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Abstract

Limit theorems of probability theory for sums of random
variables play important role in many applied problems, in par-
ticular, in problems of mathematical statistical physics:
◦ questions of equivalence of ensembles,
◦ asymptotic formulas for calculating the values of thermody-
namic functions,
◦ asymptotic behavior of total spins, etc.
This confirms the urgency of the problem of expanding the
range of applicability of such theorems.

Limit theorems for sums of independent random variables
form a complete theory which presents one of the main parts
of the probability theory. Two main directions for further re-
searches:
◦ the validity of the CLT for sums of dependent random vari-
ables;
◦ the asymptotic normality of different classes of non–linear
functionals (on independent or dependent random variables).



In the talk

• sufficiently wide classes of non-linear functionals preserv-
ing Gaussian distribution were introduced

• various conditions under which a sequence of such func-
tionals is asymptotically normal were established

◦ a generalization and sharpening of known results on
the CLT for weighted sums (linear functionals) of independent
random variables is obtained

Khachatryan L.A., Nahapetian B.S., Non–linear functionals
preserving normal distribution and their asymptotic normality,
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Normal distribution

Random variable ξ has a normal (Gaussian) distribution
N (a, σ2) if

P (ξ < z) =
1

σ
√
2π

z∫
−∞

exp

{
−
(x− a)2

2σ2

}
dx, z ∈ R

Random variable ξ has the standard normal (Gaussian)
distribution N (0,1)

P (ξ < z) =
1√
2π

z∫
−∞

e−x
2/2dx, z ∈ R

Characteristic function

Eeitξ = e−t
2/2



Stability of the normal distribution

Let ξ1, ξ2, ..., ξn be independent random variables with nor-
mal distributions

ξj ∼ N (aj, σ
2
j ), j = 1,2, ..., n

Put

Sn =
n∑

j=1

ξj

Then
Sn − ESn√

DSn
∼ N (0,1)

P

(
Sn − ESn√

DSn
< z

)
=

1√
2π

z∫
−∞

e−x
2/2dx, z ∈ Zd, n ≥ 1



Asymptotic normality

Theorem (Central Limit Theorem). Let η1, η2, ..., ηn be inde-
pendent identically distributed random variables, 0 < Dηj <∞,
j = 1,2, ..., n. Then

lim
n→∞P

(
Sn − ESn√

DSn
< z

)
=

1√
2π

z∫
−∞

e−x
2/2dx, z ∈ Zd

where Sn =
n∑

j=1
ηj.



Theorem (Levy–Lindeberg).For any n ≥ 1 let ηn,1, ηn,2, ..., ηn,k(n)
be a sequence of independent random variables (k(n)→∞ as
n→∞) such that

k(n)∑
j=1

Eηn,j = 0;
k(n)∑
j=1

Dηn,j = 1;

and for any ε > 0

k(n)∑
j=1

E
(
η2n,jI(|ηn,j| > ε)

)
→ 0 as n→∞.

Then for Sn =
k(n)∑
j=1

ηn,j the CLT is valid, i.e.

lim
n→∞P

(
Sn√
DSn

< z

)
=

1√
2π

z∫
−∞

e−x
2/2dx, z ∈ Zd.



1. Functionals preserving the normal distribution

Denote by fn = fn(x1, x2, ..., xn) the functional

fn : Rn → R

Functional fn preserves the normal distribution if for indepen-
dent random variables ξ1, ξ2, ..., ξn ∼ N (0,1) one has

fn(ξ1, ξ2, ..., ξn) ∼ N (0,1),

i.e. for any z ∈ R

P (fn(ξ1, ξ2, ..., ξn) < z) =
1√
2π

z∫
−∞

e−x
2/2dx



Examples of functionals
preserving the normal distribution

Example 1

f2(x1, x2) =
x1 + x2√

2

Example 2

f2(x1, x2) =

√
2 · x1x2√
x21 + x22

Example 3

f3(x1, x2, x3) =
x1x2 + x3√

1+ x21



Superposition of functionals preserving the normal
distribution

Any superposition of functionals preserving the normal dis-
tribution is again a functional which preserves the normal dis-
tribution.

