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1. Stochasticity and Data Assimilation

Data-Driven Stochastic Lie Transport Models

(SALT)



Stochasticity & Data Assimilation

Motivation
I atmospheric data assimilation: challenges generated by

I the multi-scale regime
I the nonlinear aspect

of the atmosphere

I resolved and unresolved scales of motion → certain small/sub-grid scale

geophysical processes and their influence are still under-represented[10] →
introduce stochasticity ⇒ improved representation of the missing physics.

Challenges

I physical properties of the original system are preserved[4]

I analytical properties → as good as those of the deterministic model[3][1].

Approach: Stochastic Advection by Lie Transport (SALT)



Small-scale processes

Figure : Physical processes which influence the large-scale phenomena but are usually active at
scales smaller than those represented within the model grid.
Source: www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics



Data-Driven Stochastic Lie Transport Models (SALT)

I deterministic transport: the Lie form of the vorticity equation contains a Lie
derivative which expresses the change of vorticity along the flow generated by the
velocity vector field:

∂tωt + Lutωt = 0 ⇔ dωt + ut · ∇ωtdt = 0

I vorticity: ωt = curl ut = ∇× ut

I stochastic transport: perturb the velocity vector field and investigate the case
where vorticity is transported along the newly perturbed trajectory[3][4]:

dyt =: utdt +
∑

i

ξi ◦ dW i
t .

dωt + ut · ∇ωtdt +
∑

i

ξi · ∇ωt ◦ dW i
t = 0

I from fine-grid PDE → coarse-grid SPDE ⇒ reduced computational cost ⇔ model

reduction, rigorously justified in nonlinear filtering through the continuity of the

conditional distribution of the signal.



Data-Driven Stochastic Lie Transport Models (SALT)

The ξi vector fields:

I divergence-free, time-independent, derived from the underlying physics

I play 2 roles:

I improved representation of the missing physics
I induce variability in the particle filter ensemble (for DA)

I can be derived by comparing the fine grid and the coarse grid Lagrangian
trajectories ⇒ correspond to spatial correlations defined by a velocity-velocity
correlation matrix

I for an incompressible fluid this spatial structure can be estimated from data in

such a way that an ensemble of this type of stochastic paths will successfully track

the large-scale behaviour of the original deterministic system: Cotter, C. et. al.,

Numerically Modelling Stochastic Lie Transport in Fluid Dynamics, 2018.



SGLE: Between Euler and the Rotating Shallow Water Model

Euler Lake Great Lake SRSW

ω = curl u ω = b−1curl u ω = b−1curl v ω = z · curl v
v = u + 1

6
δ2b2∇(∇ · u) v = εu + R

=: Lu time-evolution for (h + b)

u = ∇⊥ψ u = b−1∇⊥ψ u = b−1∇⊥ψ
u = Kω u = Kω u = Kω . . .

K = curl−1 K = curl−1b K = (curlL)−1b

∇ · u = 0 ∇ · (bu) = 0 ∇ · (bu) = 0 time-evolution for ∇ · u

Lu = u + δ2b−1

[
−

1

3
∇(b3∇ · u)−

1

2
∇(b2u · ∇b) +

1

2
b2(∇ · u)∇b + b(u · ∇b)∇b

]
I L is self-adjoint, positive-definite ⇒ invertible ⇒ K is continuous

I we need smoothing properties for K i.e a generalization of the Biot-Savart law

‖Kω‖k,2 ≤ C‖ω‖k−1,2.



2D Stochastic Euler Equation with Transport Noise

Theorem (Crisan, L., 2019)

If ω0 ∈ Wk,2(T2) is a divergence-free function then the two-dimensional stochastic Euler
vorticity equation

dωt + ut · ∇ωtdt +
∞∑
i=1

(ξi · ∇ωt) ◦ dW i
t = 0

admits a global, pathwise unique, Ft-adapted solution ω = {ωt , t ∈ [0,∞)} in
C
(
[0,∞);Wk,2(T2)

)
. In particular, if k ≥ 4 the solution is classical. Moreover, if

ω̃ = {ω̃t , t ∈ [0,∞)} is another solution of this equation, then, for all T ∈ [0,∞) there
exists a positive constant C independent of the two solutions such that

E
[
e−CAt ||ωt − ω̃t ||2k,2

]
≤ ||ω0 − ω̃0||2k,2.

The process A is defined as At :=

∫ t

0

‖ωs‖k,2ds, for any t ≥ 0.

