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The Big Picture



High-Level Overview

vVvvyVvYvyyvyy

Parameter calibration and uncertainty in complex computer models.
Optimization approach and least squares.

Bayesian approach and sampling.

Ensemble Kalman Inversion (for optimization).

Ensemble Kalman Sampling (for sampling).

Gaussian Process Regression (for better sampling).

Kalman-Wasserstein gradient flow structure.
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High-Level Overview

Short title
LThe Big Picture

LH igh-Level Overview

e want to solve an inverse problem

e with randomness on observed data (e.g. climate models), we are
not just interested to invert, but also in UQ, i.e. to understand
what the posterior distribution looks like

e |n many applications in science & engineering: need to solve inverse
problems without using derivatives/adjoints of the forward model

e Goal 1: construct derivative-free methods which generate
approximate samples from the posterior that solves inverse problem

e Goal 2: establish mathematical framework to do meaningful analysis
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Short title
LThe Big Picture

High-Level Overview

LH igh-Level Overview

Roadmap of arguments

continuous time limit of EKI

introduce specific term of noise and derive SDE: new algorithm EKS
approximate this SDE replacing differences by gradients

mean-field limit of approximate SDE gives a non-lin FP eqn

identify novel GF structure of non-linear FP eqn (augmenting W2
GF with the covariance of the noisy flow)

using GF structure, investigate long-time behavior. Limit=posterior
of underlying inverse problem!

investigate numerically EKS: effect of adding this type of noise to
original derivative-free EKI. Get good approximate samples from
posterior distribution!



Kalman-Wasserstein space

Gradient Flow Structure

oep=V - (pC(p)Véi(pp)>

Clp) = / (0—0) ® (0 — B)pl6, )do, 0= / 0p(0, £)do.

» Gradient flow in C(p)-weighted metric.

» Suitable energy &: unique attractor is the posterior for an underlying inverse
problem.

> Inspired new efficient derivative-free algorithm to solve inverse problems.
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Inverse Problem For Parameters

Find Parameter § From Data y
Let G: © — )Y, and n be noise. Then data and parameter are related by

y=G(0)+n, n~N(0,~?I).

Our Setting

» Calibration and UQ for 6 are both important.
» G is expensive to evaluate.

» Derivatives of G are not available.
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Short title
LThe Big Picture

L Inverse Problem For Parameters

e Goal: find out info about true 6 that generated data, given
observations y, noise v and forward map G. l.e. need to invert G.

e the spaces U/ and Y can be very high dimensional, and usually are in
applications

e forward map G could be horrible (non-linear, not practical to
differentiate). For ex think of 6 as the coefficients and initial
conditions of a complicated climate model, and G the solution map,
where y are measurements taken

Then data and parameter are related by



Optimization Approach

Find Parameter § From Data y

Let G: © — )Y, and 1 be noise. Then data and parameter are related by

y=G(0)+n, n~N(©O,~2.

Mathematical Formulation

0* = argmingcg ®(0; y),

1 1 1 _
d(0;y) = 272’)/ —G(0)]?, Pr(0;y) = W\y — G(0))* + §<97Zo 16).

Algorithms: parameter 6 calibration.
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Short title
LThe Big Picture

LOptimization Approach

e Optimization approach: find most likely 6.

e As in any optimization problem, need a loss function. Here, it is
natural to choose ®.

e how to find 6*? Recall that we want to avoid taking gradients and
evaluations of G are costly

e need efficient algorithms that get around this challenge



Bayesian Approach

» Prior: P(0) » Prior: 6 ~ N(0, Xo)
> Likelihood: P(y|0) > Likelihood: y — G(6) ~ N(0,2)
» Posterior: P(6]y) » Posterior: 0|y ~7

Mathematical Formulation

P(0ly) o< P(y|0) x P(0),
B(0ly) oc exp(~0(0: ) x exp(—%(@, £5'0))

x exp <—¢R(0; y))

Algorithms: parameter 6 sampling.
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Short title
LThe Big Picture

LBayesian Approach

e with randomness on observed data (e.g. climate models), we are
not just interested to invert, but also in UQ, i.e. to understand
what the posterior distribution looks like

e Bayesian approach to inverse problems: get your hands on posterior




Bayesian Approach

Mathematical Formulation
P(0ly) ox exp(—@r(0: )

1 1 -
Or(0:y) = 35l = GO + 50 0)

» maximizing P(0|y) = minimizing ®r(0;y).

