETKF).
▫ 3DVAR.
▫ 4DVAR.



Feedback-control (nudging) approach 
(Azouani-Olson-Titi, ‘14)

original (forecast) model

approximate model = 
original model + feedback 

control term

• Combine model and measurements by adding a feedback-control term to the 
equations. 

Approximate solution 𝑣𝑣; arbitrary 𝑣𝑣 0 = 𝑣𝑣0

Reference solution 𝑢𝑢; missing 𝑢𝑢 0 = 𝑢𝑢0

Feedback control term 
forces coarse spatial scales 
of 𝑣𝑣 toward those of 𝑢𝑢



Background idea
• Long-time behavior of solutions to dissipative evolution equations is determined by 

only a finite number of degrees of freedom.
▫ Fourier modes, 2D-NSE (Foias-Prodi, ‘67):

Let         be the projection operator onto the first N Fourier modes.
s.t. if               are two solutions of 2D-NSE with

then

▫ Spatial nodes, 2D-NSE (Foias-Temam, ’84; Jones-Titi, ‘93).
▫ Finite volume elements, 2D-NSE (Foias-Titi, ’91; Jones-Titi, ’92, ‘93).
▫ Other dissipative evolution eqs. (Cockburn-Jones-Titi, ‘97).



Example

• Consider the forecast (theoretical) model given by the 2D incompressible 
Navier-Stokes equations:

(2D-NSE)

density of volume forcespressure

kinematic viscosityvelocity field

• Assume:
▫ No model error.
▫ Continuous in time and error-free measurements.



Approximate model

same as for the 2D-NSE

modified pressure

resolution of spatial mesh

relaxation parameter

linear interpolant operator in space

controls large scales
controls 

small scales



• Denote                      .

• Assume                      

Example:  
▫ Low modes projector: 



▫ Finite volume elements:

OR:

Ex.:  

▫ Nodal values: 



Theorem (Azouani-Olson-Titi, ‘14)

If and                           , then                                                  .

Some related works
• Other models: 3D NS-alpha (Albanez-Nussenzveig Lopes-Titi, ‘16), 3D Brinkman-

Forchheimer-extended Darcy (Markowich-Titi-Trabelsi, ’16), 2D-SQG (Jolly-Martinez-Titi, 
’17).

• Partial observations of the state variables:
▫ 2D Bénard, only velocity (Farhat-Jolly-Titi, ’15).
▫ 2D-NSE, one velocity component (Farhat-Lunasin-Titi, ’16) .
▫ 3D planetary geostrophic model, only temperature (Farhat-Lunasin-Titi, ‘16).
▫ 2D Bénard, only horizontal velocity component (Farhat-Lunasin-Titi, ’17).
▫ 3D Bénard in porous media, only temperature (Farhat-Lunasin-Titi, ’17).
▫ 3D Leray-alpha, only two components of velocity (Farhat-Lunasin-Titi, 17).



Some related works (cont’d)

• Higher order convergence, Gevrey class and        (Biswas-Martinez, ’17).
• Measurements with stochastic errors (Blomker-Law-Stuart-Zygalakis, ‘13; Bessaih-

Olson-Titi, ‘15).
• Time-averaged meas.: 2D-SQG (Jolly-Olson-Titi-Martinez), Lorenz (Blocher-Olson-

Martinez).
• Numerical computations:
▫ 2D-NSE (Gesho-Olson-Titi, ‘16).
▫ 2D Bénard (Altaf-Titi-Gebrael-Knio-Zhao-McCabe-Hoteit, ‘16).

• Nonlinear continuous  data assimilation – “super” exponential convergence  (Larios-
Pei, ‘17).

• Discrete in time meas. with syst. errors, 2D-NSE (Foias-Mondaini-Titi, ‘16).
• Numerical approximation by PPGM, 2D-NSE (Mondaini-Titi, ‘17).



Discrete in time Data Assimilation

• Discrete in space.

Spatial mesh with 
resolution of size h.

• Discrete in time.

Measurements are...

• May contain errors.
Denote by        the error at time      ,  

Measurement at time      : 



Approximate Model

• Assume                                          is a linear operator satisfying:

• Examples: low Fourier modes projector, finite volume elements.



Theorem (Foias-Mondaini-Titi, ‘16)
Assume:

If                     ,                                and                              , then 

Moreover, if              , then



Numerical Approximation
• In practice, numerical models can only compute finite-dimensional approximations.
• Goal: Obtain an analytical estimate of the error between a numerical approximation 

of      and the (full) reference solution     .
• For simplicity, assume: continuous in time and error-free measurements.
• Setting:

▫ Phase space of 2D-NSE:
▫ Apply projector                                   to the feedback-control equation:   

▫ Eigenvectors of                            :             , with eigenvalues            .
▫ Finite-dimensional space: 



Galerkin spectral method

Find                         satisfying

Notation: 



Theorem (Mondaini-Titi)   
If and                           , then                                   and                                  s.t., 
for N sufficiently large,

Thus,                                             s.t.

where



A Postprocessing of the Galerkin method
(‘García-Archilla’-Novo-Titi, ‘98)

Notation:

• Idea: Add to the Galerkin approximation of    
a suitable approximation of     :

(Approximate inertial manifold, Foias-
Manley-Temam, ’88)



Postprocessing Galerkin Algorithm

For obtaining an approximation of    , and thus     , at a certain time   

1. Integrate the Galerkin system over              to obtain              .

2. Obtain        satisfying 

3. Compute                         .

• Information on the high modes (fine spatial scales) is only used at the final 
time     ! This is one of the reasons for the efficiency of the Postprocessing 
Galerkin method (compared to, e.g., the Nonlinear Galerkin method).



Particular case: 

Theorem (Mondaini-Titi)
If and                   , then                                   and                                   s.t., for 
N sufficiently large, 

Thus,                                             s.t.



General case

• Assume                                    is a linear operator satisfying:

▫ s.t.

▫ s.t.

▫ s.t.

• Examples: low Fourier modes projector; finite volume elements.



Theorem (Mondaini-Titi [SIAM J. NUM. Anal. 2018])   
If and                          , then                                   and                                  s.t., 
for N sufficiently large,

Thus,                                             s.t.



Comparison
• Error using the Galerkin method (both types of      ):

• Error using the Postprocessing Galerkin method:

▫ Case                   :              

▫ General class of      :         

• Error estimates are uniform in time – feedback-control term stabilizes the large 
scales of the difference v – u, resulting in a globally asymptotically stable system.



• [Ibdah-Mondaini-Titi 2018] Similar results for fully discrete systems.

• [Garcia-Archilla, Novo & Titi 2018] Similar results for the finite elements 
version.

Recent extensions



Thank you!
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