Example 1’

fn(x1, x2, ..., xn) = f2
(
x1, fn−1(x2, ..., xn)

)
=

=
x1√
2
+

x2

(
√
2)2

+
x3

(
√
2)3

+ ...+
xn−2

(
√
2)n−2

+
xn−1 + xn

(
√
2)n−1

, n > 2

Example 2’

fn(x1, x2, ..., xn) =

√
n ·

n∏
j=1

xj√
n∑

j=1

∏
1≤i≤n : i 6=j

x2i

, n > 2



Example 3’

fn(x1, x2, ..., xn) = f3(x1, x2, fn−1(x1, x3, x4, ..., xn)) =

=
x1x2√
1+ x21

+
x1x3

1+ x21
+

x1x4

(1 + x21)
3/2

+ ...+

+
x1xn−1

(1 + x21)
(n−2)/2 +

xn

(1 + x21)
(n−2)/2,

n > 3

There are other ways to construct sequences of functionals
that preserve the normal distribution.



Linear functionals
(weighted sums)

Linear functional with coefficients α(n)j , j = 1, n, has the form

fn(x1, x2, ..., xn) =
n∑

j=1

α
(n)
j xj.



Condition on linear functionals to preserve the normal
distribution

Proposition. The linear functional fn with coefficients α(n)j ,
j = 1, n, preserves the normal distribution if and only if

n∑
j=1

(
α
(n)
j

)2
= 1



Proof. Let ξ1, ξ2, ..., ξn ∼ N (0,1) be independent random vari-

ables. Characteristic function ϕn of the random variable
n∑

j=1

α
(n)
j ξj

has the form

ϕn(t) = E exp

it
n∑

j=1

α
(n)
j ξj

 =
n∏

j=1

Ee
itα

(n)
j ξj .

Since α(n)j ξj ∼ N

(
0,
(
α
(n)
j

)2)
, we have

E exp
{
itα

(n)
j ξj

}
= exp

{
−
1

2

(
α
(n)
j t

)2}
.

Then

ϕn(t) =
n∏

j=1

e
−(α(n)j t)2/2

= exp

−t22
n∑

j=1

(
α
(n)
j

)2.
Hence, ϕn(t) = e−t

2/2 if and only if
n∑

j=1

(
α
(n)
j

)2
= 1.



Methods for constructing linear functionals
preserving the normal distribution

Proposition. Consider the functional

f2(x1, x2) = αx1 + βx2, α, β ∈ R\{0,1},

and the superposition

fn(x1, x2, ..., xn) = f2
(
x1, fn−1(x2, x3, ..., xn)

)
, n > 2. (1)

1. For any n ≥ 2, fn is the linear functional with coefficients
α
(n)
j of the form

α
(n)
n = βn−1, α

(n)
j = αβj−1, 1 ≤ j < n− 1. (2)

Conversely, any linear functional fn with coefficients given
by (2) can be represented as the superposition (1) where f2
has coefficients α and β.
2. The linear functional (1) preserves the normal distribution
if and only if the coefficients α and β of the functional f2 are
such that α2 + β2 = 1.



Proposition. Consider the functional

f2(x1, x2) = αx1 + βx2, α, β ∈ R\{0,1},

and the superposition

f2n(x1, ..., x2n) = f2
(
f2n−1(x1, ..., x2n−1), f2n−1(x2n−1+1, ..., x2n)

)
,

n > 1.

The linear functional f2n preserves the normal distribution if
and only if the coefficients α and β of the functional f2 are
such that α2 + β2 = 1. Moreover,

max
1≤j≤n

∣∣∣∣α(n)j

∣∣∣∣→ 0 as n→∞



Generalization of Example 3

Example 4. Functionals

fn+1(x0, x1, x2, x3, ..., xn) =
x0x1 + x2 + x3...+ xn√

n− 1+ x20

, n ≥ 2

preserve the normal distribution

One has

fn+1(x0, x1, x2, ..., xn) =
x0√

n− 1+ x20

·x1+
n∑

j=2

1√
n− 1+ x20

·xj.

Note that for any x0 ∈ R x0√
n− 1+ x20


2

+
n∑

j=2

 1√
n− 1+ x20


2

=
x20

n− 1+ x20
+

n− 1

n− 1+ x20
= 1.



The main class of non–linear functionals
preserving the normal distribution

Let α(n)j (z), j = 1, n, z ∈ R, be a set of functions. Put

fn+1(x0, x1, x2, ..., xn) =

= f
x0
n (x1, x2, ..., xn) =

n∑
j=1

α
(n)
j (x0) · xj.

