
Data-driven reconstruction of chaotic dynamics
using data assimilation and machine learning

Marc Bocquet1, Julien Brajard2,3, Alberto Carrassi4,5 & Laurent Bertino2
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Context

From model error to the absence of a model

IData assimilation and model error
Numerical predictions in geophysics based on data assimilation crucially depends on
both initial condition and model error [Magnusson et al., 2013]. There are methods
developed to mitigate model error:

additive stochastic noise [Trémolet, 2006; Raanes et al., 2015; Sakov et al. 2018]

estimation of uncertain model parameters

physically-driven stochastic perturbations [e.g., Buizza et al., 1999], stochastic subgrid
parameterizations [e.g., Resseguier et al., 2017], inflation [e.g., Raanes et al., 2019]

IData-driven forecast of a physical system
One step further: renounce physically-based models and use massive observation

use data assimilation together with analogues [Lguensat et al., 2017]

use diffusion maps for a spectral representation of datasets [e.g., Harlim, 2018]

use neural networks (NNs), echo states networks, & deep learning [Park and Zhu 1994;

Pathak, Lu, et al. 2017; Dueben and Bauer 2018; Vlachas et al. 2019] to represent the resolvent.
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Context

Building a surrogate model

I Learning the dynamics of a model from its output

more explicit (possibly with NNs) representations of the dynamics using specific
regressors e.g., [Paduart et al. 2010; Brunton et al. 2016].

design NNs that mimic integration schemes [Wang and Lin 1998; Fablet et al. 2018; Long

et al. 2018]

IOur goal

Use a data assimilation framework to infer both a surrogate model and the state
trajectory within a time window over which the reference model is only partially &
noisily observed.
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Sleek algebraic surrogate model
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Sleek algebraic surrogate model

ODE representation for the surrogate model

IOrdinary differential equations (ODEs) representation of the surrogate dynamics

dx
dt

=φA(x), φA(x) = Ar(x),

where

A is a matrix of coefficients of size Nx×Np

r(x) is a vector of nonlinear regressors of size Np. For instance, for
one-dimensional spatial systems and up to bilinear order:

r(x) =
[
1, {xn}06n<Nx

, {xnxm}06n6m<Nx

]
.

A priori, Np =
(Nx+1

2

)
= 1

2 (Nx +1)(Nx +2) such regressors.

−→ Intractable in high-dimension! (typically Nx ≈ 106 and beyond)
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Sleek algebraic surrogate model

Assumptions and symmetries

I Locality
Locality of the physics: all multivariate monomials in the ODEs have variables xn that
belong to a stencil, i.e. a local arrangement of grid points around a given node.

sn is the stencil around node n, the pattern being the same for all nodes.

the set of required monomials can therefore be reduced to (in 1D)

r(x) =
[
1, {xn}06n<Nx

, {xnxm}06n6m<Nx,m∈sn
]

.

In 1D and with a stencil of size 2L+1, there are Np = 1+Nx(2+L) monomials.

A becomes sparse and can be squeezed into a dense rearrangement of A. In 1D
and with a stencil of size 2L+1, the size of the dense A is

Nx×Na where Na =

2L+2∑
l=L+1

l =
3

2
(L+1)(L+2).

IHomogeneity
Moreover, we can additionally assume translational invariance. In that case A becomes
a vector of size Na.
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Sleek algebraic surrogate model

Integration scheme and cycling

x0 xk xk+1 xK

xk,0 xk,l xk,l+1 xk,Nk
c

y0 yk yk+1 yK

Fk−1
A ◦ · · · ◦ F0

A Fk
A FK−1

A ◦ · · · ◦ Fk+1
A

f lA fA f
Nk

c −l−1
A

ICompositions of integration schemes:

xk+1 = Fk
A(xk ) where Fk

A ≡ f
Nk

c
A ≡ fA ◦ . . .◦ fA︸ ︷︷ ︸

Nk
c times

,

IChoosing a Runge-Kutta method as integration scheme:

fA(x) = x+h

NRK−1∑
i=0

βiki , ki =φA

x+h
i−1∑
j=0

αi ,jkj

 .
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Residual neural network surrogate model
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Residual neural network surrogate model

Neural network models

IWe tested many simple architectures, all following the structure of Nc explicit
Runge-Kutta schemes, with linear or nonlinear activation functions:

IThe sleek algebraic representation above does not rely on ML libraries
(TensorFlow, PyTorch, etc.). But it was also implemented as NNs using these tools.

IConvolutional layers were used for local, homogeneous systems.

