
Posterior Inference for Sparse Hierarchical
Non-stationary Models

Lassi Roininen
Lappeenranta University of Technology, Finland
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Motivation

Detect material interfaces, inhomogeneous structures, anisotropies, Gaussian and
non-Gaussian features

Gaussian and non-Gaussian hierarchical random field priors, parametric models for
structures, noise models etc

Metropolis-within Gibbs, elliptical slice sampling, Hamiltonian Monte Carlo, and
optimisation methods

Applications: Subsurface imaging (electrical impedance tomography, Darcy flow
models) and near-space remote sensing (High-power radar experiments, satellite
tomography and remote sensing)
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Non-Gaussian Priors
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TV and Besov space priors

Lassas and Siltanen 2004 showed that TV are not discretisation-invariant

Lassas, Saksman and Siltanen 2009 constructed Besov space priors

Often defined via wavelet expansions.
For edge-preserving inversion the Haar wavelet basis is often used
However due to the structure of the Haar basis, discontinuities are preferred
on an underlying dyadic grid given by the discontinuities of the basis
functions. For example, on the domain (0, 1), discontinuity is vastly preferred
at x = 1/4 over x = 1/3.
Thus Besov priors make, in most practical cases, both a strong and
unrealistic assumption.
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Non-Gaussian models – α-stable priors

Markku Markkanen, Lassi Roininen, Janne M J Huttunen and Sari Lasanen,
Cauchy difference priors for edge-preserving Bayesian inversion, Journal of Ill-posed
and Inverse Problems (2019).

Alberto Mendoza, Lassi Roininen, Mark Girolami, Jere Heikkinen and Heikki
Haario, Statistical Methods To Enable Practical On-Site Tomographic Imaging of
Whole-Core Samples, Geophysics (2019).

Neil Chada, Sari Lasanen and Lassi Roininen, Posterior Convergence Analysis of
α-Stable Sheets, arXiv (2019).

Kenneth Muhumuza, Lassi Roininen, Janne M. J. Huttunen, Timo Lähivaara, A
Bayesian-based approach to improving acoustic Born waveform inversion of seismic
data for viscoelastic media, arXiv (2019).
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Stable random walks

Let U(t), t ∈ I ⊂ R+} be a stochastic process. We call it a Lévy α-stable process
starting from zero, or simply as stable process, if U(0) = 0, U has independent
increments and

U(t)− U(s) ∼ Sα
(

(t − s)1/α , β, 0
)

(1)

for any 0 ≤ s < t <∞ and for some 0 < α ≤ 2,−1 ≤ β ≤ 1.

For the continuous limit of the Cauchy walk, we apply independently scattered
measures. We obtain random walk approximation

Uti − Uti−1 ∼ Sα(h
1
α , β, 0)

where ti − ti−1 =: h. It is easy to see that such random walk approximations
converge to the α-stable Lévy motion as h→ 0 in distribution on the Skorokhod
space of functions that are right-continuous and have left limits.
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Chada, Lasanen, Roininen: α-stable sheet paper

The paper lays the groundwork for Bayesian inverse problems with stable fields,
specifically stable stochastic integrals U(x) =

∫
E
f (x , x ′)M(dx ′)

The paper has expository flavour: We study the very simple stable sheets as an
illustrative and easy to follow example. For stable sheets,

f (x , x ′) =

{
1 when x ′i ≤ xi for all i = 1, . . . , d

0 otherwise
(2)

Stable integral is defined like the usual Itō integral, but with stable random
measure M in place of Brownian motion B/Brownian sheet.

