Lecture #3:
Bayesian modeling and computation for inverse problems

Youssef Marzouk

Department of Aeronautics and Astronautics
Center for Computational Engineering
Statistics and Data Science Center

Massachusetts Institute of Technology
http://uqgroup.mit.edu
ymarz@mit.edu

19–22 March 2018
Plan for the lectures:

1. Lectures 1–2: Bayesian inference and MCMC foundations
 - Bayesian modeling
 - MCMC algorithms and demos

2. Lectures 3–4: Bayesian approach to inverse problems
 - Elements of a Bayesian inverse problem formulation
 - Linear–Gaussian problems in detail
 - Surrogate modeling and likelihood approximations
 - Dimension reduction

3. Lecture 4+: Bayesian optimal experimental design or some other topic TBD
Inverse problems in the Bayesian perspective

How do inverse problems differ from generic parameter estimation problems?

Typical characteristics of inverse problems:

- Observations \textit{indirectly} related to parameters
- Observations (perhaps) limited in number
- Observations are noisy
- Parameters are high dimensional (in principle, \textit{functions})
Inverse problems

Key building block: the **forward model**

- A (deterministic) operator G that maps parameters θ to predictions of the observations
- Enters the likelihood function $p(y|\theta)$, when combined with a suitable statistical model
- (Simplest) example:

$$y = G(\theta) + \epsilon, \; \epsilon \sim N(0, \Gamma_{\text{obs}})$$

then $y|\theta \sim N(G(\theta), \Gamma_{\text{obs}})$

Here ϵ represents observational error and (crudely) error in the forward model
Inverse problems

Key building block: the **forward model**

- A (deterministic) operator G that maps parameters θ to predictions of the observations
- Enters the likelihood function $p(y|\theta)$, when combined with a suitable statistical model
- (Simplest) example:

\[
y = G(\theta) + \epsilon, \quad \epsilon \sim N(0, \Gamma_{\text{obs}})
\]

then $y|\theta \sim N(G(\theta), \Gamma_{\text{obs}})$

Here ϵ represents observational error and (crudely) error in the forward model
Inverse problems

Why are inverse problems difficult?

Classically **ill-posed**:

- No solution may match the data (**existence**)
 - Linear case, $G \in \mathbb{R}^{m \times n}$: \exists a non-trivial left nullspace $\text{Ker}(G^\top)$
- Many solutions may match the data (**uniqueness**)
 - Linear case, $G \in \mathbb{R}^{m \times n}$: \exists a non-trivial nullspace $\text{Ker}(G)$
- Ill-conditioning or **instability**: small changes in data y can lead to large changes in (unregularized) estimates $\hat{\theta}(y)$
 - Linear case, $G \in \mathbb{R}^{m \times n}$: singular values $\sigma_i(G)$ decay rapidly to zero
 - Yields sensitivity to noise

Deterministic approach: **regularization**!
Inverse problems

Why are inverse problems difficult?

Classically **ill-posed**:

- No solution may match the data (**existence**)
 - Linear case, $G \in \mathbb{R}^{m \times n}$: \exists a non-trivial left nullspace $\text{Ker}(G^\top)$
- Many solutions may match the data (**uniqueness**)
 - Linear case, $G \in \mathbb{R}^{m \times n}$: \exists a non-trivial nullspace $\text{Ker}(G)$
- Ill-conditioning or **instability**: small changes in data y can lead to large changes in (unregularized) estimates $\hat{\theta}(y)$
 - Linear case, $G \in \mathbb{R}^{m \times n}$: singular values $\sigma_i(G)$ decay rapidly to zero
 - Yields sensitivity to noise

Deterministic approach: **regularization**!
Inverse problems

Classical **regularization approach** to inverse problems (*an example*):

\[
\hat{\theta}(y) = \arg \min_{\theta} \|y - G(\theta)\|_F^2 + \lambda \mathcal{R}(\theta)
\]

- Without regularization term \(\lambda \mathcal{R}\), and under an additive Gaussian noise assumption, this would be the maximum likelihood estimate: an ill-posed problem (may lack uniqueness and stability)!
- With regularization, can be interpreted as a penalized ML estimate

Enormous literature on the design of suitable regularization functionals \(\mathcal{R}\)

