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High-Level Overview

I Parameter calibration and uncertainty in complex computer models.

I Optimization approach and least squares.

I Bayesian approach and sampling.

I Ensemble Kalman Inversion (for optimization).

I Ensemble Kalman Sampling (for sampling).

I Gaussian Process Regression (for better sampling).

I Kalman-Wasserstein gradient flow structure.
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Short title
The Big Picture

High-Level Overview

• want to solve an inverse problem

• with randomness on observed data (e.g. climate models), we are
not just interested to invert, but also in UQ, i.e. to understand
what the posterior distribution looks like

• In many applications in science & engineering: need to solve inverse
problems without using derivatives/adjoints of the forward model

• Goal 1: construct derivative-free methods which generate
approximate samples from the posterior that solves inverse problem

• Goal 2: establish mathematical framework to do meaningful analysis
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High-Level Overview

Roadmap of arguments

• continuous time limit of EKI

• introduce specific term of noise and derive SDE: new algorithm EKS

• approximate this SDE replacing differences by gradients

• mean-field limit of approximate SDE gives a non-lin FP eqn

• identify novel GF structure of non-linear FP eqn (augmenting W2
GF with the covariance of the noisy flow)

• using GF structure, investigate long-time behavior. Limit=posterior
of underlying inverse problem!

• investigate numerically EKS: effect of adding this type of noise to
original derivative-free EKI. Get good approximate samples from
posterior distribution!



Kalman-Wasserstein space

Gradient Flow Structure

∂tρ = ∇ ·
(
ρ C(ρ)∇δE(ρ)

δρ

)

C(ρ) =

∫ (
θ − θ̄

)
⊗
(
θ − θ̄

)
ρ(θ, t)dθ, θ̄ =

∫
θρ(θ, t)dθ.

I Gradient flow in C(ρ)-weighted metric.

I Suitable energy E : unique attractor is the posterior for an underlying inverse
problem.

I Inspired new efficient derivative-free algorithm to solve inverse problems.
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Inverse Problem For Parameters

Find Parameter θ From Data y

Let G : Θ 7→ Y, and η be noise. Then data and parameter are related by

y = G(θ) + η, η ∼ N(0, γ2I ).

Our Setting

I Calibration and UQ for θ are both important.

I G is expensive to evaluate.

I Derivatives of G are not available.
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Inverse Problem For Parameters

• Goal: find out info about true θ that generated data, given
observations y , noise γ and forward map G. I.e. need to invert G.

• the spaces U and Y can be very high dimensional, and usually are in
applications

• forward map G could be horrible (non-linear, not practical to
differentiate). For ex think of θ as the coefficients and initial
conditions of a complicated climate model, and G the solution map,
where y are measurements taken



Optimization Approach

Find Parameter θ From Data y

Let G : Θ 7→ Y, and η be noise. Then data and parameter are related by

y = G(θ) + η, η ∼ N(0, γ2I ).

Mathematical Formulation

θ? = argminθ∈Θ Φ(θ; y),

Φ(θ; y) =
1

2γ2
|y − G(θ)|2 , ΦR(θ; y) =

1

2γ2
|y − G(θ)|2 +

1

2
〈θ,Σ−1

0 θ〉.

Algorithms: parameter θ calibration.
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Optimization Approach

• Optimization approach: find most likely θ.

• As in any optimization problem, need a loss function. Here, it is
natural to choose Φ.

• how to find θ?? Recall that we want to avoid taking gradients and
evaluations of G are costly

• need efficient algorithms that get around this challenge



Bayesian Approach

I Prior: P(θ)

I Likelihood: P(y |θ)

I Posterior: P(θ|y)

I Prior: θ ∼ N(0,Σ0)

I Likelihood: y − G(θ) ∼ N(0, γ2I )

I Posterior: θ|y ∼?

Mathematical Formulation

P(θ|y) ∝ P(y |θ)× P(θ),

P(θ|y) ∝ exp
(
−Φ(θ; y)

)
× exp

(
−1

2
〈θ,Σ−1

0 θ〉
)

∝ exp
(
−ΦR(θ; y)

)

Algorithms: parameter θ sampling.
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Bayesian Approach

• with randomness on observed data (e.g. climate models), we are
not just interested to invert, but also in UQ, i.e. to understand
what the posterior distribution looks like

• Bayesian approach to inverse problems: get your hands on posterior



Bayesian Approach

Mathematical Formulation

P(θ|y) ∝ exp
(
−ΦR(θ; y)

)
ΦR(θ; y) =

1

2γ2
|y − G(θ)|2 +

1

2
〈θ,Σ−1

0 θ〉

I maximizing P(θ|y) = minimizing ΦR(θ; y).