I The result holds for the more general class of SPDEs

dxt = F (xt)dt +
∞∑
i=1

Lixt ◦ dW i
t

where F is a nonlinear operator satisfying specific conditions and Lixt := ξi · ∇xt .



Stochastic Great Lake Equations with Transport Noise

Theorem (Crisan, L., in preparation)

Under certain conditions on the vector fields (ξi )i the two-dimensional stochastic great
lake equation system

∂tωt + ut · ∇ωtdt +
∑

i

(ξi · ∇ωt) ◦ dW i
t = 0

∇ · (bu) = 0

ω = b−1curl v

v = u +
1

6
δ2b2∇(∇ · u)

(1)

admits a unique global (in time) solution in the weighted Sobolev space Wb,k,2(T2). In
particular, if k ≥ 4 the solution is classical. Moreover, if ω̃ = {ω̃t , t ∈ [0,∞)} is another
solution of this equation, then, for all T ∈ [0,∞) there exists a positive constant C
independent of the two solutions such that

E[e−CBt ||ωt − ω̃t ||2b,k,2] ≤ ||ω0 − ω̃0||2b,k,2.

The process B is defined as Bt :=

∫ t

0

‖ωs‖b,k,2ds, for any t ≥ 0.



2. The Stochastic Rotating Shallow Water Model
(SRSW)



A Viscous Stochastic Rotating Shallow Water System
- Overview -

dvt +
[
ut · ∇vt + f ẑ × ut +∇pt

]
dt +

∞∑
i=1

[
ξi · ∇vt + (vt )j∇ξj

i

]
◦ dW i

t = ν∆vt

dηt +∇ · (ηt ut )dt +
∞∑
i=1

[
∇ · (ξiηt )

]
◦ dW i

t = δ∆ηt ∇ · vt 6= 0

v := εu +R, curl R = f ẑ, p = η−b
εF , η = total depth, b = bottom topography.

Picture source: Levermore, Oliver, Titi, Global Well-posedness for the Lake Equations (1996).



The Viscous Stochastic Rotating Shallow Water System

- Main result -

Theorem (Crisan, L., in preparation)

Given (u0, η0) ∈ W1,2(T2)×W1,2(T2) and a fixed stochastic basis
S = (Ω,F , (Ft)t ,P,W i ), there exists a unique local pathwise solution of the stochastic
rotating shallow water system

dvt +
[
Lut vt + f ẑ × ut +∇pt

]
dt +

∞∑
i=1

[
(Li +Ai )vt

]
◦ dW i

t = ν∆vtdt

dηt +∇ · (ηtut)dt +
∞∑
i=1

Liht ◦ dW i
t = δ∆ηtdt

with values in the space W1,2(T2)×W1,2(T2).

I Livt := ξi · ∇vt

I Aivt := (vt)j∇ξj
i = (vt)1∇ξ1

i + (vt)2∇ξ2
i

I ∇ · ξi = 0, ∇ · u 6= 0



The Viscous Stochastic Rotating Shallow Water System

- Strategy & Key facts -

I Consider the truncated linearised system (Itô form):

dvn
t = ν∆vn

t dt + Pn−1,n
t (vn

t )dt −
∞∑
i=1

[
(Li +Ai )vn

t

]
dW i

t

dηn
t = δ∆ηn

t dt + Qn−1,n
t (ηn

t )dt −
∞∑
i=1

Liη
n
t dW i

t

Pn−1,n
t (vn

t ) := −fR (un−1
t )L

un−1
t

vn
t − f ẑ × un

t − fR (ηn−1
t )∇pn−1

t +
1

2

∞∑
i=1

[
(Li +Ai )

2vn
t

]
dt

Qn−1,n
t (ηn

t ) := −fR (un−1
t )∇ · (ηn

t un−1
t ) +

1

2

∞∑
i=1

L2
i η

n
t dt

I E
[

sup
t∈[0,T ]

‖vn
t ‖2

1,2 + sup
t∈[0,T ]

‖ηn
t ‖2

1,2

]
≤ C1

I E
(∫ T

0
‖∆vn

t ‖2
2dt +

∫ T

0
‖∆ηn

t ‖2
2dt

)
≤ C2

 a priori estimates



The Viscous Stochastic Rotating Shallow Water System

- Strategy & Key facts -

I The truncated linear system admits a global pathwise solution in

C∞(T2)× C∞(T2) (Rozovskii)

I The family of solutions (vn
t , η

n
t )n is relatively compact in the space of càdlàg

functions D([0,T ],L2(T2)); Kurtz’s criterion: find a family of random variables
(γn
α)α s.t. E

[
‖Y n

t+l − Y n
t ‖2

2|Ft

]
≤ E

[
γn
α|Ft

]
and lim

α→0
lim sup

n
E[γn

α] = 0 for

t ∈ [0,T ] ← we use the mild form to show this.