- Basic example: zeroth-order Tikhonov, \(\mathcal{R}(\theta) = \|\theta\|^2_2\)
- Also, many techniques for selecting regularization parameter \(\lambda\)
- Instead we take a Bayesian statistical perspective...
Inverse problems

Classical **regularization approach** to inverse problems (**an example**):

\[\hat{\theta}(y) = \arg \min \| y - G(\theta) \|_F^{\text{obs}} + \lambda \mathcal{R}(\theta) \]

- Without regularization term \(\lambda \mathcal{R} \), and under an additive Gaussian noise assumption, this would be the maximum likelihood estimate: an ill-posed problem (may lack uniqueness and stability)!
- With regularization, can be interpreted as a penalized ML estimate

- **Enormous** literature on the design of suitable regularization functionals \(\mathcal{R} \)
 - Basic example: zeroth-order Tikhonov, \(\mathcal{R}(\theta) = \| \theta \|_2^2 \)
- Also, many techniques for selecting regularization parameter \(\lambda \)
- Instead we take a Bayesian statistical perspective...
In inverse problems, prior information plays a key role. Broadly, priors serve as regularizers.

Intuitive idea: assign lower probability to neighborhoods of θ that you don’t expect to see, higher probability to neighborhoods of θ that you do expect to see

Examples

1. Gaussian processes with specified covariance kernel
2. Gaussian Markov random fields
3. Gaussian priors derived from differential operators
4. Hierarchical priors
5. Besov space priors
6. Other non-Gaussian priors
7. Higher-level representations (objects, marked point processes)
Key idea: any finite-dimensional distribution of the stochastic process \(\theta(x, \omega) : D \times \Omega \rightarrow \mathbb{R} \) is multivariate normal.

In other words: \(\theta(x, \omega) \) is a collection of jointly Gaussian random variables, indexed by \(x \)

Specify via \textit{mean function} and \textit{covariance function}

\[
\mathbb{E}[\theta(x)] = \mu(x) \\
\mathbb{E}[(\theta(x) - \mu)(\theta(x') - \mu)] = C(x, x')
\]

Smoothness of process is controlled by behavior of covariance function as \(x' \rightarrow x \)

Common symmetries:

- Stationarity: \(C(x, x') = \tilde{C}(\tau) \), where \(\tau = x - x' \)
- Isotropy: \(C(x, x') = \tilde{C}(\tau) \), where \(\tau = \|x - x'\| \)
Example: stationary Gaussian random fields

Both are $\theta(x, \omega) : D \times \Omega \to \mathbb{R}$, with $D = [0, 1]^2$.

(exponential covariance kernel) (Gaussian covariance kernel)
Gaussian Markov random fields

- Key idea: discretize space and specify a *sparse* inverse covariance ("precision") matrix W

\[p(\theta) \propto \exp \left(-\frac{1}{2} \gamma \theta^T W \theta \right) \]

where γ controls scale

- Full conditionals $p(\theta_i | \theta_{\sim i})$ are available analytically and may simplify dramatically.

- Represent **conditional independence** structure via an undirected graphical model

- Example: $\mathbb{E} [\theta_i | \theta_{\sim i}]$ is just an average of site i’s nearest neighbors
Priors through differential operators

- Key idea: return to infinite-dimensional setting; again penalize roughness in $\theta(x)$
- Stuart 2010: define the prior using fractional negative powers of the Laplacian $\mathcal{A} = -\Delta$:
 $$\theta \sim \mathcal{N}(\theta_0, \beta \mathcal{A}^{-\alpha})$$
- Sufficiently large α ($\alpha > d/2$), along with conditions on the likelihood, ensure that posterior measure is well defined
In fact, all three “types” of Gaussian priors just described are closely connected.

