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Why?

Why?

Objective
Introduce a generalised representation of uncertainty
↪→ Develop a more intuitive notion of information
↪→ Address difficulties when prior information is lacking

Criteria: leverage power of probabilistic Statistics

Example
Laplace’s principle of insufficient reason:
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A dual representation of uncertainty

Uncertain variable

Ingredients:
A sample space Ωu for deterministic but uncertain phenomena with
ω∗

u ∈ Ωu the true outcome
A probability space (Ωr,Σ,P(· |ωu)) for random phenomena, ωu ∈ Ωu

Definition
An uncertain variable (u.v.) is a mapping X from Ωu × Ωr to a given set S
such that X (ωu, ·) is a random variable for any ωu ∈ Ωu.

The u.v. X is described by an outer probability measure (o.p.m.) P̄X :
Even if A and B disjoint,

P̄X (A ∪B) ≤ P̄X (A) + P̄X (B) (sub-additivity)

P̄X (B) is the credibility of the event X ∈ B
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A dual representation of uncertainty

Deterministic uncertain variable

Definition
A deterministic u.v. (d.u.v.) in a given set Θ is a u.v. X in Θ for which there
exists θ : Ωu → Θ such that X (·, ωr) = θ.

Introduce a possibility function fθ, i.e. fθ ≥ 0 and sup fθ = 1

P̄θ(B) = sup
θ∈B

fθ(θ), B ⊆ Θ

LLN and CLT yield the notions1

E∗(θ) = argsup
θ∈Θ

fθ(θ) and V∗(θ) = E∗
(

− d2

dθ2 log fθ(θ)
)−1

with E∗(T (θ)) = T (E∗(θ)).

1H., Chada & Delande (2019)
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A dual representation of uncertainty

Possibility functions: pros & cons

Cannot sample

fθ is not unique ⇝ Information can be traded for desirable properties

Does not require a reference measure

Can be truncated, discretized

Standard operations apply directly: if (θ,ψ) d.u.v. described by fθ,ψ

fψ(ψ) = sup
θ∈Θ

fθ,ψ(θ, ψ) and fθ|ψ(θ |ψ) = fθ,ψ(θ, ψ)
fψ(ψ)

Can be combined:

fθ(θ |θ = ψ) = fψ(θ |ψ = θ) = fθ(θ)fψ(θ)
supθ′∈Θ fθ(θ′)fψ(θ′)
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A dual representation of uncertainty

Uncertain variable

Recall
An uncertain variable (u.v.) is a mapping X : Ωu × Ωr → S.

Usual approach: make the sample space disappear

Difficulty: The law of X (ωu, ·) depends on ωu

Solution: Assume more structure, e.g. X (ωu, ωr) = ψ(ωu, X(ωr))

Addresses:
Limitations of Dempster-Shafer (DS) theory (Pearl 1990)
Paradox about belief functions (Gelman 2006)
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A dual representation of uncertainty

Uncertain variables of the form X = ψ(·, X)

Ingredients:
X a r.v. with law p

ψ|X a d.u.v. on Ψ described by fψ(· |X)

Consequences:
The u.v. X can be described by

P̄X (φ) =
∫

sup
ψ∈Ψ

[
φ(ψ)fψ(ψ |x)

]
p(dx)

⇝ fuzzy Dempster-Shafer theory

The posterior distribution of X given ψ = ψ

p(dx |ψ) ∫= fψ(ψ |x)p(dx)∫
fψ(ψ | z)p(dz)

⇝ generalised Bayesian inference
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A dual representation of uncertainty

Uncertain variables of the form X = Y (θ, ·)
Inference

Ingredients:
θ a d.u.v. on Θ described by fθ
Y |θ a r.v. with law p(· |θ)

Consequences:
The u.v. X can be described by

P̄X (φ) = sup
θ∈Θ

fθ(θ)
∫
φ(y)p(dy | θ)

The posterior possibility function of θ given Y = y is

fθ(θ | y) = p(y | θ)fθ(θ)
supθ∈Θ p(y | θ)fθ(θ)

