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Slow-fast systems

systems with
many degrees of freedom
dynamics on multiple scales

e. g. molecular dynamics, neural networks, traffic flows, ...

assumption: there exists an attractive slow manifold
evolution in long terms is on slow manifold
massive reduction of dimensions is possible
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Analysis of macroscopic dynamics

Given

equations on a microscopic scale

too complex or non-existing macroscopic equations

Goal

analyze macroscopic dynamics:

equilibria

stability

. . .

Anna Dittus Implicit equation-free methods applied on noisy slow-fast systems



Introduction
Equation-free analysis

The olfactory bulb
Tracking the unstable branch

Applications on noisy systems
Difficulties and Outlook

Literature

Slow-fast systems
Analysis of macroscopic dynamics

Reminder: stability of dynamical systems

Dynamical system

f (x(t)) = ẋ(t), x ∈ Rd , t ∈ R

Equilibrium

x∗ is an equilibrium if and only if f (x∗) = 0.

Stability

Let Jf (x∗) be the Jacobian of f at the equilibrium x∗.
If all real parts of the eigenvalues of Jf (x∗) are < 0, then x∗ is asymptotically
stable.
If the real part of an eigenvalue of Jf (x∗) is > 0, then x∗ is unstable.
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Reminder II: bifurcation of a dynamical system

Dynamical system

f (µ, x(t)) = ẋ(t), x ∈ Rd , µ ∈ R

Bifurcation point

Let (µ∗, x∗) be an equilibrium of f , i. e. f (µ∗, x∗) = 0.
If the real part of one eigenvalue is 0, then (µ∗, x∗) is a bifurcation point.
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Macroscopic time-stepper
Microscopic simulation

Explicit equation-free scheme
I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis,
O. Runborg & C. Theodoropoulos (2003) Commun. Math. Sci. 1(4)

Given

Microscopic equations
u̇(t) = f (u(t)), u ∈ RD , f : RD → RD

with microscopic time-stepper

M(t; u(t0)) = u(t0 + t)

Unknown

Macroscopic dynamics, d � D,
ẋ(t) = F (x(t)), x ∈ Rd , F : Rd → Rd

with macroscopic time-stepper

Φ(t; x(t0)) = x(t0 + t)

Construct operators

Lifting operator L : Rd → RD , x(t) 7→ L(x(t)) = u(t)
Restriction operator R : RD → Rd , u(t) 7→ R(u(t)) = x(t)
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Macroscopic time-stepper
C. Marschler, J. Sieber, R. Berkemer, A. Kawamoto & J. Starke
(2014) SIAM J. Appl. Dyn. Sys. 13(3)

actually computing dynamics off the slow manifold C

interesting macroscopic dynamics on C

Macroscopic time-stepper

Φ(t; y) = R(M(t;L(y)))
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The normalform example

Microscopic equation

Microscopic equation

f (µ, x(t)) = ẋ(t) = µ− x + x3

Search

equilibria x∗, i. e. f (x∗) = 0, and their
stability for each µ without any
knowledge about microscopic behaviour

Time series for µ = −1 and x(t0) = −1.3.

Stable equilibria by direct simulation
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What and where is the olfactory bulb?

neural structure of the vertebrale forebrain

relatively easy to access for imaging methods

is responsible for odor recognition

clear input and output

its neural network can be seen as a model for the whole brain
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The Spike and Response Model (SRM)

C. Fohlmeister, W. Gerstner, R. Ritz & J.L. van Hemmen (1995)
Neural Computation 7 (5)

a spike width has the length ∆t

a cell i fires at time t + ∆t if the membrane potential hi reaches a certain
threshold θ:

Si (t + ∆t) =

{
1, if hi (t) ≥ θ, dhi (t)

dt
> 0

0, else
,

membrane potential consists of four different components:

hi (t) = hsyn
i (t) + hs−inh

i (t) + href
i (t) + hext

i (t)
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The membrane potential

C. R. Ellsässer. Simulations of a Neuron Network Model in the
Olfactory System (2008)

hi (t) = hsyn
i (t) + hs−inh

i (t) + href
i (t) + hext

i (t)

The components are:
synaptic input:

hsyn
i (t) =

N∑
j=1

Jij

∞∑
τ=0

ε(τ)Sj

(
t − τ −∆den

ij

)
, with ε(τ) =

τ

τ 2
ε

exp

(
− τ
τε

)
,

self-inhibitory input:

hs−inh
i (t) =

∞∑
τ=0

η(τ)Si

(
t − τ −∆s−inh

i

)
, with η(τ) = ηinh exp

(
− τ

τη

)
,

refractoriness of the neuron href
i (t) = −R,R � 1, if t fi ≤ t ≤ t fi + τref , and

external input hext
i (t)
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The spiking model
Hysteresis

The cells in the neural network

mitral and granular cells have reciprocal connectivity

mitral cells excite granular cells, granular cells inhibit the activities of
mitral cells

coupling Jij depends on the distance dij between the cells i and j :

Jij =


Jexc , for MC i and GC j , dij < rexc

−Jinh exp
(
−10dij
rinh

)
, for GC i and MC j , dij < rexc

0 , otherwise.
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Time delay of the synaptic input

t=1 t=2 t=3 t=4 t=5

Mitral cells

t=1 t=2 t=3 t=4 t=5

Granular cells
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Macro-variable: the fire rate difference

consider the case of two different odors

interested in the macroscopic variable ∆s = F1 − F2, the difference
between the fire rates F1 and F2

it holds for the concentrations c1 + c2 = 1

What happens if we change the odor concentrations?