I (vn
t , η

n
t )n converges in distribution to a truncated form of the original system

Skorohod
====⇒ weak (probabilistic) solution

I Stochastic Gronwall lemma ⇒ pathwise uniqueness
Yamada-Watanabe
=========⇒ strong solution

for the truncated form of the original system

I Remove the truncation up to a positive stopping time

⇒ strong local solution for the stochastic rotating shallow water system.



Numerical implementation of the SRSW model

I In the first phase we use an ideal
simulation of the truth, when the model
is run at fine resolution for 1000 and 10
000 time steps respectively, with initial
data (pressure) from a DWD numerical
weather prediction analysis field.

I The velocity solution (zonal velocity,

meridional velocity), and the magnitude

of the velocity vector (given by the L2 -

norm)

I The scale of the fields decreases during

the integrations due to developing

instabilities within the flow.

Code by P.J. van Leeuwen



Nonlinear Stochastic Filtering

- Overview -

Let (Ω,F ,P) be a probability space.

Signal process/model dXt = ft(Xt)dt + σ(Xt)dWt (X is unknown)

Observation process Yt = ht(Xt) + Vt (Y is known)

where ft , ht , σt : Rd → Rd are measurable functions and (Wt)t , (Vt)t are normal,

independent and identically distributed random variables.

Goal

Find the best estimate of Xt given the σ - algebra Yt = σ(Ys , s ∈ [0, t])
generated by observations i.e. find the probability measure valued process (πt)t

such that for any A ∈ F

πt(A) = P(Xt ∈ A|Y1, . . . ,Yt).



Stochastic Filtering/Data Assimilation

I intractable for nonlinear problems ⇒ approximation methods required:
I variational and ensemble methods: 3dVar, 4dVar, EnKF, LETKF, . . .
I particle filters



A Data Assimilation Problem using the SRSW model

πa
t−1

Kt =model−−−−−−→
forecast

prediction

Kt(πa
t−1) = πb

t−1
tempering , gt?−−−−−−−−−→

assimilation
analysis

gt ? π
b
t−1 = πa

t

Model (signal process):

dq + (u · ∇q)dt +
∑

i

(
ξi · ∇q

)
◦ dW i

t = 0, q =
ω

η
, ω = ẑ · curl(εu +R)

dηt +∇ · (ηtut)dt +
∞∑
i=1

[
∇ · (ξiηt)

]
◦ dW i

t = 0, ∇ · vt 6= 0

dvt +
[
ut · ∇vt + f ẑ × ut +∇pt

]
dt +

∞∑
i=1

[
ξi · ∇vt + (vt)j∇ξj

i

]
◦ dW i

t = 0

Data (observation process): pointwise
measurements for the pressure field
between 20 and 70 degrees north latitude,
collected using commercial aircraft
(Deutscher Wetterdienst).

Methodology: Particle Methods.



3. Adaptive Tempering Particle Filter Algorithms



Particle Filters - Overview

π
a,y0:t−1
t−1

Kt−−−−−−→
model

forecast
prediction

Ktπ
a,y0:t−1
t−1 =: πb

t−1 =: pt
update using data, g

yt
t ?−−−−−−−−−−−−−−−→

assimilation
analysis

gyt
t ? πb

t−1 = πa,y0:t
t

Kt : Rds × B(Rds )→ [0, 1], Kt (Xt−1, A) = P(Xt ∈ A|Xt−1)

g
yt
t : RdX → [0, 1], g

yt
t (x) = gt (yt − h(t, x)) = P(Yt ∈ dyt |Xt = xt )

I πt ≈ πN
t =

N∑
l=1

w̄ l
t δ(x l

t ), x l
t2

= K(x l
t1
, ωl , t2), πa

t2
=

N∑
l=1

w̄ l
t2
δ(K(x l

t1
, ωl , t2)) =

N∑
l=1

w̄ l
t2
δ(x l

t2
)