⇝ possibilistic Bernstein-von Mises theorem
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A dual representation of uncertainty

Uncertain variables of the form X = Y (θ, ·)
Connections with the frequentist approach

With the uninformative prior fθ = 1:
The posterior expected value E∗(θ |Y = y) is the MLE θ∗(y)

The function fθ(θ0|·) for a given point θ0 ∈ Θ is a likelihood ratio test

The inverse of the posterior variance of θ is

V∗(θ |Y = y)−1 = E∗
(

− ∂2

∂θ2 log p(y |θ)
∣∣∣∣Y = y

)
= − ∂2

∂θ2 log p(y | θ∗(y)),

which is the observed information

⇝ Is fθ = 1 the only interesting case?
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A dual representation of uncertainty

Uncertain variables of the form X = Y (θ, ·)
Conjugate prior families

For any conjugate prior family F ⇝ possibilistic analogue F̄

1 ∈ F̄

for δ ∈ (0, 1), f ∈ F̄ =⇒ fδ ∈ F̄ , e.g.,

Ga(θ;α, β)δ =
[(

βθ

α

)α

exp(α− βθ)
]δ

= Ga(θ; δα, δβ)

⇝ information can be discounted
⇝ also holds for mixtures

There are new families, e.g.

SIG(θ;α, β, σ2) =
(
β ∨ ασ2

α(σ2 + θ)

)α

exp
(

αβ

β ∨ ασ2 − β

σ2 + θ

)
with E∗(θ) = (β/α− σ2)+
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A dual representation of uncertainty

Uncertain variables of the form X = Y (θ, ·)
A candidate for “objective” Bayesian inference

Criteria:
1. Proper
2. Satisfies likelihood principle
3. Invariant under re-parametrisation
4. Coherence under partitioning

Our candidate: fθ = 1

Consequences:
Can be used in conjunction with informative priors on other parameters
Avoids marginalisation paradoxes (e.g. Dawid et al. 1973)
The posterior characterisation of uncertainty remains subjective
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A dual representation of uncertainty

A simple example
(and yet a challenging one)

Consider:
A r.v. X modelling a fair die
A d.u.v. θ representing an unknown but fixed number in {1, . . . , 6}

Difficulty: There are two possible o.p.m.s describing the u.v. X = X + θ:

P̄θ,X(φ) = 1
6 max
θ∈{1,...,6}

6∑
n=1

φ(θ + n) and P̄X,θ(φ) = 1
6

6∑
n=1

max
θ∈{1,...,6}

φ(θ + n).

sum (s) 2 3 . . . 6 7 8 . . . 11 12

P̄θ,X(s) 1/6 1/6 . . . 1/6 1/6 1/6 . . . 1/6 1/6

P̄X,θ(s) 1/6 2/6 . . . 5/6 1 5/6 . . . 2/6 1/6
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Applications

Data assimilation
Ongoing work with C. Kimchaiwong & A. Johansen

Forecast:
1. Sample N − 1 particles/support points {x0,i}N−1

i=1 according to Np(µ0, P0)

2. Set x0,N = µ0

3. Define weights {wi}Ni=1 via wi = Np(x0,i;µ0, P0)
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Applications

Data assimilation
Ongoing work with C. Kimchaiwong & A. Johansen

Forecast:
1. Via a fixed but partially-unknown function

xk = F (xk−1) + uk

→ It holds that E∗(xk) = F (E∗(xk−1))

2. Set xk,i = F (x̂k−1,i) for all i ∈ {1, . . . , N}

3. Localised forecast precision can be recovered by optimisation:

N∑
i=1

wi1xk,i
(x) ≤ Np(x;xk,N , Pk),

with Pk enforcing conditional independence ⇝ localisation & inflation
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Applications