» prior term introduces regularization of Tikhonov-Phillips form.

» UQ: want more information on posterior than just optimum.

Algorithms: parameter 6 sampling.
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Short title
LThe Big Picture

LBayesian Approach

e to find most likely 6 given observed data: maximize posterior. This
is the same as minimizing ®g.

e Note that this corresponds to the previous optimization problem,
but with an additional regularization term of Tikhonov-Phillips form.

e UQ: want more information on posterior than just its max.



Bayesian Approach

Mathematical Formulation

P(0]y) o eXp<—¢R(9;y)) Pr(0;y) = 2;\y — G(O)]> + %(9, >510)

Our Setting

> G is expensive to evaluate.
» Derivatives of G are not available.
Goals

> Methods to generate approximate samples from posterior.

> Mathematical framework for analysis using gradient flow structure.
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Short title
LThe Big Picture

LBayesian Approach

e Since posterior is expensive to evaluate, need to find efficient ways
to sample from the posterior.

e we will propose here two new avenues: (1) new algorithm to sample
from posterior, (2) mathematical framework using a novel gradient
flow structure.



Calibrate, Emulate, Sample
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y=G(6) +n

Calibrate, Emulate, Sample

\ J

A 4

GM)(9) ~ G(0)

Sample

y=6(0)+n

A 4

y =GM(6) +1

Y

y =GM(6) +n
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EKI And EKS: Calibration

collaboration with: Garbuno, Hoffmann, Li, Stuart (2019)
arXiv preprint, 1903.08866 [4]
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Ensemble Kalman Inversion (EKI)

Continuous Time Formulation

12J:1< (0®) = G, G0 —
Jk:l’y2 ,
_ 1 J J

» Sample from prior instead of posterior.

» Evolve particle ensemble: derivative-free algorithm.

» Tool for optimization: collapses to max P(0]y).

) (0-7)
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Short title (
LEnsemble Kalman Inversion And Sampling ) -.c) ) (-7)

1
3

(o

L Ensemble Kalman Inversion (EKI)

e Let me begin by telling you about an existing algorithm to sample
the posterior: EKI

e main idea: instead of sampling from posterior directly, which is
costly, instead sample from prior, which can be done efficiently, and
then evolve samples under a suitable particle model to include
information on observations.

e Ensemble because we evolve an ensemble of particles in parameter
space. This allows to get around the issue of computing derivatives.
EKI is derivative-free!

e first term in brackets: drives particles to consensus. second term in
brackets: drives particles to match observations. mean cancels.



Ensemble Kalman Inversion (EKI)

Continuous Time Formulation

= 1 J (k) —: ]. J (k)

Optimization Approach

0* = argmingcg ®(0; y),

(0 y) = ﬁw —GO)P.
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Short title
LEnsemble Kalman Inversion And Sampling

Optimization Approach

L Ensemble Kalman Inversion (EKI)

Emingco O(0:),

o=y

e issue with EKI: collapses very fast to a point even when adding
noise to the observations. so not so useful to reproduce posterior,
see [Ernst, Sprungk and Starkloff, 2015]. However, tool for
optimization as ensemble collapses to solution of our initial
optimization problem. Used widely in applications.

e To do UQ: use framework of Bayesian inverse problems and try to
understand better shape of posterior. We suggest a new noisy EKI
that allows to sample from the posterior. This is why we call it
Ensemble Kalman Sampling (EKS).

e Recall: goal is to derive efficient methods to approximate samples
from posterior without using gradients/adjoints.
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Short title
LEnsemble Kalman Inversion And Sampling

Optimization Approach

L Ensemble Kalman Inversion (EKI)

Emingco O(0:),

o=y

Just to remind myself:

Linear G: can think of EKI as a Monte Carlo approximation of the
Kalman filter (KF).

