Lecture 3

Estimation of parameters

\[P^{\lambda, \beta} = \frac{1}{Z^{\lambda, \beta}} e^{-\beta H} \pi^\Lambda \]

\(\gamma^* \) a realization of \(P^{\lambda, \beta} \) in \(\Lambda \)

\(\gamma^* \beta^* \) are unknown.

aim: \(\hat{\lambda}, \hat{\beta} \) estimates of \(\gamma^*, \beta^* \)

condition: \(H^\theta, \theta \in \Theta \)

- \(H^\theta = \theta_1 H_1 + \ldots + \theta_k H_k \) (linear case)
- non linear case

asymptotic: \(\Lambda \to \mathbb{R}^d \)

I) MLE

reformulated:

\[P^{\lambda, \beta} = \frac{1}{Z^{\lambda, \beta}} e^{-\beta H} M_{\Lambda} \pi^\Lambda \]

Definition: MLE is defined as

\[\hat{\lambda}, \hat{\beta} = \arg\max_{\lambda, \beta} \frac{1}{Z^{\lambda, \beta}} e^{-\beta H(\gamma^* \beta^*)} M_{\Lambda}(\beta^*) \]

Theorem with assumption assumptions: \(\hat{\lambda}, \hat{\beta} \) as \(\Lambda \to \mathbb{R}^d (\gamma^*, \beta^*) \) - Leavens
Remark: Identifiability \iff Variational Principle.

- No result for normality
 - Untractable $\in \Lambda$

+ Seems to the better
 - Efficient $\hat{\alpha}, \hat{\beta}$ are small (Hose 92)

II) Terasco–Fiksel Estimator (84)

GNZ equations.

$p: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$

\[
C_{\Lambda}^{\beta, \beta}(\hat{\alpha}, \hat{\beta}) = \sum_{x \in \Lambda} \int p(x, \delta \lambda x) - 3 \int_{x \in \Lambda} \delta E^{-\delta}(x, \delta) \delta x
\]

\[
\Rightarrow E_{p_{\beta, \beta}^*(\Lambda)} \left(C_{\Lambda}^{\beta, \beta}(\hat{\alpha}, \hat{\beta}) \right) = 0
\]

TFE = mean square procedure

Definition

$K \geq 2$, $(\hat{\alpha}_i)_{1 \leq i \leq K}$ functions

\[
(\hat{\alpha}, \hat{\beta}) = \min_{(\alpha, \beta)} \sum_{k=1}^{K} \left(C_{\Lambda}^{\beta, \beta}(\hat{\alpha}_k, \delta) \right)^2
\]

Theorem: Under Ass

$\hat{\alpha}, \hat{\beta}$ is consistent and Ass Normal

(Coupselly, Der, Drouilhet, Lovacier)
identifiability Ass:
- Variance is larger than HLE
- optimization problem

Theoretical results:
- flexible
- no partition function

Identifiability Ass:
\[
E \left(\frac{p_h(0, r)}{r} \left[g e^{-p_h(0, r)} - g^* e^{-p^* h(0, r)} \right] \right) = 0
\]

\(\forall h \)

\(\beta = \beta^* \) and \(\gamma = \gamma^* \)

\(h = 3 \)

\(\mathcal{H}(\gamma) \)

\(f(\gamma) = 1 \), \(f(\gamma) = h(x, y) \)

We recover the PMLE
(GNZ) \quad = \beta E_{P, \varphi, \rho} \left(\sum_{x \in \mathbb{R}^n} \nabla_x f(x, \varphi x) \right)
Definition: The variational Estimator
\[\hat{\beta} = \frac{\sum_{x \in \mathbb{X}_n} \text{div}_x f(x, \beta' | x)}{\sum_{x \in \mathbb{X}_n} f(x, \beta' | x) \text{div}_x h(x, \beta' | x)} \]

Theorem: consistency and normality
(Puldeley - Der.)
\[f(x, \delta) = \text{div}_x f(x, \delta) \]

- \(\hat{\beta} \) is not estimated
 - larger variance than the MLE and PHLE
- Theoretical results
 - flexible procedure
 - simple to compute.