direct simulation of interaction between single cells is the microscopic
time-stepper

Restriction operator is taking the average over e. g. 1000 time steps of
both centres
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Natural anatomy for two different odors

figures adapted to N.M. Abraham, H. Spors, A. Carleton, T. W. Margrie, T. Kuner & A.T. Schaefer (2004) Neuron, 44 (5)
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Academic implementation

no overlay of areas due to
2D-picture of a 3D-network

both areas have exactly the
same size

cells uniformly distributed to
avoid artificial effects

two “layers” for mitral and
granular cells with no physical
distance

area1: -
area2: -
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Hysteresis

Hysteresis of neural network

with fire rates:
0.1

0
direct up sweep: o,
direct down sweep: o
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Pseudo-arclength continuation

E. Doedel, H.B. Keller & J.-P. Kernévez (1991) International Journal
of Bifurcation and Chaos, 1 (3)

x0
predictor

corrector

x2

x1

x̂

Goal

Find next macroscopic equilibrium x2, i. e. F (x2) = 0.

Pseudo-arclength continuation

Fulfill two conditions:

predictor:

x̂ = x1 + s · w

‖w‖ , with w = (x
(1)
1 − x

(1)
0 , x

(2)
1 − x

(2)
0 )

corrector:

F (x2) = 0 , w (1)(x
(1)
2 − x̂ (1)) + w (2)(x

(2)
2 − x̂ (2)) = 0

Can be solved with a Newton-method.
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Pseudo-arclength continuation

x0
predictor

corrector

x2

x1

x̂ Reminder

Φ(t; x(t0)) = x(t0 + t)

= R(M(tskip;L(x(t0))))

Task

Compute

0 = F (σ) =
d

dt
R(M(tskip,L(σ))) =

∂

∂δ
R(M(tskip + δ,L(σ)))

∣∣∣
δ=0

,

with approximated right-hand side

F (σ) =
R(M(tskip + δ,L(σ)))−R(M(tskip,L(σ)))

δ
.
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Implicit equation-free scheme

I. G. Kevrekidis & G. Samaey (2009) Annual Review of Physical
Chemistry 60

x y x∗ Rd

RD−d

micro-level
L(x) L(y)

slow manifold

tskip

φ(t, ; ·)

M(tskip);L(y))

M(tskip + δ;L(x))

δ

R

introducing healing time
tskip

consider macroscopic
time-δ map y = Φ(δ; x)

lifting error can be reduced
significantly

the state y is defined
implicitely

Macroscopic time-stepper

R(M(tskip;L(y))) = R(M(tskip + δ;L(x)))

idea for figure: C. Marschler, J. Sieber, P. G. Hjorth, and J. Starke (2015) Traffic and Granular Flow’13 : 423-439, Springer
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Difficulties for chosing δ

F (σ) =
R(M(tskip + δ,L(σ)))−R(M(tskip,L(σ)))

δ

if δ too small:
numerically not accessible
might catch only noise

if δ too big:
already on the slow manifold or close to it
no information about unstable dynamics
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PAC for normalform

Normalform

Microscopic equation: ẋ(t) = µ− x + x3
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with eigenvalues of the
Jacobian (here derivative) for
stability information
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PAC for neural network

direct up sweep: o,
direct down sweep: o,
equation-free
continuation (work in
progress): +
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Chaotic dynamics in the neural network

Anna Dittus Implicit equation-free methods applied on noisy slow-fast systems



Introduction
Equation-free analysis

The olfactory bulb
Tracking the unstable branch

Applications on noisy systems
Difficulties and Outlook

Literature

Chaotic dynamics in the neural network
The normalform

PAC für Normalform with noise term

Normalform with noise

dXt = (µ− Xt + Xt
3)dt + σdWt

for the Ensemble Kalman Filter with the model

dXt = σdWt ,

1000 ensembles, and observation model

dYt = Xt + σdVt .
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Chaotic dynamics in the neural network
The normalform

PAC für Normalform with noise term

PAC without any filtering

σ2 = 0.01 σ2 = 0.1

PAC with EnKF for simple model with 1000 ensembles

σ2 = 0.01 σ2 = 0.1

Anna Dittus Implicit equation-free methods applied on noisy slow-fast systems



Introduction
Equation-free analysis

The olfactory bulb
Tracking the unstable branch

Applications on noisy systems
Difficulties and Outlook

Literature

Difficulties
Outlook

1 Introduction

2 Equation-free analysis

3 The olfactory bulb’s neural network

4 Tracking the unstable branch

5 Applications on noisy systems

6 Difficulties and Outlook

Anna Dittus Implicit equation-free methods applied on noisy slow-fast systems



Introduction
Equation-free analysis

The olfactory bulb
Tracking the unstable branch

Applications on noisy systems
Difficulties and Outlook

Literature

Difficulties
Outlook

Difficulties

computational effort for evolve operator is high (∼ 0.5 seconds for one
time step):

long time series are hard to get
taking the mean of many realizations is expensive

noise is not known

no model given

How to chose the right time window for the derivatives?
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Difficulties
Outlook

Outlook

noise estimation like Mehra (1970, 1972) and Bélanger (1972, 1974)

model estimation like Berry & Sauer (2013, 2018) and Hamilton, Berry &
Sauer (2016)

automatic time window estimation for implicit equation-free method once
the noise is estimated/known
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