(3)

Theorem. The functionals (3) preserve the normal distribu-
tion if

n∑
j=1

(
α
(n)
j (z)

)2
= 1 for any z ∈ R. (4)



Proof. Let ξ0, ξ1, ξ2, ..., ξn ∼ N (0,1) be independent random
variables. Let us show that

E

 n∑
j=1

α
(n)
j (ξ0)ξj

2k−1

= 0, E

 n∑
j=1

α
(n)
j (ξ0)ξj

2k

=
(2k)!

2kk!
,

k = 1,2, ...

We have

E

 n∑
j=1

α
(n)
j (ξ0)ξj

2k−1

=

=
∑

0≤m1,...,mn≤2k−1:
m1+...+mn=2k−1

(2k − 1)!

m1!m2! · ... ·mn!

n∏
i=1

Eξ
mi
i · E

 n∏
i=1

(
α
(n)
i (ξ0)

)mi

 .
Sincem1+m2+...+mn = 2k−1, for any numbers 0 ≤ m1, ...,mn ≤ 2k−
1 there exists i, 1 ≤ i ≤ n, such that mi is odd, and hence
Eξ

mi
i = 0.



For even moments we have

E

 n∑
j=1

α
(n)
j (ξ0)ξj

2k

=
(2k)!

2kk!
E

 n∑
i=1

(
α
(n)
i (ξ0)

)2k .
It remains to note that due to the condition (4)

E

 n∑
i=1

(
α
(n)
i (ξ0)

)2k = 1

for any k.

It is not difficult to see that in the proof of the theorem
above we do not use any condition on the distribution of ξ0.



Theorem 1. Let ζ, ξ1, ξ2, ..., ξn be independent random vari-
ables and let ξj ∼ N (0,1), j = 1, n. The random variable

fζn(ξ1, ξ2, ..., ξn) =
n∑

j=1

α
(n)
j (ζ)ξj

has the standard normal distribution if
n∑

j=1

(
α
(n)
j (z)

)2
= 1 for all z ∈ R.



Generalization of Example 4

Example 5. Let g : R→ R be a Borel function. Put

α
(n)
n (z) =

g(z)√
n− 1+ g2(z)

,

α
(n)
j (z) =

1√
n− 1+ g2(z)

, 1 ≤ j ≤ n− 1.

Then the functionals

fzn(x1, x2, ..., xn) =
n−1∑
j=1

xj√
n− 1+ g2(z)

+
xn · g(z)√

n− 1+ g2(z)
,

n ≥ 2, preserve the normal distribution.

Indeed, for any fixed n ≥ 2

n∑
j=1

(
α
(n)
j (z)

)2
=

n− 1

n− 1+ g2(z)
+

g2(z)

n− 1+ g2(z)
= 1.



◦ Linnik Yu.V., Eidlin V.L., Remark on analytic transforma-
tions of normal vectors. Theory of Probability and its Appli-
cations 13 (4), 1968

A method for constructing non–linear functionals preserving
normal distribution (proposed by Shiryaev and Romanovskiy):

Let Pj(xm, ..., xn), j = 1,2, ...,m − 1, be polynomials in
variables xm, ..., xn, such that

m−1∑
j=1

P2
j (xm, ..., xn)

is a polynomial in the same variables. Then the functional

fn(x1, x2, ..., xn) =

m−1∑
j=1

xjPj(xm, ..., xn)√√√√m−1∑
j=1

P2
j (xm, ..., xn)

preserves the normal distribution.



Example 6.

Let g, h be functions in one variable. Put

P1(x3) = f2(x3)− g2(x3), P2(x3) = 2f(x3)g(x3).

Then the functional

f3(x1, x2, x3) =
x1P1(x3) + x2P2(x3)√

P2
1 (x3) + P2

2 (x3)

=
x1 · (g2(x3)− h2(x3)) + x2 · 2g(x3)h(x3)

g2(x3) + h2(x3)

preserves the normal distribution.



2. Asymptotic normality of sequences of

functionals preserving the normal distribution

Let η1, η2, ..., ηn be independent random variables (not nec-
essarily Gaussian).