I prior term introduces regularization of Tikhonov-Phillips form.

I UQ: want more information on posterior than just optimum.

Algorithms: parameter θ sampling.
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Bayesian Approach

• to find most likely θ given observed data: maximize posterior. This
is the same as minimizing ΦR .

• Note that this corresponds to the previous optimization problem,
but with an additional regularization term of Tikhonov-Phillips form.

• UQ: want more information on posterior than just its max.



Bayesian Approach

Mathematical Formulation

P(θ|y) ∝ exp
(
−ΦR(θ; y)

)
ΦR(θ; y) =

1

2γ2
|y − G(θ)|2 +

1

2
〈θ,Σ−1

0 θ〉

Our Setting

I G is expensive to evaluate.

I Derivatives of G are not available.

Goals

I Methods to generate approximate samples from posterior.

I Mathematical framework for analysis using gradient flow structure.
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Bayesian Approach

• Since posterior is expensive to evaluate, need to find efficient ways
to sample from the posterior.

• we will propose here two new avenues: (1) new algorithm to sample
from posterior, (2) mathematical framework using a novel gradient
flow structure.



Calibrate, Emulate, Sample

y = G(M)(θ) + η

Sample

G(M)(θ) ≈ G(θ)

Emulate

y = G(θ) + η

Calibrate

y = G(M)(θ) + η

MCMC

G(M)(θ) ≈ G(θ)

GP

y = G(θ) + η

EKI/EKS
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EKI And EKS: Calibration
collaboration with: Garbuno, Hoffmann, Li, Stuart (2019)

arXiv preprint, 1903.08866 [4]

y = G(M)(θ) + η

Sample

G(M)(θ) ≈ G(θ)

Emulate

y = G(θ) + η

Calibrate
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Ensemble Kalman Inversion (EKI)

Continuous Time Formulation

θ̇
(j)

= −1

J

J∑
k=1

1

γ2

〈
G(θ(k))− Ḡ,G(θ(j))− y

〉 (
θ(k) − θ̄

)
,

θ̄ =
1

J

J∑
k=1

θ(k), Ḡ =
1

J

J∑
k=1

G
(
θ(k)

)
.

I Sample from prior instead of posterior.

I Evolve particle ensemble: derivative-free algorithm.

I Tool for optimization: collapses to max P(θ|y).
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Ensemble Kalman Inversion (EKI)

• Let me begin by telling you about an existing algorithm to sample
the posterior: EKI

• main idea: instead of sampling from posterior directly, which is
costly, instead sample from prior, which can be done efficiently, and
then evolve samples under a suitable particle model to include
information on observations.

• Ensemble because we evolve an ensemble of particles in parameter
space. This allows to get around the issue of computing derivatives.
EKI is derivative-free!

• first term in brackets: drives particles to consensus. second term in
brackets: drives particles to match observations. mean cancels.



Ensemble Kalman Inversion (EKI)

Continuous Time Formulation

θ̇
(j)
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J
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1

γ2
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G(θ(k))− Ḡ,G(θ(j))− y

〉 (
θ(k) − θ̄

)
,

θ̄ =
1

J

J∑
k=1

θ(k), Ḡ =
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Ensemble Kalman Inversion And Sampling

Ensemble Kalman Inversion (EKI)

• issue with EKI: collapses very fast to a point even when adding
noise to the observations. so not so useful to reproduce posterior,
see [Ernst, Sprungk and Starkloff, 2015]. However, tool for
optimization as ensemble collapses to solution of our initial
optimization problem. Used widely in applications.

• To do UQ: use framework of Bayesian inverse problems and try to
understand better shape of posterior. We suggest a new noisy EKI
that allows to sample from the posterior. This is why we call it
Ensemble Kalman Sampling (EKS).

• Recall: goal is to derive efficient methods to approximate samples
from posterior without using gradients/adjoints.
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Ensemble Kalman Inversion And Sampling

Ensemble Kalman Inversion (EKI)

Just to remind myself:

• Linear G: can think of EKI as a Monte Carlo approximation of the
Kalman filter (KF).

• Non-linear G: EKI does not converge to posterior for large number
of particles ! [Ernst, Sprungk and Starkloff, 2015]

• The KF was proposed in the 60s for linear forward maps and
Gaussian noise as a method for state estimation (took us to the
moon: track rocket and correct trajectory given noisy observations).