Note: no second moments means that instead of L2, the integrals are limits of
integrals of simple functions in probability.
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Stable Integrals

Stable integrals U(x) can be presented in many equivalent ways (equivalent=
equivalent in distribution) When it comes to Bayesian inverse problems, the best
way seems to be through Lévy-LePage series representation,

Lévy-LePage series representation is

U(x) = (Cα|E |)
1
α

∞∑
k=1

ρkΓ
1/α
k f (x ,Vk), (3)

where 0 < α < 2,

Cα =

(∫ ∞
0

x−α sin(x)dx

)−1

, (4)

ρk is a Rademacher sequence (i.i.d. with values ±1 with equal probabilities), Γk are
arrival times of a Poisson process with arrival rate 1 , and Vk are i.i.d. uniformly
distributed on E . The three sequences ρk , Γk and Vk are mutually independent.
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Discretisation

Lévy-LePage series representation gives

1) Sample path regularity in Lp, 1 ≤ p <∞ (also in the more general
Sobolev space Hs

p , s < 1/p, p ≥ 2 ),
2) Convergence in distributions on sample space.

From 1) and 2), we proceed to posterior convergence in distribution for
finite-dimensional data. The discretization of U on [0, 1]d is taken to be

UN(x) = U(hdx/he), (5)

where the ceiling function dte = min{m ∈ Zd : tj ≤ mj , j = 1, . . . , d}.
Computationally, the discretisation is determined from set of difference equations
(here in 2D case)

U(hm1, hm2)− U(hm1, h(m2 − 1))− U(h(m1 − 1), hm2) (6)

+ U(h(m1 − 1), h(m2 − 1)) ∼ Sα(|h|d/α, 0, 0)

with i.i.d. right hand sides and zero boundary values on the coordinate axes.
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Convergence h→ 0

Theorem

Let 1 ≤ p <∞. The approximations UN(x) = U(hdx/he) converge to U on Lp((0, 1)d)
in distribution.

Open questions:

Can we do the same for infinite-dimensional data (e.g. with Gaussian noise)?

How to obtain stronger posterior convergence for α = 1?
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MAP estimates

Log tomography with different number of projections and prior models
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MAP and CM estimates – 30 projections

Log tomography
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Tomographic imaging of whole-core samples

46, 23 ,12, 6 projections with 10% noise
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Micro-CT
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Born waveform inversion of seismic data

A Bayesian approach to improving acoustic Born waveform inversion of seismic
data for viscoelastic media
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Sparse Hierarchical
Non-stationary Models

Karla Monterrubio-Gómez, Lassi Roininen, Sara Wade, Theodoros Damoulas, and Mark
Girolami, Posterior Inference for Sparse Hierarchical Non-stationary Models, arXiv 2019.
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Hierachical GP model

Hierachical GP model

Based on the non-stationary Matérn kernel via varying length-scaling `(xi ).

Hierarchical model for 1-d problems:

yi ∼ N (z(xi ), σ
2
ε), i = 1, . . . ,m,

z(·) ∼ GP
(

0,CNS
φ (·, ·)

)
,

log `(·) ∼ GP
(
µ`,C

S
ϕ(·, ·)

)
,

(τ 2,ϕ, σ2
ε, µ`) ∼ π(τ 2)π(ϕ)π(σ2

ε)π(µ`),

(7)

where CNS
φ (·, ·) denotes a non-stationary kernel, CS

ϕ(·, ·) is a stationary covariance
function with parameters ϕ, and µ` the constant mean of log `(·).

Extremely flexible, 2-level improves predictive performance

Fully Bayesian inference challenging:

Computationally expensive (2 nested GPs), latent processes and
hyperparameters tend to be strongly coupled
Model is sensitive to the choice of hyperparameters.
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Sparse Hierarchical Non-stationary Models

Sparse Hierarchical Non-stationary Models

Idea: Use Gaussian Markov random fields - precision matrix z ∼ N
(
0,CNS

φ

)
equivalent to z ∼ N

(
0, (QNS

φ )−1
)

How to create Q?

• Roininen et al. 2019 derive a SPDE formulation for non-stationary Matérn
fields.

• For d = 1 and ν = 2− 1/2,(
1− `(·)2∆

)
z = τ

√
`(·)w , (8)

where ∆ is the Laplace operator, w is white noise on R,
Var(w) = Γ(ν + 1/2)(4π)1/2/Γ(ν), and `(·) is a spatially varying
length-scale.