Data assimilation
Ongoing work with C. Kimchaiwong & A. Johansen

Forecast:
4. Uncertainty in the dynamics by transport ⇝ inflation

Map between Np(µ, P ) and Np(µ′, Q) is

T (x) = P
1/2(P−1/2Q−1P

−1/2)1/2P
1/2(x− µ) + µ′

Assimilation:
→ Only deterministic methods such as square-root KF make sense:

K = ΣkH⊺(S−1/2
k )⊺(S1/2

k +R
1/2)−1

with Σk = P−1
k and Sk = HΣkH⊺ +R

J. S. Whitaker et al. (2002). “Ensemble data assimilation without perturbed observations”.
In: Monthly weather review 130.7, pp. 1913–1924
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Applications

Robust inference
Ongoing work with D. Nott

Observation: The possibilistic marginal likelihood indicates coherence

Principle: Discount the likelihood based on the coherence between the
information in the likelihood and the one in the prior.

Advantages:
Parameter free in its simplest form
Same computational complexity as non-robust inference in many cases

Weaknesses:
All observations are discounted to some extent
↪→ A threshold can be introduced to control for this

Ordering matters

J. Houssineau et al. (2022). “Robust Bayesian inference in complex models with possibility
theory”. In: arXiv preprint arXiv:2204.06911
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Applications

Robust inference
Example: normal distribution with outliers

Objective: Learn the mean of a normal distribution with outliers from a
Cauchy distribution

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
percentage of outliers

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
M

S
E

standard (no outlier)
discount
median
MMD
threshold

Computational time:
MMD (Cherief-Abdellatif et al. 2020): ∼ 10s
Proposed approach: ∼ 10ms
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Applications

Robust inference
Example: change-point detection
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→ See also, e.g., Knoblauch et al. 2018
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Applications

Space situational awareness

http://astria.tacc.utexas.edu/AstriaGraph/

Challenges:
1. Credibility of collision between space assets
2. Faithful representation of the uncertainty
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Applications

Space situational awareness
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Credibility of collision in probabilistic and possibilistic contexts

E. Delande et al. (2019). “A new representation of uncertainty for collision assessment”. In:
AAS/AIAA Space Flight Mechanics Meeting
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Applications

Space situational awareness

Probability of collision with uncertain radius

E. Delande et al. (2019). “A new representation of uncertainty for collision assessment”. In:
AAS/AIAA Space Flight Mechanics Meeting
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Applications

Space situational awareness
Credibility of a collision event E

Recent work0 suggests minimising/maximising

P(E | y1:k; θ)

with θ the epistemic parameter.

Can we go further by considering outer probability measures, e.g.

P̄(E | y1:k) = sup
θ∈Θ

fθ(θ | y1:k)P(E | y1:k; θ)

The subjective probability of collision, say π(E), verifies

min
θ∈Θ

P(E | y1:k; θ) ≤ 1 − P̄(Ec | y1:k) ≤ π(E) ≤ P̄(E | y1:k) ≤ max
θ∈Θ

P(E | y1:k; θ)

0C. Greco et al. (2021). “Robust Bayesian particle filter for space object tracking under severe
uncertainty”. In: Journal of Guidance, Control, and Dynamics, pp. 1–18
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Applications

Space situational awareness
Challenges

1. Careful consideration of the “nature” of different sources of uncertainty
Initial orbit determination
Unknown manoeuvre
Number and orbit of debris after a collision
Solar radiation pressure ← Space weather?
Drag?

2. Methodology for general outer probability measures
Ordering is important
Problem becomes increasingly difficult when mixing “max” and “

∫
·dx”

3. Derive the corresponding multi-target tracking solutions?
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Conclusion

Conclusion

The proposed approach:
connects the frequentist and Bayesian approaches (and others!)
↪→ MLE, LRT, empirical Bayes

models the intuitive notion of information
↪→ information fusion, 1, observed information, discounting

generalises to complex inference problems
↪→ data assimilation, robust inference
↪→ but also, e.g., reinforcement learning and multi-target tracking
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That’s all folks

Thank you!

jeremie.houssineau@warwick.ac.uk
jeremiehoussineau.com
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