A sequence of functionals fn(η1, η2, ..., ηn), n ≥ 2, is asymp-
totically normal if their distributions converge to the standard
normal one as n→∞: for any z ∈ R

lim
n→∞P (fn(η1, η2, ..., ηn) < z) =

1√
2π

z∫
−∞

e−x
2/2dx



Theorem 2.Let random variable ζ and functions α(n)j , j = 1, n,
be such that

n∑
j=1

E

∣∣∣∣∣α(n)j (ζ)−
1
√
n

∣∣∣∣∣→ 0 as n→∞. (5)

Let η1, η2, ..., ηn be independent random variables with finite
second moments which are independent of ζ too and for which
the CLT holds. Then the sequence of functionals

fζn(η1, η2, ..., ηn) =
n∑

j=1

α
(n)
j (ζ)ηj, n ≥ 2,

is asymptotically normal.



Proof. For any n ≥ 2 we can write

fζn(η1, η2, ..., ηn) =
n∑

j=1

ηj√
n
+

n∑
j=1

(
α
(n)
j (ζ)−

1
√
n

)
ηj.

The first summand is asymptotically normal, the second one
tends to 0 in probability.

Indeed,

E|ηj| ≤
(
Eη2j

)1/2
= C <∞, j = 1, n.

Due to the Chebychev inequality for any ε > 0 we have

P

∣∣∣∣∣∣
n∑

j=1

(
α
(n)
j (ζ)−

1
√
n

)
ηj

∣∣∣∣∣∣ > ε

 ≤ 1

ε
E

∣∣∣∣∣∣
n∑

j=1

(
α
(n)
j (ζ)−

1
√
n

)
ηj

∣∣∣∣∣∣ ≤

≤
1

ε

n∑
j=1

E

∣∣∣∣∣α(n)j (ζ)−
1
√
n

∣∣∣∣∣E|ηi| ≤ C

ε

n∑
j=1

E

∣∣∣∣∣α(n)j (ζ)−
1
√
n

∣∣∣∣∣→ 0

as n→∞.



Example 5. The functionals

fzn(x1, x2, ..., xn) =
n−1∑
j=1

xj√
n− 1+ g2(z)

+
xn · g(z)√

n− 1+ g2(z)
,

n ≥ 2, are asymptotically normal.

Indeed, let the function g be such that Eg2(ζ) <∞. Then

n∑
j=1

E

∣∣∣∣∣α(n)j (ζ)−
1
√
n

∣∣∣∣∣ =

= E

∣∣∣∣∣∣∣
g(ζ)√

n− 1+ g2(ζ)
−

1
√
n

∣∣∣∣∣∣∣+ (n− 1)E

∣∣∣∣∣∣∣
1√

n− 1+ g2(ζ)
−

1
√
n

∣∣∣∣∣∣∣ ≤

≤
E|g(ζ)|√
n− 1

+
1
√
n
+
n− 1

n
·
E|1− g2(ζ)|√

n− 1
→ 0

as n→∞.



Theorem 3. Let functions α(n)j , j = 1, n, satisfy the condition

n∑
j=1

(
α
(n)
j (z)

)2
= 1 for all z ∈ R,

and let random variable ζ be such that

max
1≤j≤n

E

∣∣∣∣α(n)j (ζ)
∣∣∣∣→ 0 as n→ 0

and for some δ, 0 < δ < 1/2,

max
n≥1

n∑
j=1

E
1

2(1+δ)

(
α
(n)
j (ζ)

)2
≤ C <∞

Let η1, η2, ..., ηn be independent random variables which are
independent of ζ too and are such that Eηj = 0, Dηj = 1,
j = 1, n. Then the sequence of functionals

fζn(η1, η2, ..., ηn) =
n∑

j=1

α
(n)
j (ζ)ηj, n ≥ 2,

is asymptotically normal.



Proof. Let ξ1, ξ2, ..., ξn be independent standard normally dis-
tributed random variables which are also independent of ζ, η1, η2, ..., ηn.
We have

fζn(η1, η2, ..., ηn) =
n∑

j=1

α
(n)
j (ζ)ξj +

n∑
j=1

α
(n)
j (ζ)(ηj − ξj).

Since the functionals fζn preserve the normal distribution
n∑

j=1

α
(n)
j (ζ)ξj ∼ N (0,1)

Applying the Chebyshev inequality, one can show that

P

∣∣∣∣∣∣
n∑

j=1

α
(n)
j (ζ)(ηj − ξj)

∣∣∣∣∣∣ > ε

 ≤ (C√2
ε

)1+δ (
max
1≤j≤n

E

∣∣∣∣α(n)j (ζ)
∣∣∣∣
)δ
→ 0

as n→∞.