- **Linear (fractional) SPDE:**
 \[
 (\kappa^2 - \Delta)^{\beta/2} \theta(x) = \mathcal{W}(x), \quad x \in \mathbb{R}^d, \quad \beta = \nu + d/2, \quad \kappa > 0, \nu > 0
 \]
 Then \(\theta(x)\) is a Gaussian field with Matérn covariance:
 \[
 C(x, x') = \frac{\sigma^2}{2^{\nu-1} \Gamma(\nu)} (\kappa \|x - x'\|)^\nu K_\nu (\kappa \|x - x'\|)
 \]
- Covariance kernel is Green’s function of differential operator
 \[
 (\kappa^2 - \Delta)^\beta C(x, x') = \delta(x - x')
 \]
 \(\nu = 1/2\) equivalent to exponential covariance; \(\nu \to \infty\) equivalent to squared exponential covariance
- Can construct a discrete GMRF that approximates the solution of SPDE (See Lindgren, Rue, Lindström JRSSB 2011.)
Hierarchical Gaussian priors

Figure 1. Three realization drawn from the prior (6) with constant variance $\theta_j = \theta_0$ (left) and from the corresponding prior where the variance is 100–fold at two points indicated by arrows (right).

Figure 4. Approximation of the MAP estimate of the image (top row) and of the variance (bottom row) after 1, 3 and 5 iteration of the cyclic algorithm when using the GMRES method to compute the updated of the image at each iteration step.

Figure 5. Approximation of the MAP estimate of the image (top row) and of the variance (bottom row) after 1, 3 and 5 iteration of the cyclic algorithm when using the CGLS method to compute the updated of the image at each iteration step.

Non-Gaussian priors

- **Besov space** $B_{pq}^s(\mathbb{T})$:

 \[\theta(x) = c_0 + \sum_{j=0}^{\infty} \sum_{h=0}^{2^j-1} w_{j,h} \psi_{j,h}(x) \]

 and

 \[\|\theta\|_{B_{pq}^s(\mathbb{T})} := \left(|c_0|^q + \sum_{j=0}^{\infty} 2^{jq(s+\frac{1}{2} - \frac{1}{p})} \left(\sum_{h=0}^{2^j-1} |w_{j,h}|^p \right)^{q/p} \right)^{1/q} < \infty. \]

- Consider $p = q = s = 1$:

 \[\|\theta\|_{B_{11}^1(\mathbb{T})} = |c_0| + \sum_{j=0}^{\infty} \sum_{h=0}^{2^j-1} 2^{j/2} |w_{j,h}|. \]

 Then the distribution of θ is a **Besov prior** if αc_0 and $\alpha 2^{j/2} w_{j,h}$ are independent and Laplace(1).

- Loosely, $\pi(\theta) = \exp \left(-\alpha \|\theta\|_{B_{11}^1(\mathbb{T})} \right)$.
Non-Gaussian priors

Level set representations

Non-Gaussian priors

Heavy-tailed priors and sample sparsity

Higher-level representations

Marked point processes, and more:

Hierarchical modeling

- One of the key flexibilities of the Bayesian construction!
- Hierarchical modeling has important implications for the design of efficient MCMC samplers
- Examples:
 1. Unknown noise variance
 2. Unknown variance of a Gaussian process prior (cf. choosing the *regularization* parameter)
 3. Many more, as dictated by the physical models at hand
Example: prior variance hyperparameter in an inverse diffusion problem

Figure: Posterior marginal density of the variance hyperparameter σ^2, versus quality of data (number and noise variance ς^2), contrasted with its prior density. “Regularization” $\lambda \propto \varsigma^2 / \sigma^2$.
The linear Gaussian model

A key building-block problem:

- Parameters $\theta \in \mathbb{R}^n$, observations $y \in \mathbb{R}^m$
- Forward model $f(\theta) = G\theta$, where $G \in \mathbb{R}^{m \times n}$
- Additive noise yields observations: $y = G\theta + \epsilon$
- $\epsilon \sim N(0, \Gamma_{\text{obs}})$ and is independent of θ
- Endow θ with a Gaussian prior, $\theta \sim N(\mu_{\text{pr}}, \Gamma_{\text{pr}})$.

Posterior probability density

$$p(\theta|y) \propto p(y|\theta)p(\theta) = L(\theta)p(\theta) \propto \exp \left(-\frac{1}{2} (y - G\theta)^\top \Gamma_{\text{obs}}^{-1} (y - G\theta) \right)$$

$$\times \exp \left(-\frac{1}{2} (\theta - \mu_{\text{pr}})^\top \Gamma_{\text{pr}}^{-1} (\theta - \mu_{\text{pr}}) \right)$$

$$\propto \exp \left(-\frac{1}{2} (\theta - \mu_{\text{pos}})^\top \Gamma_{\text{pos}}^{-1} (\theta - \mu_{\text{pos}}) \right)$$
The linear Gaussian model

A key building-block problem:

- Parameters $\theta \in \mathbb{R}^n$, observations $y \in \mathbb{R}^m$
- Forward model $f(\theta) = G\theta$, where $G \in \mathbb{R}^{m \times n}$
- Additive noise yields observations: $y = G\theta + \epsilon$
- $\epsilon \sim N(0, \Gamma_{\text{obs}})$ and is independent of θ
- Endow θ with a Gaussian prior, $\theta \sim N(\mu_{\text{pr}}, \Gamma_{\text{pr}})$.