• A finite-dimensional approximation can be written as

L(`)z = w,

where z ∈ Rn with n the discretisation size. L(`) is a sparse matrix depending on
`j := `(jh), with h the discretisation step in a chosen finite difference
approximation.
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Sparse Hierarchical Non-stationary Models

The model

GP regression model: y = Az + ε, ε ∼ N (0, σ2
εIm), A ∈ Rm×n, z ∈ Rn.

Hierarchical formulation

y | z, σ2
ε ∼ N (Az, σ2

εIm),

z | φ ∼ N
(

0,Q−1
φ

)
log ` := u | ϕ ∼ N (µ`,Cϕ)

(τ 2, σ2
ε,ϕ, µ`) ∼ π(τ 2)π(σ2

ε)π(ϕ)π(µ`)

(9)

where µ` is the n-dimensional constant mean vector.

Key component: (CNS
φ )−1 := Qφ = L(φ)TL(φ), which depends on u and τ 2.

ϕ parameters of the covariance that describe properties of the length-scales.
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Sparse Hierarchical Non-stationary Models

Hyperpriors

Stationary assumption for spatially varying length-scale

Explore two priors for u:

Squared Exponential:
I Strong prior smoothness assumptions on how the correlation of the

non-stationary process changes with distance.
I Precision matrix is dense and depends on length-scale λ and

magnitude τ`.

AR(1):
I Ornstein-Uhlenbeck covariance
I Allows quick changes but is smoother than white noise.
I Precision is sparse Qϕ = L(ϕ)TL(ϕ), where L(ϕ) is a banded matrix

that depends on λ and τ`.

To improve model identifiability, we fix τ , µ` and τ`.

Lassi Roininen Potsdam 2020 21 / 36



Sparse Hierarchical Non-stationary Models

Inference for one-dimensional problems

Posterior of intereset:

π(z, u, λ, σ2
ε | y) ∝ N (y | Az, σ2

εIm)N (z | µz ,Q
−1
u )N (u | µ`,Cϕ)π(λ)π(σ2

ε).

Metropolis-within-Gibbs (MWG)

• Length scale u are updated individually.
• When proposing u∗k , for k = 1, . . . , n, log-ratio of acceptance probability

simplifies-(O(n) for SE and O(1) for AR).

• When proposing hyperparameter ϕ∗, we require: log

(
N (u|µ`,C

S
ϕ∗ )

N (u|µ`,C S
ϕ)

)
- (O(n3)

for SE and O(n) for AR).
• Does not perform well for SE.

Whitened Elliptical Slice Sampling (w-ELL-SS)
z = L(u)−1ξ with ξ ∼ N (0, In) and u = Rϕζ + µ` with ζ ∼ N (0, In).
π(ζ, ξ, λ, σ2

ε | y) ∝ N (y | AL(Rϕζ + µ`)
−1ξ, σ2

εIm)N (ξ | 0, In)N (ζ | 0, In)π(λ)π(σ2
ε).

• u updated jointly through ζ.
• Likelihood can be evaluated as a product of univariate Gaussians
• z = L(u)−1ξ can be solved in O(n)

• u = Rϕζ + µ` - (O(n2) for SE and O(n) for AR)
• Each iteration may require several likelihood evaluations.
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Sparse Hierarchical Non-stationary Models

Marginal Elliptical Slice Sampling (m-ELL-SS)

π(ζ, λ, σ2
ε | y) ∝ N (y | 0,AQ−1

ζ,ϕA
T + σ2

εIn)N (ζ | 0, Im)π(λ)π(σ2
ε).

• u updated jointly through ζ.
• u = Rϕζ + µ` - (O(n2) for SE and O(n) for AR)
• Marginal likelihood computation:

log π(y | u, λ, σ2
ε) = −

m

2
log(2π)−

1

2
log det(Ψ)−

1

2
yTΨ−1y

where Ψ = AQ−1
u AT + σ2

εIm.