Lemma. Let functions α(n)j , j = 1, n, be such that

n∑
j=1

(
α
(n)
j (z)

)2
= 1 for all z ∈ R,

for independent random variables ζ, ξ1, ..., ξn, where ξj ∼ N (0,1),
and any ε > 0,

n∑
j=1

E

((
α
(n)
j (ζ)ξj

)2
I

(∣∣∣∣α(n)j (ζ)ξj

∣∣∣∣ > ε

))
→ 0 as n→∞.

Then for any independent random variables η1, ..., ηn which are
independent of ζ and such that Eηj = 0, Dηj = 1, j = 1, n,
and for any ε > 0

n∑
j=1

E

((
α
(n)
j (ζ)ηj

)2
I

(∣∣∣∣α(n)j (ζ)ηj

∣∣∣∣ > ε

))
→ 0 as n→∞,

the sequence of functionals

fζn(η1, η2, ..., ηn) =
n∑

j=1

α
(n)
j (ζ)ηj, n ≥ 2,

is asymptotically normal.



Proof. Since the functional fζn preserves the normal distribu-
tion, one has

E exp

it
n∑

j=1

α
(n)
j (ζ)ξj

 = e−t
2/2, n > 1,

where ξ1, ..., ξn are independent random variables with normal
distribution which are independent of η1, ..., ηn as well.

Hence ∣∣∣∣∣E exp

{
it

n∑
j=1

α
(n)
j (ζ)ηj

}
− e−t2/2

∣∣∣∣∣→ 0

m∣∣∣∣∣E exp

{
it

n∑
j=1

α
(n)
j (ζ)ηj

}
− E exp

{
it

n∑
j=1

α
(n)
j (ζ)ξj

}∣∣∣∣∣→ 0

as n→∞



Put

ζ
(n)
1 =

n∑
j=2

α
(n)
j (ζ)ξj, ζ

(n)
n =

n−1∑
j=1

α
(n)
j (ζ)ηj,

and for any k, 1 < k < n,

ζ
(n)
k = fζn(η1, ..., ηk−1,0, ξk+1, ..., ξn) =

k−1∑
j=1

α
(n)
j (ζ)ηj+

n∑
j=k+1

α
(n)
j (ζ)ξj.

Then∣∣∣∣∣∣E exp

it
n∑

j=1

α
(n)
j (ζ)ηj

− E exp

it
n∑

j=1

α
(n)
j (ζ)ξj


∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
n∑

k=1

(
E exp

{
it(ζ(n)k + α

(n)
k (ζ)ηk)

}
− E exp

{
it(ζ(n)k + α

(n)
k (ζ)ξk)

})∣∣∣∣∣∣ ≤

≤
n∑

k=1

∣∣∣∣Eeitζ(n)k · eitα
(n)
k (ζ)ηk − Eeitζ

(n)
k · eitα

(n)
k (ζ)ξk

∣∣∣∣.



Since for any k

Eeitζ
(n)
k α

(n)
k (ζ)ηk = Eeitζ

(n)
k α

(n)
k (ζ)Eηk = 0 = Eeitζ

(n)
k α

(n)
k (ζ)ξk,

Eeitζ
(n)
k

(
α
(n)
k (ζ)ηk

)2
= Eeitζ

(n)
k

(
α
(n)
k (ζ)

)2
Eη2k = Eeitζ

(n)
k

(
α
(n)
k (ζ)ξk

)2
,

we can write
n∑

k=1

∣∣∣∣Eeitζ(n)k · eitα
(n)
k (ζ)ηk − Eeitζ

(n)
k · eitα

(n)
k (ζ)ξk

∣∣∣∣ ≤

≤
n∑

k=1

E

∣∣∣∣∣eitα(n)k (ζ)ηk − 1− itα(n)k (ζ)ηk −
(it)2

2
(α(n)k (ζ)ηk)

2

∣∣∣∣∣+

+
n∑

k=1

E

∣∣∣∣∣eitα(n)k (ζ)ξk − 1− itα(n)k (ζ)ξk −
(it)2

2
(α(n)k (ζ)ξk)

2

∣∣∣∣∣ .



Using the well-known inequality∣∣∣∣∣∣eit −
N∑
k=0

(it)k

k!

∣∣∣∣∣∣ ≤ min

2 |t|N

N !
,
|t|N+1

(N +1)!