Posterior probability density

$$p(\theta|y) \propto p(y|\theta)p(\theta) = L(\theta)p(\theta) \propto \exp\left(-\frac{1}{2}(y - G\theta)^\top \Gamma_{\text{obs}}^{-1} (y - G\theta)\right)$$
$$\times \exp\left(-\frac{1}{2}(\theta - \mu_{\text{pr}})^\top \Gamma_{\text{pr}}^{-1} (\theta - \mu_{\text{pr}})\right)$$
$$\propto \exp\left(-\frac{1}{2}(\theta - \mu_{\text{pos}})^\top \Gamma_{\text{pos}}^{-1} (\theta - \mu_{\text{pos}})\right)$$
The linear Gaussian model

- Posterior is again Gaussian:
 \[
 \Gamma_{\text{pos}} = \left(G^\top \Gamma_{\text{obs}}^{-1} G + \Gamma_{\text{pr}}^{-1} \right)^{-1} \\
 = \Gamma_{\text{pr}} - \Gamma_{\text{pr}} G^\top \left(G \Gamma_{\text{pr}} G^\top + \Gamma_{\text{obs}} \right)^{-1} G \Gamma_{\text{pr}} \\
 = (I - KG) \Gamma_{\text{pr}}
 \]

- \[
 \mu_{\text{pos}} = \Gamma_{\text{pos}} \left(G^\top \Gamma_{\text{obs}}^{-1} y + \Gamma_{\text{pr}}^{-1} \mu_{\text{pr}} \right)
 \]

- In the context of filtering, \(K \) is known as the (optimal) Kalman gain.
- \(H := G^\top \Gamma_{\text{obs}}^{-1} G \) is the Hessian of the negative log-likelihood.
- How does low rank of \(H \) affect the structure of the posterior? How does \(H \) interact with the prior?
Likelihood-informed directions

- Consider the Rayleigh ratio

$$\mathcal{R}(w) = \frac{w^\top Hw}{w^\top \Gamma_{\text{pr}}^{-1} w}.$$

When $\mathcal{R}(w)$ is large, likelihood dominates the prior in direction w.

- The ratio is maximized by solutions to the generalized eigenvalue problem

$$Hw = \lambda \Gamma_{\text{pr}}^{-1} w.$$

- The posterior covariance can be written as a negative update along these “likelihood-informed” directions, and approximations can be obtained using the r largest eigenvalues:

$$\Gamma_{\text{pos}} = \Gamma_{\text{pr}} - \sum_{i=1}^{n} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^\top \approx \Gamma_{\text{pr}} - \sum_{i=1}^{r} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^\top.$$
Likelihood-informed directions

Consider the Rayleigh ratio

\[R(w) = \frac{w^\top H w}{w^\top \Gamma_{pr}^{-1} w}. \]

When \(R(w) \) is large, likelihood dominates the prior in direction \(w \).

The ratio is maximized by solutions to the generalized eigenvalue problem

\[Hw = \lambda \Gamma_{pr}^{-1} w. \]

The posterior covariance can be written as a negative update along these “likelihood-informed” directions, and approximations can be obtained using the \(r \) largest eigenvalues:

\[\Gamma_{pos} = \Gamma_{pr} - \sum_{i=1}^{n} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^\top \approx \Gamma_{pr} - \sum_{i=1}^{r} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^\top \]
Likelihood-informed directions

Consider the Rayleigh ratio

\[R(w) = \frac{w^\top Hw}{w^\top \Gamma_{\text{pr}}^{-1} w}. \]

When \(R(w) \) is large, likelihood dominates the prior in direction \(w \).