Non-linear G: EKI does not converge to posterior for large number
of particles | [Ernst, Sprungk and Starkloff, 2015]

The KF was proposed in the 60s for linear forward maps and
Gaussian noise as a method for state estimation (took us to the
moon: track rocket and correct trajectory given noisy observations).

Filter: filter out noise to make predictions. Inversion: easier than
filtering, we only invert once.



Ensemble Kalman Sampling (EKS)

Continuous Time Formulation

) 11 a— ;
0% =— kz = <G(9(k)) ~G,G(oY) — y> (e(k) _ 9)
- C(0)z5teW + 2c (o)W

0=53(09-5)o (#-9)

» add damping term related to prior [Chada,Stuart, Tong 2019].

P> new noise covariance structure.
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Short title -
LEnsemble Kalman Inversion And Sampling

L Ensemble Kalman Sampling (EKS)

e We propose a new algorithm inspired by a novel gradient flow
structure to capture posterior.

e add damping term (related to prior). This term has already been
introduced in [Chada,Stuart, Tong 2019].

e changed noise covariance structure: new to use this covariance for
the noise. Choice of this noise is informed by optimal transport (GF
structure).

e idea: perturb particles instead of data (classical noisy EKI has noise
on observations). This idea has already been introduced in
[Kovachki, Stuart 2018], but in the context of optimization instead
of sampling.

e output of EKS: approximate samples from posterior.



The EKS And Mean Field Limits



EKS: Approximation 1
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EKS: Approximation 1

Linear Approximation of EKS

3
—
Mk

< 0*) — 5), (G(69) —y)> <9<k) - 9)
— C(0)Z 1oYW + 2c (o)WY .
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EKS: Approximation 1
> VOg(0) = HAT(A) —y) + T570.
> <DG(GU))(9(") —9), (G(0V) — y)> - <(9(k) 7), AT (A00) y)>_
Preconditioned Langevin Equation

0 = —c()Vor(8Y)) + \/2C(O) W),

» If G linear, this is EKS.

» If G non-linear, expect solution to be close to EKS solution if particles close
together (conjecture!).
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EKS: Appr

Short title
L The EKS and Mean Field Limits

L EKS: Approximation 1

e we propose EKS as new algorithm to sample posterior
(derivative-free!)

e last SDE: natural object of analysis.

Proof to obtain last SDE:

M~

% <DG(eU))(9(k) ~0).(6(09) ~ y)) (6% ~7)

x
Il

1

k \

< (0% — §), AT (A0W) — )> (W) 79)

C( ) T(A09) —y).

VGO



EKS: Approximation 2
Clp) = /(9 )@ (0-0)p(0,0)ds,  §= /ep(e, £)do.
Mean Field Limit
0 = —C(p)VOr(0) + /2C(p) W
Nonlinear Fokker-Planck equation
Oep =V - (pC(p) VOR) +C(p) : D?p,
Or(0) = 551y — GO + 3155 ol

34 /48
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Short title
LThe EKS and Mean Field Limits

L EKS: Approximation 2

e rigorous proof of mean-field limit still open.
e Can consider both of these equations for non-linear G also!

e If G linear, this corresponds to EKS.

4(0) = 5mgly - GO + 35 "



Connection To Bayesian Inversion

0=V (pC()V (¥r +Inp)) . C(p)= [ (6-8) ® (0~ 7)p(0.2)a0.
Manifold of Stationary states
p(0) = 6,(0) for some veRY < C(p) =0.

Steady state
Equilibrium solution to non-linear Fokker-Planck equation:
e_d)R(e)

poo(e) = 7], e_¢R(9) de .

This is the density of P(0|y).
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Short title
LThe EKS and Mean Field Limits

L Connection To Bayesian Inversion

Proof of Lemma:

e (=) by direct substitution.

e (<) C(p) =0 implies [|ul?pdu= ([ updu)z, which is the equality
case of Jensen's inequality, and therefore only holds if p is the law of
a constant random variable.

