
Topics in Mathematical Imaging
Lecture 3

Carola-Bibiane Schönlieb

Department for Applied Mathematics and Theoretical Physics
Cantab Capital Institute for the Mathematics of Information

EPSRC Centre for Mathematical Imaging in Healthcare
Alan Turing Institute

University of Cambridge, UK

Spring School SFB 1294, March 2018

Sch¨onlieb (DAMTP) Mathematical Imaging SFB 1294 - 03/2018



Lecture plan

Lecture 1: Variational models & PDEs for imaging by examples

Lecture 2: Derivation of these models & analysis

Lecture 3: Numerical solution

Lecture 4: Some machine learning connections
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Setting – discrete

Consider for u 2 Rn

minJ (u) +H(u),

where J and H are proper and convex, and (possibly) J and / or H is
Lipschitz differentiable.

Example: ROF problem for g 2 Rn solve

min

u

↵kDuk
2,1

+

1

2

ku� gk2
2

A quick overview of main approaches for minimising such functionals
. . .
Reference for this part: Chambolle, Pock, Acta Numerica 2016.
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Classical methods for smooth problems

. . . algorithms which attempt to compute minimisers of the regularised
ROF problem

min

u

⇢
↵

Xq
u

2

x

+ u

2

y

+ ✏+

1

2

ku� gk2
2

�

for a small 0 < ✏ ⌧ 1.

Since in this case the regularised TV is differentiable in the classical
sense we can apply classical numerical algorithms to compute a
minimiser, e.g. gradient descent, conjugate gradient etc.

In what follows: convex algorithms which look at the non-regularised
problem.
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Preliminary concepts . . .
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Subdifferential

Definition
For a locally convex space V and for a convex function
F : V ! R [ {�1,+1}, we define the subdifferential of F at x 2 V ,
as @F (x) = ; if F (x) = 1, otherwise

@F (x) := @F

V

(x) := {x⇤ 2 V

0
: hx⇤, y � xi+ F (x)  F (y) 8y 2 V },

where V

0 denotes the dual space of V . It is obvious from this
definition that 0 2 @F (x) if and only if x is a minimizer of F . We write
@

V

F for the subdifferential considered on the space V .

Example: Let V = `1(⇤) and F (x) := kxk1 is the `1�norm. We have

@k · k1(x) = {⇠ 2 `1(⇤) : ⇠� 2 @| · |(x�),� 2 ⇤} (1)

where @| · |(z) = { sign(z)} if z 6= 0 and @| · |(0) = [�1, 1].
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The Legendre-Fenchel transform
For J being one-homogeneous

that is, J(�u) = �J(u) for every u and � > 0,

it is a standard fact in convex analysis that the Legendre-Fenchel
transform

that is J

⇤
(v) = sup

u

hu, vi
X

� J(u) (with hu, vi
X

=

P
i,j

u

i,j

v

i,j

)

is the characteristic function of a closed convex set K:

J

⇤
(v) = �

K

(v) =

(
0 if v 2 K

+1 otherwise.

Since J

⇤⇤
= J , we recover

J(u) = sup

v2K
hu, vi

X

.
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Proximal map

Let J convex, proper and l.s.c., then for any f there is a unique
minimiser

u

⇤
= argmin

u

J (u) +

1

2⌧

ku� fk2
2

We call u⇤ = prox

⌧J (f) the proximal map of J at f . With optimality
condition

0 2 @J (u

⇤
) +

u

⇤ � f

⌧

this reads
u

⇤
= (I + ⌧@J)

�1

f.

Rockafellar 1997
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Moreau’s identity

One can show
f = prox

⌧J (f) + ⌧prox 1
⌧ J ⇤(

f

⌧

),

which shows:
If we know how to compute proxJ we also know how to

compute proxJ ⇤ .
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Convex duality
Consider

min

u2X
J (Ku) +H(u),

where J : Y ! (�1,+1], H : X ! (�1,+1] convex, l.s.c.,
K : X ! Y linear and bounded. Then (under mild appropriate
assumptions on J ,H)

min

u2X
J (Ku) +H(u)

=|{z}
J ⇤⇤

=J
min

u2X
sup

p2Y
hp,Kui � J ⇤

(p) +H(u)

= max

p

inf

u

hp,Kui � J ⇤
(p) +H(u)

= max

p

�J ⇤
(p)�H⇤

(�K

⇤
p).

The latter is the dual problem. Under above assumptions there exists
at least one solution p

⇤. Book, Ekeland, Temam 1999; Survey article by Borwein, Luke
2015
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Saddle-point problem

If u⇤ solves primal problem and p

⇤ dual problem, then (u

⇤
, p

⇤
) is a

saddle-point of primal-dual problem

8(u, p) 2 X ⇥ Y we have L(u⇤, p)  L(u⇤, p⇤)  L(u, p⇤)

where
L(u, p) := hp,Kui � J ⇤

(p) +H(u),

the Lagrangian. Moreover, we can define the primal-dual gap

G(u, p) := sup

(u

0
,p

0
)

L(u, p0)� L(u0, p)

= J (Ku) +H(u) + J ⇤
(p) +H⇤

(�K

⇤
p),

which vanishes iff (u, p) is a saddle point.
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Example: dual ROF
K = D, J = ↵k · k

