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Overview

I Inverse problems and PDE-constrained optimization

Selected topics:
I Geometric regularization

I Constraint relaxation
I Stochastic optimization
I Uncertainty quantification
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The inverse problem

Underlying physics is modeled by a PDE

L(c)u = q,

The measurements are a linear sampling of the state

d = Pu.

Introduce forward operator F (c)q = PG(c)q, where G(c)q
solves L(c)u = q.
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The inverse problem

Given noisy data di = F (c)qi + εi for i = 1, . . . ,m, find c.

Problem is typically ill-posed:
I existence
I uniqueness
I stability
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The inverse problem

Bayesian approach leads to posterior of the form

πpost(c|d) ∝ πl(d |c)πprior(c).

With εi ∼ N (0,Σd ) and c ∼ N (c0,Σc) we have

πpost(c|d) ∝
m∏

i=1
exp

(
−1

2‖F (c)qi − di‖2Σ−1
d

)
exp

(
−1

2‖c − c0‖2Σ−1
c

)
.

MAP estimate:

ĉ = max
c
π(c|d).
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The inverse problem

Main tasks:
I Identify appropriate prior and likelyhood
I Solve large-scale non-linear optimization problem to get
MAP estimate

I Quantify uncertainty
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Geometric regularization

Popular choices for regularization include ‖(−∆)αc‖pp:
I Tikhonov regularization (p = 2, smooth)
I Total Variation (p = 1, piecewise polynomial)

Stronger regularization can be achieved by shape regularization

c(x) =
{

c1 x ∈ Ω
c0 x 6∈ Ω

.

I Represent the shape in terms of a level-set function
Ω = {x |φ(x) > 0}.

I Express c(x) = H(−φ(x))c0 + H(φ(x))c1 and solve for φ.
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The level-set method1

Seismic Full-waveform inversion

I Use smooth approximation of H and express φ in terms of
RBFs

I Use quasi-Newton method to solve for coefficients
I Use alternating optimization when background is unknown

1Kadu, A., van Leeuwen, T., & Mulder, W. A. (2017). Salt
Reconstruction in Full-Waveform Inversion With a Parametric Level-Set
Method. IEEE Transactions on Computational Imaging, 3(2), 305–315.
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A dual formulation2

For discrete linear inverse problems Fc = d , with c ∈ {−1, 1}n
the primal problem is given by

min
φ
‖FH(φ)− d‖2.

The corresponding dual problem is given by

min
µ
‖FF †(µ− d)‖22 + ‖F ∗µ‖1.

The result is obtained by ĉ = H(F ∗µ̂).

2Kadu, A., & Van Leeuwen, T. (2019). A convex formulation for binary
tomography. IEEE Transactions on Computational Imaging, 1–1.
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A dual formulation
Discrete tomography

I Measurements consist of sums along rows, columns and
diagonal.

I This particular problem instance has two solutions
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PDE-constrained optimization

Cast as PDE-constrained optimization problem

min
c,u

m∑
i=1
‖Pui − di‖2Σ−1

d
+ ‖c − c0‖2Σ−1

c
, s.t. L(c)ui = qi .

I All-at-once: apply Newton’s method to KKT system
I Reduced: eliminates constraints and solves non-linear
least-squares problem
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Adjoint-state method

min
c

m∑
i=1
‖PG(c)qi − di‖2Σ−1

d
+ ‖c − c0‖2Σ−1

c
.

I Gradient and Hessian mat-vecs can be computed by solving
forward and adjoint PDEs

I Dependence on c can be very non-linear, initialization is
important
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Constraint relaxation3

Constraints may be too stringent
I bad initialization
I model-errors

Include constraint as a penalty

min
c,u

m∑
i=1
‖Pui − di‖2Σ−1

d
+ ‖L(c)ui − qi‖2Σ−1

m
+ ‖c − c0‖2Σ−1

c
.

3Leeuwen, T. van, & Herrmann, F. J. (2016). A penalty method for
PDE-constrained optimization in inverse problems. Inverse Problems, 32(1),
015007.
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Constraint relaxation4
A reduced-space approach involves solving a state-estimation
problem

min
u

m∑
i=1
‖Pui − di‖2Σ−1

d
+ ‖L(c)ui − qi‖2Σ−1

m
.