We expect that p, is the unique attractor:
always converge to p, avoiding Diracs as long as we start away from
Diracs. More on this later.



Kalman-Wasserstein Space
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Gradient Flow Structure

> For Q C RY convex set, define P :={pecP : p>0ae ,pc C®(Q)}.
» Tangent space at p € Py:

T,Py = {O’ € C™(Q) : /de = 0} .
> Onsager operator A, : T;Py — T,Py:

(=A,c) ¢ ==V - (pC(p)Ve)

» A, c degenerate if p is a Dirac.

v

For p € P4 bounded away from zero, A, ¢ is well-defined, non-singular and
invertible: o (—A,¢) o for o € T,P, (else, use pseudo-inverse).
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Gradient Flow Structure

Kalman-Wasserstein metric tensor
Define g,c : T,P+ x T,Py+ — R by

8p.c(o1,02) 1=/Q<V¢1,C(P)V¢2> pdx,

where 0; = (—A,¢c) pi = =V - (pC(p)V i) € T,P4 for i =1,2.
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Gradient Flow Structure

Kalman-Wasserstein metric We: Py x P — R
For p°, pl € P+,
WC(P P = inf / / (Vor, Clpe)Vor) prdx

(pt,0t)
subject to Depe + V - (p:Cpe)Ve) = 0, po = p°, p1 = p',
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Gradient Flow Structure

Theorem
Given a finite functional F : P, — R, the gradient flow of F(p) in (P4, g,c) satisfies

§F
op=V- (pC(p)V&J :
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Short title
L Kalman-Wasserstein Space

L Gradient Flow Structure

e This is just formal. To make it rigrous, need theory on all of P.

o of F(1) i (Pr. gc) satsies



KW GF for EKS



> Energy: Kullback-Leibler divergence

&) = [ @+ np(e) o(6) 00

:/pp(:m (”pg) poo df + In (/ e~ ®r(0) d6>

— KL(p(t) [ psc) + €
» Euler-Lagrange condition:

o0&
5p = ®p(0) +Inp(0) =c on supp (p)
» Unique solution: posterior

ef‘bf\’(e)
Poo(0) = f e—%r(0) 46 -
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» Energy dissipation:

d

) = —/p‘C(p)év(%Jr'np)‘zd@-

Hence £ Y\, along paths until C(p) =0 or p = peo.

» Fisher-Information: for any covariance matrix A,

= fo (50 ) ()

» Kalman-Fisher information: For A = C(p),

d

1 KL((B)lpoc) = —Te(p(t)llpoo) -
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Convergence to Equilibrium



Non-linear Inverse Problem

Theorem (Decay To Equilibrium)

Assume that V®g, o > 0 and A > 0 exists such that

Clp(t)) > alg,  D*®g > Ag.

If KL(pol|poo) < o0 then there is ¢ > 0 such that

llp(t) — pooH[_l(Rd) < ce Mt

» Effect of C(p) in FP: faster convergence.
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Proof
» D?dr > M\, guarantees log Sobolev inequality [Bakry,émery 1985]:

KL(p(0) ) < 551 (o(8)lo) .

> C(p(t)) = g gives

CRL(o(8) ) = ~Ze(p(t) )

< —aZ;,(p(t)|pec) < —2aAKL(p(1)l|poo) -

» By Csiszar-Kullback inequality:

1 2
Sl1o(t) = pocllfamey < KL((t)llpse) < KL(pollpoc)e ™.
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Linear Inverse Problem

We consider the setting where G(0) = A6.

Theorem (Linear Inverse Problem).

The mean field limt of EKS has the property that, if
: 1 -1/2 L2
pul6) = rara(detCo) o (5 IR,

then the solution of the nonlinear Fokker-Planck equation is

p(t,0) = (27r1)d/2(det (1)) "2 exp (—;HH — m(t)Hi(t)>

where m(t) and €&(t) satisfy explicit ODEs. In particular p(t, ) converges
exponentially fast to po(0) in LY(RY) as t — oo.