I Locally connected convolutional layers were used for local, heterogeneous systems.

x
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1
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N

1

C
N
N

2

gA(x)

x k1 = gA(x) 1
2 + x+ k1/2 gA(x+ k1/2) + fA(x)

gA gA

x fA(x) fA ◦ fA(x) FA(x) = f◦Nc

A (x)

gA:

fA:

FA:
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Model identification as a data assimilation problem
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Model identification as a data assimilation problem

Bayesian analysis of the joint problem

IBayesian view on state and model estimation:

p(A,Q1:K ,x0:K |y0:K ,R0:K ) =
p(y0:K |x0:K ,A,Q1:K ,R0:K )p(x0:K |A,Q1:K )p(A,Q1:K )

p(y0:K ,R0:K )
.

IData assimilation cost function assuming Gaussian errors and Markovian dynamics:

J(A,x0:K ,Q1:K ) =
1

2

K∑
k=0

{
‖yk −Hk (xk )‖2

R−1
k

+ ln |Rk |
}

+
1

2

K∑
k=1

{∥∥∥xk −Fk−1
A (xk−1)

∥∥∥2

Q−1
k

+ ln |Qk |

}
− lnp(x0,A,Q1:K ).

−→ Allows to rigorously handle partial and noisy observations.

ITypical machine learning cost function with Hk = Ik in the limit Rk −→ 0:

J(A)≈ 1

2

K∑
k=1

∥∥∥yk −Fk−1
A (yk−1)

∥∥∥2

Q−1
k

− lnp(y0,A).

Similar outcome or improved upon [Hsieh and Tang 1998; Abarbanel et al. 2018].
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Model identification as a data assimilation problem

Bayesian analysis of the joint problem

I If Q1:K are known, we look for minima of

J(A,x0:K |Q1:K ) = − lnp(A,x0:K |y0:K ,R0:K ,Q1:K )

which is not as general as J(A,x0:K ,Q1:K ).

(1) IThe optimization of J(A,x0:K |Q1:K ) can be solved using a full variational
approach.

I In [Bocquet et al. 2019], J(A,x0:K |Q1:K ) is optimized using a full weak-constraint
4D-Var where both x0:K and A are control variables (assuming Q1:K is known).

(2) IThe optimization of J(A,x0:K |Q1:K ) can be solved using a coordinate descent.

IFor J(A,x0:K |Q1:K ): using a weak constraint 4D-Var for x0:K and a variational
optimization problem for A [Bocquet et al. 2019].

IFor J(A,x0:K |Q1:K ): using an EnKF for x0:K and a variational optimization
problem for A [Brajard et al. 2020].
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Model identification as a data assimilation problem

Bayesian analysis of the joint problem

ICoordinate descent of [Brajard et al. 2020].
Hybrid data assimilation and machine learning techniques.

Initialisation: xa
0:K ,A

Fix A, estimation of xa
0:K using y

DA step

Fix xa
0:K , estimation of A

ML step

Iterations

Stop if converged

Training of an NN

EnKF/EnKS

IThe coordinate descent algorithm is interpreted as an expectation-maximization (EM)
algorithm by [Nguyen et al. 2019].
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Model identification as a data assimilation problem

Bayesian analysis of the marginal problem

I Looking only for the dynamics and its model error:

p(A,Q1:K |y0:K ,R0:K ) =

∫
dx0:K p(A,Q1:K ,x0:K |y0:K ,R0:K )

yielding the loss function

J(A,Q1:K ) = − lnp(A,Q1:K |y0:K ,R0:K ).

IA MAP solution (minimum of J) is provided by the EM algorithm. Applying it for the
reconstruction of a dynamical system has been suggested in [Ghahramani and Roweis 1999],
using an extended Kalman smoother, or for the estimation of subgrid stochastic
processes in [Pulido et al. 2018] using an ensemble Kalman smoother.
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Model identification as a data assimilation problem

Reminder on the EM algorithm

IGoal of the EM method: find a local maximum over θ of:

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(θ)

p(y)

∫
dxp(y|x,θ)p(x|θ),

where expressions for p(y|x,θ) and for p(x|θ) are known, whereas the integral being
intractable, an analytic expression for p(y|θ) is not known.

IThe algorithm principle of the EM method [Dempster et al. 1977] consists in iterating:

IThe expectation step: Given θ(j), compute

L(θ|θ(j)) = E
x|y,θ(j) [lnp(x,y,θ)] .

IThe maximization step: Look for a local maximum of L(θ|θ(j)) and set it to be

θ(j+1) = argmaxθL(θ|θ(j)).