• Employ Woodbury identity for Ψ−1

• Quadratic term: σ−2
ε

(
yTy − yTA

(
L(u)TL(u) + σ−2

ε ATA
)−1

ATy

)
• Determinant computation is the dominant term (O(m3) or O(nm))
• Improved mixing
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Sparse Hierarchical Non-stationary Models

Synthetic 1-d experiments

3 synthetic 1-dimensional examples
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(c) Experiment 3

Figure: (a): 81 observations with domain
[
0, 10

]
and σ2

ε = 0.01. (b): 350 observations with

domain
[
0, 8

]
and σ2

ε = 0.04. (c): 512 observations with domain
[
0, 1

]
and σ2

ε = 0.04
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Sparse Hierarchical Non-stationary Models
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Figure: MWG. (a)-(c): Estimated ` process with 95% credible intervals for AR(1) on different grids. (d)-(f): Estimated z process
with 95% credible intervals for AR(1) on different grids with observed data in red. (g)-(i): Estimated ` process with 95% credible
intervals for SE on different grids. (j)-(l): Estimated z process with 95% credible intervals for SE hyperprior on different grids with
observed data in red.
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Sparse Hierarchical Non-stationary Models
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(a) w-ELL-SS `, n = 253

0.0

2.5

5.0

7.5

10.0

12.5

0.0 2.5 5.0 7.5 10.0

(b) m-ELL-SS `, n = 253

−1

0

1

0.0 2.5 5.0 7.5 10.0

(c) w-ELL-SS `, n = 253

−1

0

1

0.0 2.5 5.0 7.5 10.0

(d) m-ELL-SS z, n = 253

Figure: Results for Experiment 1 at the highest resolution (n=253) for SE hyperprior with (left
column) w-ELL-SS algorithm and (right column) m-ELL-SS algorithm.
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Sparse Hierarchical Non-stationary Models

(a) u199, MWG (b) u185, w-ELL-SS (c) u190, m-ELL-SS

(d) λ, MWG (e) λ, w-ELL-SS (f) λ, m-ELL-SS

Figure: Example 1: Traceplots with cumulative averages of the chains for SE hyperprior with n = 253. (Top row:) element of u
with the lowest ESS. (Bottom row:) the hyperparameter.
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Sparse Hierarchical Non-stationary Models

OES = ESS/CPUtime

MWG w-ELL-SS m-ELL-SS

n = 85 n = 169 n = 253 n = 85 n = 169 n = 253 n = 85 n = 169 n = 253

AR(1)

σ2
ε 622.76 173.12 65.99 380.89 102.38 38.91 661.20 257.81 116.35
`min 635.36 114.02 41.05 30.90 8.99 2.94 287.16 114.36 59.71
zmin 203.80 42.10 13.91 9.12 2.34 0.86 129.75 52.16 22.30
λ 89.84 15.66 6.00 22.77 5.26 2.36 111.80 45.54 21.53

MAE 0.041 0.051 0.054 0.041 0.051 0.054 0.041 0.051 0.053
EC 0.988 0.975 0.971 0.988 0.975 0.975 0.988 0.975 0.975

SE

σ2
ε 11.19 4.88 7.49 246.24 77.72 8.89 856.15 253.91 125.97
`min 1.22 0.73 0.64 21.69 10.22 2.79 244.91 122.57 55.82
z 0.06 0.01 0.01 4.71 1.37 0.24 76.80 24.11 9.87
λ 0.59 0.75 0.31 2.31 0.29 0.01 16.59 4.15 2.21

MAE 0.078 0.100 0.133 0.040 0.050 0.054 0.039 0.049 0.052
EC 0.889 0.826 0.763 0.988 0.975 0.971 0.988 0.975 0.979

Table: Experiment 1: OES with both hyperpriors under various discretisation schemes
(n = 86, 169, 253) and three different algorithms. `min and zmin report OES for the
minimum ESS across all dimensions. Highest values in boldface.
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Sparse Hierarchical Non-stationary Models

AR(1) hypermodel adds further computational gains.

MWG performs poorly for highly correlated hyperprior.

MWG deteriorates efficiency as the number of observations or discretisation size
increase.

w-ELL-SS for weak likelihoods performs well regardless the hyperprior employed at
the price of highly correlated chains.