• Filter: filter out noise to make predictions. Inversion: easier than
filtering, we only invert once.



Ensemble Kalman Sampling (EKS)

Continuous Time Formulation

θ̇
(j)

= −1

J

J∑
k=1

1

γ2

〈
G(θ(k))− Ḡ,G(θ(j))− y

〉 (
θ(k) − θ̄

)
− C (θ)Σ−1

0 θ(j) +
√

2C (θ)Ẇ (j)

C (θ) =
1

J

J∑
k=1

(
θ(k) − θ̄

)
⊗
(
θ(k) − θ̄

)
.

I add damping term related to prior [Chada,Stuart,Tong 2019].

I new noise covariance structure.

27 / 48



Ensemble Kalman Sampling (EKS)

Continuous Time Formulation

θ̇
(j)

= −1

J

J∑
k=1

1

γ2

〈
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Ensemble Kalman Sampling (EKS)

• We propose a new algorithm inspired by a novel gradient flow
structure to capture posterior.

• add damping term (related to prior). This term has already been
introduced in [Chada,Stuart,Tong 2019].

• changed noise covariance structure: new to use this covariance for
the noise. Choice of this noise is informed by optimal transport (GF
structure).

• idea: perturb particles instead of data (classical noisy EKI has noise
on observations). This idea has already been introduced in
[Kovachki, Stuart 2018], but in the context of optimization instead
of sampling.

• output of EKS: approximate samples from posterior.



The EKS And Mean Field Limits
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EKS: Approximation 1

θ̇
(j)

= −1

J

J∑
k=1

1

γ2

〈
G(θ(k))− Ḡ,G(θ(j))− y

〉 (
θ(k) − θ̄

)
− C (θ)Σ−1

0 θ(j) +
√

2C (θ)Ẇ (j),

C (θ) =
1

J

J∑
k=1

(
θ(k) − θ̄

)
⊗
(
θ(k) − θ̄

)
.

Linear Approximation

(
G(θ(k))− Ḡ

)
≈ A(θ(k) − θ̄) , A := DG(θ(j)) .
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EKS: Approximation 1

Linear Approximation of EKS

θ̇
(j)

= − 1

Jγ2

J∑
k=1

〈
A
(
θ(k) − θ̄

)
,
(
G(θ(j))− y

)〉 (
θ(k) − θ̄

)
− C (θ)Σ−1

0 θ(j) +
√

2C (θ)Ẇ (j) .
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EKS: Approximation 1

I ∇ΦR(θ) = 1
γ2A

T (Aθ − y) + Σ−1
0 θ.

I
〈
DG(θ(j))

(
θ(k) − θ̄

)
,
(
G(θ(j))− y

)〉
=
〈(
θ(k) − θ̄

)
,AT

(
Aθ(j) − y

)〉
.

Preconditioned Langevin Equation

θ̇
(j)

= −C (θ)∇ΦR(θ(j)) +
√

2C (θ)Ẇ (j).

I If G linear, this is EKS.

I If G non-linear, expect solution to be close to EKS solution if particles close
together (conjecture!).
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The EKS and Mean Field Limits

EKS: Approximation 1

• we propose EKS as new algorithm to sample posterior
(derivative-free!)

• last SDE: natural object of analysis.

Proof to obtain last SDE:

1

J

J∑
k=1

〈
DG(θ(j))

(
θ(k) − θ̄

)
,
(
G(θ(j))− y

)〉 (
θ(k) − θ̄

)
=

1

J

J∑
k=1

〈(
θ(k) − θ̄

)
,AT

(
Aθ(j) − y

)〉 (
θ(k) − θ̄

)
= C (θ)AT

(
Aθ(j) − y

)
.



EKS: Approximation 2

C(ρ) :=

∫ (
θ − θ̄

)
⊗
(
θ − θ̄

)
ρ(θ, t)dθ, θ̄ :=

∫
θρ(θ, t)dθ.

Mean Field Limit

θ̇ = −C(ρ)∇ΦR(θ) +
√

2C (ρ)Ẇ .

Nonlinear Fokker-Planck equation

∂tρ = ∇ ·
(
ρ C(ρ)∇ΦR

)
+ C(ρ) : D2ρ,

ΦR(θ) =
1

2γ2

∣∣y − G (θ)
∣∣2 +

1

2

∣∣Σ− 1
2

0 θ
∣∣2.
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EKS: Approximation 2
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The EKS and Mean Field Limits

EKS: Approximation 2

• rigorous proof of mean-field limit still open.