IMonte Carlo approximation of L(θ|θ(j)) [Wei and Tanner 1990]: A sample estimator is

L(θ|θ(j))≈ 1

Ne

Ne∑
i=1

lnp(x
(j)
i ,y,θ), with x

(j)
i ∼ x|y,θ(j).
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Model identification as a data assimilation problem

Algorithm for the full solution of the marginal problem (1/2)

IThe expectation step: EnKS over a long period [t0,tK ] which accounts for model

error (SQRT-CORE scheme, [Raanes et al. 2015]). The output is E
(j)
0:K ∈ RK×Nx×Ne .

IThe maximization step: Minimize:

L(j)(A,Q) =−
1

Ne

Ne∑
i=1

lnp(E
(j)
i ,y0:K ,A,Q,R0:K )

=
1

2Ne

Ne∑
i=1

K∑
k=1

{∥∥∥x(j)k,i −Fk−1
A (x

(j)
k−1,i )

∥∥∥2

Q−1
+ ln |Q|

}
− lnp(x

(j)
0,i ,A,Q)+ · · · .
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Model identification as a data assimilation problem

Algorithm for the full solution of the marginal problem (2/2)

IThe maximization step can be achieved by either a joint optimization on

L(j)(A,Q)

or by a coordinate descent over A and Q, which alternates (i) a minimization on

L(A,Q(j ,p)) =
1

2Ne

Ne∑
i=1

K∑
k=1

∥∥∥x(j)k,i −Fk−1
A(j ,p)(x

(j)
k−1,i )

∥∥∥2

Q(j ,p)−1 ,

yielding A(j ,p) and (ii)

Q(j ,p+1) =
1

KNe

Ne∑
i=1

K∑
k=1

(
x
(j)
k,i −Fk−1

A(j ,p)(x
(j)
k−1,i )

)(
x
(j)
k,i −Fk−1

A(j ,1)(x
(j)
k−1,i )

)>
.

In practice, only one iteration of this coordinate descent (which is exact if Q= qIx).

ICould be numerically very costly!
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Model identification as a data assimilation problem

Algorithm for an approximate solution of the marginal problem

IThe expectation step: EnKS over a long period [t0,tK ] which accounts for model

error (SQRT-CORE scheme). The outputs are x
(j)
0:K and Q(j+1) computed online by

accumulating over the time window.

IThe maximization step: Minimize:

L(j)(A,Q(j+1)) =− lnp(x
(j)
0:K ,y0:K ,A,Q(j+1),R0:K )

=
1

2

K∑
k=1

{∥∥∥x(j)k −Fk−1
A (x

(j)
k−1)

∥∥∥2

Q(j+1)−1 + ln
∣∣∣Q(j+1)

∣∣∣}
− lnp(x

(j)
0 ,A,Q(j+1))+ · · · .

Note the use of the ensemble mean instead of the ensemble.

INo iteration in the maximization step over A and Q (should be fine if Q= qIx).
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Model identification as a data assimilation problem

Non-informative hyperpriors on Q (Jeffreys’)

I If Q= qIx:

L(A,Q) = − lnp(q)+
Ks

2q
+

KNx

2
ln(q)+ . . .

where

s =
1

KNe

Ne∑
i=1

K∑
k=1

∥∥∥xk,i −Fk−1
A (xk−1,i )

∥∥∥2
.

Minimizing on q yields for the maximization step:

q =
K

KNx +2
s.

IGeneral Q:

L(A,Q) = − lnp(Q)+
K

2
Tr
(
SQ−1

)
+

K
2

ln(|Q|)+ . . .

where

S=
1

KNe

Ne∑
i=1

K∑
k=1

(
xk,i −Fk−1

A (xk−1,i )
)(

xk,i −Fk−1
A (xk−1,i )

)>
.

Minimizing on Q yields for the maximization step:

Q=
K

K +Nx +1
S.
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Model identification as a data assimilation problem

Hyperpriors on A

IThe design of the hyperprior for A is primarily driven by physical modeling and
numerical stability [Bocquet et al. 2019].

IPractically, an hyperprior for A could be implemented by adding a regularization term
(typically L1 or L2 norm) on the coefficients of A, corresponding to specific prior
statistical assumptions for A. We avoid such regularization here by mostly considering
very long training windows, and because A is rather well constrained by locality and/or
homogeneity.