2,1

, H = k ·�fk2
2

/2. Then, the dual is

max

p

�J ⇤
(p)�

✓
1

2

kD⇤
pk2

2

� hD⇤
p, fi

◆

= �min

p

✓
J ⇤

(p) +

1

2

kD⇤
p� fk2

2

◆
+

1

2

kfk2

where p 2 Rm⇥n⇥2. Here

J ⇤
(p) = �{k·k2,1↵}(p) =

(
0 if |p

i,j

|
2

 ↵8i, j
+1 otherwise,

and therefore the dual ROF problem is

min

p

{kD⇤
p� fk2

2

: |p
i,j

|
2

 ↵ 8i, j}.
From optimality conditions of saddle-point problem we have
relationship between u and p:

u = f �D

⇤
p.
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Now a few algorithms . . .
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Implicit gradient descent

Let J be differential. A more ‘advanced’ version of gradient descent is
implicit gradient descent: Initial guess u

0, then iterate for k = 0, 1, 2, . . .

u

k+1

= u

k � ⌧rJ(u

k+1

).

If uk+1 exists then it is a critical point of

J (u) +

ku� u

kk2
2⌧

,

and if J is convex and l.s.c. then u

k+1

= prox

⌧J (uk). If prox is easy to
calculate we call J simple.

The prox can also make sense for non-differentiable J and the above can be generalised to
subgradient descent.
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Proximal point algorithm
Define Moreau-Yosida regularisation of J with parameter ⌧ :

J
⌧

(ū) := min

u

J (u) +

ku� ūk2
2⌧

.

One can show
rJ

⌧

(ū) =

ū� prox

⌧J (ū)
⌧

,

and so, implicit gradient descent on J

u

k+1

= prox

⌧J (u
k

)

= (I + ⌧@J)

�1

(u

k

)

= u

k � ⌧rJ

⌧

(u

k

),

is explicit gradient descent on J
⌧

. This is a special case of the
proximal point algorithm.
Martinet 1970. Convergence rates and accelerations Bertsekas 2015; Nesterov 1983, 2004.
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Forward-backward descent

Consider
min

u

J (u) +H(u),

with
J is convex, l.s.c. and simple.
H is convex with Lipschitz gradient.

Idea: Explicit descent in H and implicit descent in J . That is

u

k+1

= T

⌧

u

k

,

with
T

⌧

u = prox

⌧J (u� ⌧rH(u)).

Note, if u is a fixed point of T
⌧

then it satisfies 0 2 rH(u) + @J (u). If
⌧  1/L then u

k converge to a minimiser.
Accelerated version FISTA Nesterov 2004, Beck & Teboulle 2009
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Primal-dual hybrid gradient
Consider

min

u

J (Ku) +H(u),

where J ,H are convex, l.s.c. and simple, K bounded and linear.
Then, solve corresponding saddle-point problem

max

p

inf

u

hp,Kui � J ⇤
(p) +H(u)

via
Alternate proximal descent in u and ascent in p:

u

k+1

= prox

⌧H(u
k � ⌧K

⇤
p

k

)

p

k+1

= prox

�J ⇤(p
k

+ �Ku

k+1

)

Arrow,Hurwicz,Uzawa 1958; Pock, Cremers, Bischof, Chambolle 2009; Esser et al. 2010
Linked to other approaches such as augmented Lagrangian and ADMM (alternating direction
method of multipliers).
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Primal-dual hybrid gradient
Consider

min

u

J (Ku) +H(u),

where J ,H are convex, l.s.c. and simple, K bounded and linear.
Then, solve corresponding saddle-point problem

max

p

inf

u

hp,Kui � J ⇤
(p) +H(u)

via
Alternate proximal descent in u and ascent in p:

u

k+1

= prox

⌧H(u
k � ⌧K

⇤
p

k

)

p

k+1

= prox

�J ⇤(p
k

+ �Ku

k+1

)

Not immediately clear that this converges
Arrow,Hurwicz,Uzawa 1958; Pock, Cremers, Bischof, Chambolle 2009; Esser et al. 2010
Linked to other approaches such as augmented Lagrangian and ADMM (alternating direction
method of multipliers).
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Primal-dual hybrid gradient
Consider

min

u

J (Ku) +H(u),

where J ,H are convex, l.s.c. and simple, K bounded and linear.
Then, solve corresponding saddle-point problem

max

p

inf

u

hp,Kui � J ⇤
(p) +H(u)

via
Primal-dual hybrid gradient:

u

k+1

= prox

⌧H(u
k � ⌧K

⇤
p

k

)

p

k+1

= prox

�J ⇤(p
k

+ �K(2u

k+1 � u

k

))

Arrow,Hurwicz,Uzawa 1958; Pock, Cremers, Bischof, Chambolle 2009; Esser et al. 2010
Linked to other approaches such as augmented Lagrangian and ADMM (alternating direction
method of multipliers).
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And now get your hands dirty with these approaches
. . .
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Thank you very much for your attention!

More information see:
http://www.ccimi.maths.cam.ac.uk
http://www.cmih.maths.cam.ac.uk
http://www.damtp.cam.ac.uk/research/cia/
Email: cbs31@cam.ac.uk
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