• Can consider both of these equations for non-linear G also!

• If G linear, this corresponds to EKS.



Connection To Bayesian Inversion

∂tρ = ∇ · (ρ C(ρ)∇ (ΦR + ln ρ)) , C(ρ) =

∫ (
θ − θ̄

)
⊗
(
θ − θ̄

)
ρ(θ, t)dθ .

Manifold of Stationary states

ρ(θ) = δv (θ) for some v ∈ Rd ⇔ C(ρ) = 0 .

Steady state

Equilibrium solution to non-linear Fokker-Planck equation:

ρ∞(θ) :=
e−ΦR(θ)∫
e−ΦR(θ) dθ

.

This is the density of P(θ|y).
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Connection To Bayesian Inversion

Proof of Lemma:

• (⇒) by direct substitution.

• (⇐) C(ρ) = 0 implies
∫
|u|2ρdu =

(∫
uρdu

)2
, which is the equality

case of Jensen’s inequality, and therefore only holds if ρ is the law of
a constant random variable.

We expect that ρ∞ is the unique attractor:

always converge to ρ∞ avoiding Diracs as long as we start away from

Diracs. More on this later.



Kalman-Wasserstein Space
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Gradient Flow Structure

I For Ω ⊆ Rd convex set, define P+ := {ρ ∈ P : ρ > 0 a.e. , ρ ∈ C∞(Ω)}.
I Tangent space at ρ ∈ P+:

TρP+ =

{
σ ∈ C∞(Ω) :

∫
σdx = 0

}
.

I Onsager operator ∆ρ,C : T ∗ρP+ → TρP+:

(−∆ρ,C)φ := −∇ · (ρC(ρ)∇φ)

I ∆ρ,C degenerate if ρ is a Dirac.

I For ρ ∈ P+ bounded away from zero, ∆ρ,C is well-defined, non-singular and
invertible: σ 7→ (−∆ρ,C)−1 σ for σ ∈ TρP+ (else, use pseudo-inverse).

39 / 48



Gradient Flow Structure

Kalman-Wasserstein metric tensor

Define gρ,C : TρP+ × TρP+ → R by

gρ,C(σ1, σ2) :=

∫
Ω
〈∇φ1 , C(ρ)∇φ2〉 ρ dx ,

where σi = (−∆ρ,C)φi = −∇ · (ρC(ρ)∇φi ) ∈ TρP+ for i = 1, 2.
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Gradient Flow Structure

Kalman-Wasserstein metric WC : P+ × P+ → R
For ρ0, ρ1 ∈ P+,

WC(ρ0, ρ1)2 := inf
(ρt ,φt)

∫ 1

0

∫
Ω
〈∇φt , C(ρt)∇φt〉 ρt dx

subject to ∂tρt +∇ · (ρtC(ρt)∇φt) = 0, ρ0 = ρ0, ρ1 = ρ1,
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Gradient Flow Structure

Theorem

Given a finite functional F : P+ → R, the gradient flow of F(ρ) in (P+, gρ,C) satisfies

∂tρ = ∇ ·
(
ρ C(ρ)∇δF

δρ

)
.
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Gradient Flow Structure

• This is just formal. To make it rigrous, need theory on all of P.



KW GF for EKS
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I Energy: Kullback-Leibler divergence

E(ρ) =

∫
(ΦR + ln ρ(t)) ρ(t)dθ

=

∫
ρ(t)

ρ∞
ln

(
ρ(t)

ρ∞

)
ρ∞ dθ + ln

(∫
e−ΦR(θ) dθ

)
= KL(ρ(t)‖ρ∞) + c

I Euler-Lagrange condition:

δE
δρ

= ΦR(θ) + ln ρ(θ) = c on supp (ρ)

I Unique solution: posterior

ρ∞(θ) :=
e−ΦR(θ)∫
e−ΦR(θ) dθ

.
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I Energy dissipation:

d

dt
E(ρ) = −

∫
ρ
∣∣∣C(ρ)

1
2∇(ΦR + ln ρ)

∣∣∣2 dθ .
Hence E ↘ along paths until C(ρ) = 0 or ρ = ρ∞.

I Fisher-Information: for any covariance matrix Λ,

IΛ(ρ‖ρ∞) :=

∫
ρ

〈
∇ ln

(
ρ

ρ∞

)
, Λ∇ ln

(
ρ

ρ∞

)〉
dθ .