This results in

min
c

m∑
i=1
‖PG(c)qi − di‖2Σ−1

d +K(c)−1 ,

with K = PGΣmG∗P∗.
I requires solving a system with K
I if P is invertible, we get
‖PG(c)qi − di‖2Σ−1

d +K(c)−1 = ‖L(c)P−1di − qi‖2Σ−1
m
.

4Leeuwen, T. Van. (2019). A note on extended full waveform inversion,
arXiv:1904.00363, 2019
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Constraint relaxation5

5Leeuwen, T. Van. (2019). A note on extended full waveform inversion,
arXiv:1904.00363, 2019
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Optimization

The optimization problems we’ve seen so far are of the form

min
c

m∑
i=1

fi (c)︸ ︷︷ ︸
f (c)

+g(c).

prototype algorithm:

c(k+1) = proxαg

(
c(k) − α∇f (c(k))

)
.

I evaluation of objective and gradient requires 2m PDE-solves
I guarantee convergence when using approximate gradients
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Optimization
Convergence depends on error e(k) = ∇f (c(k))−∇f̃ (c(k)).

Stochastic:6

I error needs to be unbiased and variance needs to be small
enough

I pick subset (batch) of experiments
I use linearity of PDE f̃ = ‖PG(c)q̃ − d̃‖2 with q̃ =

∑
i wiqi

and E(ww∗) = I.

Deterministic:7

I ‖e(k)‖ needs to converge to zero at least as fast as the error
‖c(k) − ĉ‖

I approximate f using approximate PDE-solves

6Aravkin, A., Friedlander, M. P., Herrmann, F. J., Leeuwen, T., & van
Leeuwen, T. (2012). Robust inversion, dimensionality reduction, and
randomized sampling. Mathematical Programming, 134(1), 101–125.

7van Leeuwen, T., & Herrmann, F. J. (2014). 3D Frequency-Domain
Seismic Inversion with Controlled Sloppiness. SIAM Journal on Scientific
Computing, 36(5), S192–S217.
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I approximate f using approximate PDE-solves
6Aravkin, A., Friedlander, M. P., Herrmann, F. J., Leeuwen, T., & van

Leeuwen, T. (2012). Robust inversion, dimensionality reduction, and
randomized sampling. Mathematical Programming, 134(1), 101–125.

7van Leeuwen, T., & Herrmann, F. J. (2014). 3D Frequency-Domain
Seismic Inversion with Controlled Sloppiness. SIAM Journal on Scientific
Computing, 36(5), S192–S217.



21

Optimization

Stochastic optimization with increasing batch size
I subsets, natural order (blue)
I subsets, random order (red)
I mixing (green)
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Optimization
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Uncertainty quantification

Quantify uncertainty of ĉ:
I use a local Gaussian approximation
I estimate resolution (psf) from Hessian
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Covariance estimation8
Estimating Σ−1

d is crucial for UQ

min
c,Σd

log |Σd |+
1
m

m∑
i=1
‖PG(c)qi − di‖2Σ−1

d
.

I closed-form expression available for Σ̂p, can be efficiently
approximated using randomized SVD

I covariance can be estimated as part of
parameter-estimation:

Σ̂d =
m∑

i=1
(PG(c(k))qi − di )(PG(c(k))qi − di )∗

c(k+1) = c(k) − α
m∑

i=1
J∗i Σ̂d

−1
(PG(c)qi − di ).

8van Leeuwen, T. (2017). Joint parameter and state estimation for
wave-based imaging and inversion. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 6210–6214).
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Covariance estimation
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Probing9

Assuming that the Hessian acts as a spatial convolution,
H = F ∗diag(ĥ)F , can we estimate the width of the kernel?

I Apply H to random vector u = Hw
I Compute auto-correlation a = diag (Fuu∗F ∗)
I In expectation we have E(a) = |ĥ|2.

9Fichtner, A., & Leeuwen, T. van. (2015). Resolution analysis by random
probing. Journal of Geophysical Research: Solid Earth, 120(8), 5549–5573.
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Probing10

10Fichtner, A., & Leeuwen, T. van. (2015). Resolution analysis by random
probing. Journal of Geophysical Research: Solid Earth, 120(8), 5549–5573.
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Wrap-up

Solving an inverse problem can be split in three main tasks
I modeling
I computation
I analysis and interpretation

I Ideally, they form a feed-back loop and the data are used in
all steps

I Interesting problems occur at the intersection of these steps
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