 , N = 0,1,2, ...

for any ε > 0 we obtain
n∑

k=1

E

∣∣∣∣∣eitα(n)k (ζ)ηk − 1− itα(n)k (ζ)ηk −
(it)2

2
(α(n)k (ζ)ηk)

2

∣∣∣∣∣ ≤

≤
|t|3

6
ε+ t2

n∑
k=1

E

((
α
(n)
k (ζ)ηk

)2
I

(∣∣∣∣α(n)k (ζ)ηk

∣∣∣∣ > ε

))
.

Similarly,
n∑

k=1

E

∣∣∣∣∣eitα(n)k (ζ)ξk − 1− itα(n)k (ζ)ξk −
(it)2

2
(α(n)k (ζ)ξk)

2

∣∣∣∣∣ ≤

≤
|t|3

6
ε+ t2

n∑
k=1

E

((
α
(n)
k (ζ)ξk

)2
I

(∣∣∣∣α(n)k (ζ)ξk

∣∣∣∣ > ε

))
.



Finally,

∣∣∣∣∣E exp

{
it

n∑
j=1

α
(n)
j (ζ)ηj

}
− e−t2/2

∣∣∣∣∣ ≤ |t|
3

3
ε+

+t2
n∑

k=1
E

((
α
(n)
k (ζ)ηk

)2
I

(∣∣∣∣α(n)k (ζ)ηk

∣∣∣∣ > ε

))
+

+t2
n∑

k=1
E

((
α
(n)
k (ζ)ξk

)2
I

(∣∣∣∣α(n)k (ζ)ξk

∣∣∣∣ > ε

))



Theorem 4. Let functions α(n)j , j = 1, n, be such that

n∑
j=1

(
α
(n)
j (z)

)2
= 1 for all z ∈ R,

and

max
1≤j≤n

sup
z∈R

∣∣∣∣α(n)j (z)
∣∣∣∣→ 0 as n→∞.

Then for any independent random variables ζ, η1, ..., ηn such
that Eηj = 0, Dηj = 1, j = 1, n, and for some δ > 0

sup
1≤j≤n

E
∣∣∣ηj∣∣∣2+δ = Cδ <∞,

the sequence of functionals

fζn(η1, η2, ..., ηn) =
n∑

j=1

α
(n)
j (ζ)ηj, n ≥ 2,

is asymptotically normal.



Proof. We need to check that conditions of the Lemma are
fulfilled. Since for any ε > 0

E

((
α
(n)
j (ζ)ηj

)2
I

(∣∣∣∣α(n)j (ζ)ηj

∣∣∣∣ > ε

))
≤
Cδ
εδ
E

∣∣∣∣α(n)j (ζ)
∣∣∣∣2+δ ,

1 ≤ j ≤ n, we have
n∑

j=1

E

((
α
(n)
j (ζ)ηj

)2
I

(∣∣∣∣α(n)j (ζ)ηj

∣∣∣∣ > ε

))
≤

Cδ
εδ

(
max
1≤j≤n

sup
z∈R

∣∣∣∣α(n)j (z)
∣∣∣∣
)δ
→ 0

as n→∞.



Similarly, for independent standard normally distributed
random variables ξ1, ξ2, ..., ξn, which are independent of ζ, we
have

E

((
α
(n)
j (ζ)ξj

)2
I

(∣∣∣∣α(n)j (ζ)ξj

∣∣∣∣ > ε

))
≤

3(2+δ)/4

εδ
E

∣∣∣∣α(n)j (ζ)
∣∣∣∣2+δ ,

and hence
n∑

j=1

E

((
α
(n)
j (ζ)ξj

)2
I

(∣∣∣∣α(n)j (ζ)ξj

∣∣∣∣ > ε

))
≤

≤
3(2+δ)/4

εδ

(
max
1≤j≤n

sup
z∈R

∣∣∣∣α(n)j (z)
∣∣∣∣
)δ
→ 0

as n→∞.



Asymptotic normality of sequences of linear functionals

Conditions under which a sequence of linear functionals (weighted
sums)

fn(x1, x2, ..., xn) =
n∑

j=1

α
(n)
j xj

is asymptotically normal were obtained in several works:

◦ Weber M., A weighted central limit theorem. Statistics and
Probability Letters 76, 2006

• conditions on the 4-th power of the coefficients α(n)j as
well as existence of Eηpj for p > 4;



◦ Fisher E., A Skorohod representation and an invariance prin-
ciple for sums of weighted i.i.d. random variables. Rocky
Mount. J. Math. 22, 1992

◦ Kevei P., A note on asymptotics on linear combinations of
i.i.d. random variables. Periodica Mathematica Hungarica 60
(1), 2010

• conditions on the rate of convergence to 0 for the co-
efficients.