I Kalman-Fisher information: For Λ = C(ρ),

d

dt
KL(ρ(t)‖ρ∞) = −IC(ρ(t)‖ρ∞) .
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Convergence to Equilibrium
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Non-linear Inverse Problem

Theorem (Decay To Equilibrium)

Assume that ∇ΦR , α > 0 and λ > 0 exists such that

C(ρ(t)) ≥ αId , D2ΦR ≥ λId .

If KL(ρ0‖ρ∞) <∞ then there is c > 0 such that
‖ρ(t)− ρ∞‖L1(Rd ) ≤ ce−αλt .

I Effect of C(ρ) in FP: faster convergence.
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Proof

I D2ΦR ≥ λId guarantees log Sobolev inequality [Bakry,Émery 1985]:

KL(ρ(t)‖ρ∞) ≤ 1

2λ
IId (ρ(t)‖ρ∞) ∀ρ .

I C (ρ(t)) ≥ αId gives

d

dt
KL(ρ(t)‖ρ∞) = −IC(ρ(t)‖ρ∞)

≤ −αIId (ρ(t)|ρ∞) ≤ −2αλKL(ρ(t)‖ρ∞) .

I By Csiszár-Kullback inequality:

1

2
‖ρ(t)− ρ∞‖2

L1(Rd ) ≤ KL(ρ(t)‖ρ∞) ≤ KL(ρ0‖ρ∞)e−2αλt .
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Linear Inverse Problem

We consider the setting where G (θ) = Aθ.

Theorem (Linear Inverse Problem).

The mean field limt of EKS has the property that, if

ρ0(θ) :=
1

(2π)d/2
(det C0)−1/2 exp

(
−1

2
‖θ‖2
C0

)
then the solution of the nonlinear Fokker-Planck equation is

ρ(t, θ) :=
1

(2π)d/2
(detC(t))−1/2 exp

(
−1

2

∥∥θ −m(t)
∥∥2

C(t)

)
where m(t) and C(t) satisfy explicit ODEs. In particular ρ(t, θ) converges
exponentially fast to ρ∞(θ) in L1(Rd) as t →∞.

I Gaussians remain Gaussians.
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Linear Inverse Problem

• Main result: FP eqn has exact Gaussian solutions.

• useful since for applications we are often interested in propagating
Gaussians.

Proof:

• derive exact closed equations for mean and covariance.

• FP eqn becomes linear.

• explicitly solvable for Gaussian IC.

Consequences:

• For Gaussian IC: ρ(t)→ ρ∞ since m(t) and C(t) converge

• Can get same result for non-Gaussian initial conditions!
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Linear Inverse Problem

More details: in linear case,

∇ΦR(θ) = B−1θ − r ,

r :=
1

γ2
A>y ∈ Rd , B :=

( 1

γ2
A>A + Γ−1

0

)−1

∈ Rd×d .

• 1
γ2 A
>A + Γ−1

0 invertible since Σ−1
0 strictly positive definite (

Tikhonov regularizarion).

• θ0 := Br solves ∇ΦR(θ) = 0 (solution to regularized normal
equations)

• i.e. θ0 = min ΦR , i.e. θ0 = maxP(θ|y).

• Note that ρ∞(θ) ∝ exp
(
− 1

2‖θ − θ0‖2
B

)
.
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Linear Inverse Problem

Closed eqns for moments in linear case:

• For any solution ρ(t), its mean and covariance satisfy

ṁ(t) = −C(t)(B−1m(t)− r) ,

Ċ(t) = −2C(t)B−1C(t) + 2C(t) .

• We derive

d

dt
detC(t) = −2 (detC(t)) Tr

[
B−1C(t)− Id

]
,

d

dt

(
C(t)−1) = 2B−1 − 2C(t)−1.

• As a consequence: C(t)→ B and m(t)→ θ0 exponentially as t →∞.

• Solve last eqn explicitly: C(t)−1 =
(
C(0)−1 − B−1

)
e−2t + B−1.

• From first eqn: ‖m(t)− θ0‖C(t) = ‖m(0)− θ0‖C(0)e
−t .



Linear Inverse Problem

We consider the setting where G (θ) = Aθ.

Also obtain convergence for non-Gaussian IC:

I D2ΦR(θ) bounded below and independent of θ.

I C(t) bounded below as an operator.