» Gaussians remain Gaussians.
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Short title
LConvergence to Equilibrium

L Linear Inverse Problem

e Main result: FP eqn has exact Gaussian solutions.

o useful since for applications we are often interested in propagating
Gaussians.

Proof:
e derive exact closed equations for mean and covariance.
e FP egn becomes linear.
e explicitly solvable for Gaussian IC.
Consequences:
e For Gaussian IC: p(t) — ps since m(t) and &(t) converge

e Can get same result for non-Gaussian initial conditions!
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Short title
LConverg;ence to Equilibrium

L Linear Inverse Problem

More details: in linear case,
Vogr(0) = B9 —r,

1 1 !
r::?ATyeRd, B = (?ATA—Frol) € RIx,

° %ATA + Fal invertible since Zal strictly positive definite (
Tikhonov regularizarion).

o (o := Br solves V®g(#) = 0 (solution to regularized normal
equations)

o ie. g = mindpg, i.e. O = maxP(f]y).
e Note that poo(0) o exp (—3 |0 — 0o|%).
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Short title
LConvergence to Equilibrium

L Linear Inverse Problem

Closed eqns for moments in linear case:

e For any solution p(t), its mean and covariance satisfy

m(t) = —€(t)(B~ m(t) - r),
&(t) = —2¢(t)B1e(t) + 2¢(t).

o We derive
d -1
- det€(t) = —2(det () Tr [B e(t) — ld] :
&
dt
e As a consequence: €(t) — B and m(t) — 0o exponentially as t — co.
Solve last eqn explicitly: €(t)™" = (€(0)™' =B ') e * + B~

e From first eqn: ||m(t) — Oolle(r) = ||m(0) — Bolleye "

(e(t)™) =2B"" —2¢(t) "



Linear Inverse Problem

We consider the setting where G(0) = Af.

Also obtain convergence for non-Gaussian IC:

» D2®r(6) bounded below and independent of 4.
» &(t) bounded below as an operator.

= If KL(pol|poo) < 00, then p(t) — pso exponentially in L}(RY) and in entropy.
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y=G(6) +n

Calibrate, Emulate, Sample

\ J

A 4

GM)(9) ~ G(0)

Sample

y=6(0)+n

A 4

y =GM(6) +1

Y

y =GM(6) +n
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Sample: GP-MCMC

Cleary, Garbuno, Lan, Schneider, Stuart (2019)
arXiv preprint, 1908.4+++++ [6]
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Gaussian Process Accelerated Sampling
. . J
» From EKS we generate approximate posterior samples {9(’), G(Q(’))}‘

i=1

» Use parameter-output pairs to train a Gaussian Process (GP) emulator Gy(+).

/ ~

» Define ®,(0;y) = #\y — G,(0)|?. Evaluation of @ is fast.
» Sample approximate posterior

P1(0ly) o oxp(~,(6: ) x exp(~5(0.550)).
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Short title
LConvergence to Equilibrium

| Gaussian Process Accelerated Sampling

e only need O(100) samples from posterior.
e then interpolate using Gaussian processes.

e to compare, MCMC needs around O(10°).




Numerics:

EKI vs EKS vs MCMC
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Example: Elliptic BVP

» 1D problem for x € [0, 1],

_(;ix <exp(91) Oip(X)) =1,

with boundary conditions p(0) =0
and p(1) = 6,.

» Explicit solution is available and we

define
s =( 50 )

» Run EKI with J = 1000.
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Example: Elliptic BVP

» 1D problem for x € [0, 1],

_(;ix (exp(el) (;ixp(X)) =1

with boundary conditions p(0) = 0
and p(1) = 65.

» Explicit solution is available and we

define
G(0) = < p0x1) ) .

p(x2)
» Run EKI with J = 1000.

105.5

105.0

104.5

104.0

103.5

-3.50 -3.25 -3.00 -2.75 -2.50

Figure: Contour plots:
®(0) = 222y — G(O).