Particle Filters - Overview

I too informative observations ⇒ πN
t2

and πt become singular with respect to
each other exponentially fast ⇒ resampling: particles with low weights are
discarded and replaced with higher weighted particles ⇒ new ensemble
(x̃ l

t2
)l with equal weights

πN
t2

=
1

N

N∑
l=1

δ(x̃ l
t2

)

I resampling ↔ duplicates ⇒ degenerate distribution ⇒ jittering (MCMC) →
evaluation of the solution map K ←→ computationally expensive ⇒
quantify the non-uniformity/variance of the weights using the effective
sample size (ess) statistic:

ess(w̄) =
1

N∑
l=1

(w̄ l )2

I πN
t can become degenerate exponentially fast in high dimensions ←→ low

ess ⇒ tempering ⇒ smoother transitions between posterior distributions

I standard particle filters do not work in high-dimensional systems



Particle Filters - Algorithm[6]

I Draw independent samples x l
0 ∼ π0, l = 1, 2, . . . ,N and assign equal

normalised weights w̄ l
0 = 1/N

I For i = 1, 2, . . . do

I Compute x l
ti

= K (x l
ti−1

, ωl , ti )l = 1, 2, . . . ,N

I Collect observation yi and compute the weights
w̄ l

i ∝ w̄ l
i−1g yi

i (x l
i ), l = 1, 2, . . . ,N

I If ess < Nthreshold then

I Sample x̃ l
i , l = 1, 2, . . . ,N according to the weights w̄ l

i

I Assign equal weights w̄ l
i = 1/N

I If there are duplicates then do jittering and obtain the jittered set
˜̃x l

i

I Set x l
i = x̃ l

i = ˜̃x l
i

I end If

I Move on to the next For loop cycle.



Tempering[6]

I Sometimes the ess is smaller than a representative threshold Nthreshold ↔
equal-weighted particles concentrate in a ’wrong’ direction

I Tempering: increase gradually the variance of the distribution so that Nthreshold is
attained, then resample ⇒ a more diverse ensemble of particles which are samples
corresponding to a sequence of altered distributions → repeat until the original
distribution is recovered

I Sequence of temperatures 0 = φ0 < φ1 < . . . φR = 1⇒ sequence of tempered
posteriors with corresponding normalised tempered weights (φ ∈ (0, 1])

w̄ l
i (φ, x) :=

exp(−φλl
i )∑

j exp(−φλj
i )

and the corresponding ess

essi (φ, x) := ‖w̄i (φ, x)‖−1
l2



Tempering[6]

I t = 0: Sample N particles from the prior distribution.

I (ti−1, ti ] : we have an ensemble x of particles with positions (x l
ti−1

)l and we want

to assimilate observational data yti in order to obtain a new ensemble (x l
ti

)l that

defines πN
ti

:

I Evolve xt l
i−1

SPDE−−−−−−−−−→
SRSW ,Lorenz63

x l
ti

.

I Set temperature φ = 1.

I While essi (φ, x) < Nthreshold do

I Find φ′ ∈ (1− φ, 1) such that essi (φ
′ − (1− φ), x) ≈ Nthreshold .

Resample according to w̄ l
i (φ′ − (1− φ), x) and apply MCMC with

jittering if required (i.e. if there are duplicates) ⇒ a new ensemble
x(φ′).

I Set φ = 1− φ′ and x = x(φ).

I If essi ≥ Nthreshold then Stop and go to the (i + 1)th filtering step with

(x l
ti
, w̄ l

i )l .



Application for Lorenz 63

I Ensemble spread

I Effective sample size

I RMSE



Summary

I Storyline: Change a classical model in such a way that the missing physics is

better represented and therefore we are able to produce a better approximation of

the real geophysical processes which characterise the dynamics of the atmosphere

(SALT). Show that the new model makes sense from a mathematical point of

view (the solution does not blow-up in finite time), and it can eventually be used

operationally (it can assimilate real data).

Remarks:

I The atmosphere is more turbulent and faster than the ocean ⇒ increased
complexity when we go to finer grid scales.

I When the ξi parameters are chosen such that they induce enough variability in the

particle filter ensemble ⇒ the missing physics is also modelled properly.

Results:

I The SRSW model is well-posed in W1,2(T2)×W1,2(T2).

I An adaptive tempering particle filter has been implemented for both Lorenz63 and

SRSW. It produces good results in the first case. Optimal ξi parameters are still

being tested in the second case. No extra approximations required.
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