=⇒ If KL(ρ0‖ρ∞) <∞, then ρ(t)→ ρ∞ exponentially in L1(Rd) and in entropy.
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Calibrate, Emulate, Sample

y = G(M)(θ) + η

Sample

G(M)(θ) ≈ G(θ)

Emulate

y = G(θ) + η

Calibrate

y = G(M)(θ) + η

MCMC

G(M)(θ) ≈ G(θ)

GP

y = G(θ) + η

EKI/EKS
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Sample: GP-MCMC
Cleary, Garbuno, Lan, Schneider, Stuart (2019)

arXiv preprint, 1908.+++++ [6]

y = G(M)(θ) + η

Sample

G(M)(θ) ≈ G(θ)

Emulate

y = G(θ) + η

Calibrate
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Gaussian Process Accelerated Sampling

I From EKS we generate approximate posterior samples
{
θ(i),G(θ(i))

}J

i=1
.

I Use parameter-output pairs to train a Gaussian Process (GP) emulator GJ(·).

-2

-1

0

1

2

-4 0 4

θ

G
( θ
)

I Define ΦJ(θ; y) = 1
2γ2 |y − GJ(θ)|2. Evaluation of ΦJ is fast.

I Sample approximate posterior

PJ(θ|y) ∝ exp
(
−ΦJ(θ; y)

)
× exp

(
−1

2
〈θ,Σ−1

0 θ〉
)
.
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Gaussian Process Accelerated Sampling

• only need O(100) samples from posterior.

• then interpolate using Gaussian processes.

• to compare, MCMC needs around O(105).



Numerics:
EKI vs EKS vs MCMC
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Example: Elliptic BVP

I 1D problem for x ∈ [0, 1],

− d

dx

(
exp(θ1)

d

dx
p(x)

)
= 1,

with boundary conditions p(0) = 0
and p(1) = θ2.

I Explicit solution is available and we
define

G (θ) =

(
p(x1)
p(x2)

)
.

I Run EKI with J = 1000.

−3.50 −3.25 −3.00 −2.75 −2.50 −2.25 −2.00 −1.75 −1.50

103.5

104.0

104.5

105.0

105.5

Figure: Contour plots:
Φ(θ) = 1

2γ2 |y − G (θ)|2.
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Example: Elliptic BVP

• explicit solution: p(x) = θ2x + exp(−θ1)
(
− x2

2 + x
2

)
• want θ = (θ1, θ2)> given noisy data y = (27.5, 79.7)> at x1 = 0.25

and x2 = 0.75.

• find P(θ|y) assuming additive Gaussian noise η ∼ N(0, Γ), where
γ = 0.1

• prior: N(0, Γ0), Γ0 = σ2I2 with σ = 10.
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Example: Elliptic BVP

EKI:

• collapses to a point very quickly.

• used EKI as propose in [Kovachki, Stuart 2018]

EKS:

• Following [Herty,Visconti 2018], we consider an initial ensemble
drawn from N(0, 1)× U(90, 110).

• run for 30 iterations.

MCMC:

• use Random Walk Metropolis Hastings (RWMH) algorithm with
N = 105 samples.

• start of Markov chain = mean of the last step of EKS.

• proposal: Gaussian centered at the current state of the Markov
chain with covariance given by Σ = τ × C (θ∗), where C (θ∗) is the
covariance computed from the last iteration, τ = 4 scaling factor
tuned for an acceptance rate of 25% [Roberts, Gelman, Gilks1997].



Conclusions

I Introduced an algorithm to generate approximate posterior samples for Inverse
Problems inspired by a suitable gradient structure in the mean-field limit

I Related Kalman-Wasserstein metric is a generalization of the Wasserstein distance
that depends on the covariance matrix of the particle distribution.

I Described a framework to enable Bayesian inference on expensive and noisy
forward models (Calibrate-Emulate-Sample).
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Conclusions

• Optimize: Use the algorithm to minimize the flow and reach the
equilibrium distribution.

• Learn: Use the samples from the algorithm to learn a surrogate
model (a cheaper but equally accurate model as the original) for the
expensive forward model G.

• Sample: Use the surrogate model to correct approximation done by
the optimization step due to small ensemble size and inherent linear
approximation of the method.



Future Directions

I How close are dynamics of EKS to KW flow for non-linear G?

I Application of Calibrate-Emulate-Sample to climate models and large-scale
inverse problems with expensive noisy forward models.

I Rigorous justification of mean-field limit.

I Properties of Kalman-Wasserstein space and related functional inequalities.

I Convergence to equilibrium in WC with an explicit rate.

I Instead of C(ρ) choose general matrix K (ρ). Which choice of K (ρ) provides
optimal rates of convergence?
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