[m]

-2.25 -2.00 -1.75 -1.50

=

61/48



2019-08-13

Example: Elliptic BVP

Short title
L Numerics

I—Example: Elliptic BVP

e explicit solution: p(x) = fax + exp(—0;) (_§ 4

)

e want 0 = (01,02) " given noisy data y = (27.5,79.7) T at x; = 0.25
and x, = 0.75.

NIX

e find P(0|y) assuming additive Gaussian noise 7 ~ N(0, ), where
v=0.1

e prior: N(0,T), o = 02k with o = 10.



Example: Elliptic BVP

» 1D problem for x € [0, 1],

_% (exp(el) %p(X)) =1,

with boundary conditions p(0) = 0
and p(1) = 6>.

» Explicit solution is available and we

define
s0=( 50 )

» Run EKS with J = 1000.
» Compare with exact MCMC.

105.5

105.0

104.5

104.0

103.5

-3.50

-3.25 -3.00

-2.75

-2.50

-2.25 -2.00 -1.75 -1.50
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Example: Elliptic BVP

» 1D problem for x € [0, 1],

_% (exp(el) %p(X)) =1,

with boundary conditions p(0) = 0
and p(1) = 6>.

» Explicit solution is available and we

define
G(0) = ( p(x1) > _

p(x2)

» Run EKS with J = 1000.
» Compare with exact MCMC.

105.5

105.0

104.5

104.0

103.5

-3.50

-3.25 -3.00

°

-2.75
EKS

-2.50

-2.25 -2.00 -1.75 -1.50

EKI
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Example: Elliptic BVP

» 1D problem for x € [0, 1],

_% (exp(el) %p(X)) =1,

with boundary conditions p(0) = 0
and p(1) = 6>.

» Explicit solution is available and we

define
G(0) = ( p(x1) > _

p(x2)

» Run EKS with J = 1000.
» Compare with exact MCMC.

105.5

105.0

104.5

104.0

103.5

-3.50

-3.25 -3.00
MCMC

-2.75

-2.50

°

EKS

-2.25 -2.00 -1.75 -1.50

EKI
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Short title
L Numerics

I—Example: Elliptic BVP

EKI:

e collapses to a point very quickly.

e used EKI as propose in [Kovachki, Stuart 2018]
EKS:

e Following [Herty,Visconti 2018], we consider an initial ensemble

°
MC

drawn from N(0, 1) x U(90, 110).
run for 30 iterations.
MC:

use Random Walk Metropolis Hastings (RWMH) algorithm with
N = 10° samples.

start of Markov chain = mean of the last step of EKS.

proposal: Gaussian centered at the current state of the Markov
lhAaim it o, A, crirmm ey ST o O COXY cibkmav~ OXY e 2~



Conclusions

» Introduced an algorithm to generate approximate posterior samples for Inverse
Problems inspired by a suitable gradient structure in the mean-field limit

> Related Kalman-Wasserstein metric is a generalization of the Wasserstein distance
that depends on the covariance matrix of the particle distribution.

» Described a framework to enable Bayesian inference on expensive and noisy
forward models (Calibrate-Emulate-Sample).
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Conclusions

Short title
LN umerics

L Conclusions

e Optimize: Use the algorithm to minimize the flow and reach the
equilibrium distribution.

e Learn: Use the samples from the algorithm to learn a surrogate
model (a cheaper but equally accurate model as the original) for the
expensive forward model G.

e Sample: Use the surrogate model to correct approximation done by
the optimization step due to small ensemble size and inherent linear
approximation of the method.




Future Directions

vy

vvyyypy

How close are dynamics of EKS to KW flow for non-linear G7

Application of Calibrate-Emulate-Sample to climate models and large-scale
inverse problems with expensive noisy forward models.

Rigorous justification of mean-field limit.
Properties of Kalman-Wasserstein space and related functional inequalities.
Convergence to equilibrium in W with an explicit rate.

Instead of C(p) choose general matrix K(p). Which choice of K(p) provides
optimal rates of convergence?
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