IHowever, with higher dimensional physical models, larger A, deeper NN
representations, and shorter training windows by comparison, methods used in machine
learning and deep learning to regularize and avoid overfitting could be used, for instance
dropouts and stochastic optimization techniques [LeCun et al. 2012].
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Numerical experiments

Experiment plan

IThe reference model, the surrogate model and the forecasting system

δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

training step

forecast step

yk yk+1

IMetrics of comparison:

Model: ODE coefficients norm ‖Aa −Ar‖∞.

Forecast skill [FS]: Normalized RMSE (NRMSE) between the reference and the
surrogate forecasts as a function of the lead time (averaged over many initial
conditions).

Lyapunov spectrum [LS].

Power spectrum density [PSD].
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Numerical experiments

Identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of identifiable models

The Lorenz 63 model (L63, 3 variables):

dx0

dt
= σ(x1 −x0),

dx1

dt
= ρx0 −x1 −x0x2,

dx2

dt
= ρx0x1 −βx2,

−→ ‖Aa −Ar‖∞ ∼ 10−13 close to perfect reconstruction at machine precision.

The Lorenz 96 model (L96, 40 variables)

dxn
dt

= (xn+1 −xn−2)xn−1 −xn+F ,

−→ ‖Aa −Ar‖∞ ∼ 10−13 close to perfect reconstruction at machine precision.
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Numerical experiments

Almost identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Lorenz 96 model (40 variables). Surrogate model based on an RK2 scheme.
Analysis of the modeling depth as a function of Nc.
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Numerical experiments

Not so identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Numerical experiments

Not so identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Numerical experiments

Almost identifiable model and imperfect observations

IVery good reconstruction of the long-term properties of the model (L96 model).

I Approximate scheme
I Fully observed
I Significantly noisy observations R= I
I Long window K = 5000, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Numerical experiments

Non-identifiable model and imperfect observations

IThe Lorenz 05III (two-scale) model (36 slow & 360 fast variables).
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Numerical experiments

Non-identifiable model and imperfect observations

IGood reconstruction of the long-term properties of the model (L05III model).

I Approximate scheme
I Observation of the coarse modes only
I Significantly noisy observations R= I
I Long window K = 5000, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Numerical experiments

Comparison of the full and approximate schemes

IFull scheme computationally much more demanding than the approximate scheme:
(i) Evaluation of the loss function Ne times more costly
(ii) Storage Ne times more demanding.

IThe LS and PSD (long-term) are very close to each other. However, the FS of the
approximately is better than that of the full scheme. Slight overfitting?

IScalar indicators:

Model Scheme π 1
2

σq λ1

L96 Approximate 4.56±0.06 0.08790±210−5 1.66±0.02
L96 Full 4.24±0.07 0.09152 1.66±0.02

L05III Approximate 4.06±0.21 0.07720±210−5 1.03±0.05
L05III Full 3.97±0.17 0.08024 1.03±0.04
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Numerical experiments

Dependence on the window length (L96)

I Approximate scheme
I Fully observed
I Significantly noisy observations R= I
I Variable window length, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Numerical experiments

Dependence on the window length (L05III)

I Approximate scheme
I Observation of the coarse modes only
I Significantly noisy observations R= I
I Variable window length, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Numerical experiments

Dependence on the observation noise (L96)

I Approximate scheme
I Fully observed
I Variable observation variance R= σ2

y I
I K = 5000, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Numerical experiments

Dependence on the observation noise (L05III)

I Approximate scheme
I Observation of the coarse modes only
I Variable observation variance R= σ2

y I
I K = 5000, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Numerical experiments

Dependence on the observation density (L96)

I Approximate scheme
I Variable observation density
I Significantly noisy observations R= I
I K = 5000, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Numerical experiments

Dependence on the observation density (L05III)

I Approximate scheme
I Variable obs. of the coarse modes
I Significantly noisy observations R= I
I K = 5000, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Conclusions

Conclusions

All results presented here are from [Bocquet et al. 2019; Brajard et al. 2020; Bocquet et al. 2020].

IMain messages:

Bayesian DA view on state and model estimation.
DA can address goals assigned to ML but with partial & noisy observations.

Numerical costs of high-dimensional systems significantly reduced by locality and
homogeneity assumptions.

The EM technique, full or approximate, is successful. Only coordinate
minimization was shown to be successful so far in such context.

The method can handle very long training windows.

Successful on various 1D low-order models (L63, L96, KS, L05III) in presence of
partial observation with significant noise.

IOpen questions and technical hardships (non-exhaustive):

Non-autonomous dynamics?

Implicit integration schemes?

Online learning scheme?

More complex models?
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