In the mentioned papers only identically distributed ran-
dom variables were considered



Theorem 5. Let coefficients α(n)j , j = 1, n, of the linear func-
tionals fn be such that

n∑
j=1

(
α
(n)
j

)2
= 1

and

max
1≤j≤n

∣∣∣∣α(n)j

∣∣∣∣→ 0 as n→∞.

Let η1, η2, ..., ηn be independent random variables such that
Eηj = 0, Eη2j = 1, j = 1, n, and for some δ > 0

sup
1≤j≤n

E
∣∣∣ηj∣∣∣2+δ = Cδ <∞.

Then the sequence of linear functionals fn(η1, η2, ..., ηn), n ≥ 2,
is asymptotically normal.



Future research directions

• Construction of other classes of non–linear functionals
preserving the normal distribution, and the establishment of
conditions for their asymptotic normality;

• Extension of results to functionals in dependent random
variables (mixing processes, martingales).



On Lindeberg condition

For any n ≥ 1 let a sequence of independent random vari-
ables ηn,1, ηn,2, ..., ηn,k(n) be given, k(n) → ∞ as n → ∞. The
Lindeberg condition for this sequence is fulfilled if for any ε > 0

k(n)∑
j=1

E
(
η2n,jI(|ηn,j| > ε)

)
→ 0 as n→∞.

The Lindeberg condition is a sufficient condition for the

validity of the CLT for sums Sn =
k(n)∑
j=1

ηn,j.



The usual explanation of the meaning of the Lindeberg
condition is that this condition guarantees the uniform asymp-
totic negligibility of random summands. Indeed,

P

(
max

1≤j≤k(n)
|ηn,j| > ε

)
≤
k(n)∑
j=1

P
(
|ηn,j| > ε

)
=

k(n)∑
j=1

EI
(
|ηn,j| > ε

)
≤

≤
k(n)∑
j=1

E

η2n,j
ε2

I(|ηn,j| > ε)

 =
1

ε2

k(n)∑
j=1

E
(
η2n,jI(|ηn,j| > ε)

)
→ 0

as n→∞.

However, the real meaning of the Lindeberg condition is
revealed in the following little-known Khinchin theorem.



Khinchin theorem

Theorem. For any n ≥ 1 let ηn,1, ηn,2, ..., ηn,k(n) be a sequence
of independent random variables (k(n) → ∞ as n → ∞) such
that

k(n)∑
j=1

P
(
|ηn,j| > ε

)
→ 0 as n→∞.

Then

lim
n→∞P (Sn < z) = G(z), z ∈ Zd,

where G(z) is a normal distribution function with parameters
0 and σ2, σ > 0.

In this theorem, there are no restrictions on the moments;
nevertheless, the limiting distribution is Gaussian. However,
this theorem is not a CLT, since the parameter σ is not nec-
essarily equal to one: its value may depend on the considered
array of random variables.



From the conditions of the Levy–Lindeberg theorem it
follows that

DSn = D

k(n)∑
j=1

ηn,j

 =
k(n)∑
j=1

Dηn,j = 1.

Hence

lim
n→∞DSn = lim

n→∞

∞∫
−∞

x2dP (Sn < x) = 1.

If it is possible to take the limit under the integral sign, then

lim
n→∞

∞∫
−∞

x2dP (Sn < x) =

∞∫
−∞

x2 lim
n→∞dP (Sn < x) =

∞∫
−∞

x2dG(x) = σ2,

and hence σ2 = 1. Thus, the CLT is valid.



One can take the limit under the integral sign if and only
if the corresponding sequence of squares of random variables
is uniformly integrable: ∫

S2
n>C

S2
nP (dω)→ 0

as C →∞ uniformly on n. Due to the Billingsley inequality

∫
S2
n>C

S2
nP (dω) ≤ K

1

C
+

∑
|ηn,j|≥1

4C

η2n,jP (dω)

 ,
where K is a constant.



the Lindeberg condition

⇓

uniform square integrability of the sequence Sn, n = 1,2, ...

⇓

the possibility to take the limit under the integral sign

⇓

σ2 = 1 in the Khinchin theorem



Thank you for your attention!

Vielen Dank für Ihre
Aufmerksamkeit!