Marginal sampler converges to the stationary distribution faster.

m-ELL-SS good compromise between computational complexity and efficiency of
the chains.
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Sparse Hierarchical Non-stationary Models

Extensions for two-dimensional problems

Employs additive Gaussian process models (AGP)

y = A1z1 + A2z2 + A3z3 + ε,

A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and A3 ∈ Rm×(n1n2) known matrices.

z1(·) and z2(·) independent univariate non-stationary processes.

z3(·) is a bivariate, non-stationary, separable process -interaction term
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Sparse Hierarchical Non-stationary Models

Hierarchical model:

y | {zr}3
r=1, σ

2
ε ∼ N (A1z1 + A2z2 + A3z3, σ

2
εIm)

zr | φr ∼ N
(

0,CNS
φr

)
, r = 1, 2, 3

us | ϕs ∼ N
(
µ`s ,C

S
ϕs

)
, s = 1, 2, 3, 4

(σ2
ε,ϕ) ∼ π(σ2

ε)π(ϕ1)π(ϕ2)π(ϕ3)π(ϕ4),

with ϕ = (ϕ1, . . . ,ϕ4).

AGP works based on one-dimensional kernels

Posterior:

π({zr}3
r=1, {us , λs}4

s=1, σ
2
ε | y) ∝ N (y | A1z1 + A2z2 + A3z3, σ

2
εIm)N (z1 | 0,Q−1

u1
)

N (z2 | 0,Q−1
u2

)N (z3 | 0,Q−1
u3,4

)N (u1 | µ`1
,Cϕ1

) · · · N (u4 | µ`4
,Cϕ4

)

π(λ1) · · ·π(λ4)π(σ2
ε),

with Q−1
u3,4

:= Q−1
u3
⊗ Q−1

u4
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Sparse Hierarchical Non-stationary Models

Inference for two-dimensional problems

Blocked Gibbs sampler, that updates the three blocks of parameters (z1, u1, λ1);
(z2, u2, λ2); and (z3, u3, u4, λ3, λ4) from their full conditional distributions.

Block marginal elliptical slice sampler (Block-m-ELL-SS)

• To sample (z1,u1, λ1), the full conditional is factorised:

π(z1, ζ1, λ1 | y, σ2
ε, z2, z3) = π(ζ1, λ1 | y, σ2

ε, z2, z3)π(z1 | ζ1, λ1, y, σ
2
ε, z2, z3),

• Interaction term: use eigendecompositions and matrix-vector
multiplications for Kronecker matrices!
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Sparse Hierarchical Non-stationary Models

Synthetic 2-d experiment

Figure: 2-dimensional synthetic data. m = 20, 449 noisy observations in an expanded grid of
n1 = n2 = 143 equally spaced points in

[
0, 10

]
, employing z(x1, x2) = z(x1) + z(x2).
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Sparse Hierarchical Non-stationary Models
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Figure: Posterior mean surface and one-dimensional length-scale processes with 95% credible
intervals.

Capture smooth areas and edges.

2-level AGP correctly learns the varying correlation along the surface.

99.26 minutes for 50, 000 iterations
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Sparse Hierarchical Non-stationary Models

Comparative evaluation

−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0

(a) STAT

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

(b) TGP

−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0

(c) m-ELL-SS with SE

−1

0

1

0 2 4 6 8

(d) STAT

−1

0

1

0 2 4 6 8

(e) TGP

−1

0

1

0 2 4 6 8

(f) m-ELL-SS with SE

−1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

(g) STAT

−1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

(h) TGP

−1

0

1

2

3

0.00 0.25 0.50 0.75 1.00

(i) m-ELL-SS with SE

Figure: Each row shows one of the simulated experiments. Red dots depict observed data, dotted lines show the true signal,
solid lines show the posterior mean, and grey areas depict 95% credible intervals. (a)(d)(g)(j): Stationary GP (b)(e)(h)(k):
TGP, with blue dotted lines depicting MAP cut-off points. (c)(f)(i)(l): 2-level GP with m-ELL-SS algorithm and the hyperprior
with lowest MAE.
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Sparse Hierarchical Non-stationary Models

Thank you
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