The ratio is maximized by solutions to the generalized eigenvalue problem

\[Hw = \lambda \Gamma_{\text{pr}}^{-1} w. \]

The posterior covariance can be written as a negative update along these “likelihood-informed” directions, and approximations can be obtained using the \(r \) largest eigenvalues:

\[\Gamma_{\text{pos}} = \Gamma_{\text{pr}} - \sum_{i=1}^{n} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^\top \approx \Gamma_{\text{pr}} - \sum_{i=1}^{r} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^\top \]
The approximation

\[\hat{\Gamma}_{\text{pos}} = \Gamma_{\text{pr}} - \sum_{i=1}^{r} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^\top \]

is **optimal** in a class of loss functions \(L(\hat{\Gamma}_{\text{pos}}, \Gamma_{\text{pos}}) \) for approximations of form \(\hat{\Gamma}_{\text{pos}} = \Gamma_{\text{pr}} - KK^\top \), where rank\((K) \leq r\).

A metric between covariance matrices

Fisher-Rao/Förstner metric

Let $A, B \succ 0$, and (σ_i) be the eigenvalues of (A, B). Then:

$$d_F^2 (A, B) = \text{tr} \left[\ln^2 \left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}} \right) \right] = \sum_i \ln^2 (\sigma_i)$$

- Compare curvatures: $\sup_u \frac{u^T A u}{u^T B u} = \sigma_1$

- Unique geodesic distance on Sym^+ satisfying invariances:
 $$d_F (A, B) = d_F (A^{-1}, B^{-1}) \quad d_F (A, B) = d_F (MAM^T, MBM^T)$$

- Frobenius $d_F (A, B) = \|A - B\|_F$ does not share these properties
Remarks on the optimal approximation

\[\hat{\Gamma}^*_{\text{pos}} = \Gamma_{\text{pr}} - KK^\top, \quad KK^\top = \sum_{i=1}^{r} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^\top \]

\(\hat{\Gamma}^*_{\text{pos}} \) is the minimizer of \(d_F \) between \(\Gamma_{\text{pos}} \) and an element of \(\mathcal{M}_r = \{ \Gamma_{\text{pr}} - KK^\top : \text{rank}(K) \leq r \} \).

\(\hat{\Gamma}^*_{\text{pos}} \) also minimizes the Hellinger distance and the Kullback–Leibler divergence between \(\mathcal{N}(\mu_{\text{pos}}(y), \Gamma \in \mathcal{M}_r) \) and \(\mathcal{N}(\mu_{\text{pos}}(y), \Gamma_{\text{pos}}) \).

These results can also be used to devise optimal approximations for the posterior mean (e.g., a low-rank matrix applied to the data \(y \)).

- Minimize Bayes risk for squared-error loss weighted by the posterior precision.
Remarks on the optimal approximation

\[\hat{\Gamma}^*_{\text{pos}} = \Gamma_{\text{pr}} - KK^T, \quad KK^T = \sum_{i=1}^{r} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^T \]

- \(\hat{\Gamma}^*_{\text{pos}} \) is the minimizer of \(d_F \) between \(\Gamma_{\text{pos}} \) and an element of \(M_r = \{ \Gamma_{\text{pr}} - KK^T : \text{rank}(K) \leq r \} \).

- \(\hat{\Gamma}^*_{\text{pos}} \) also minimizes the Hellinger distance and the Kullback–Leibler divergence between \(N(\mu_{\text{pos}}(y), \Gamma) \in M_r \) and \(N(\mu_{\text{pos}}(y), \Gamma_{\text{pos}}) \).

- These results can also be used to devise optimal approximations for the posterior mean (e.g., a low-rank matrix applied to the data \(y \))
 - Minimize Bayes risk for squared-error loss weighted by the posterior precision
Remarks on the optimal approximation

\[\hat{\Gamma}_{\text{pos}}^* = \Gamma_{\text{pr}} - KK^T, \quad KK^T = \sum_{i=1}^{r} \frac{\lambda_i}{1 + \lambda_i} w_i w_i^T \]

- The form of the optimal update is widely used (Flath et al. 2011)
- Compute with Lanczos, randomized SVD, etc.
- Directions \(\tilde{w}_i = \Gamma_{\text{pr}}^{-1} w_i \) maximize the relative difference between prior and posterior variance:
 \[
 \frac{\text{Var} (\tilde{w}_i^T x) - \text{Var} (\tilde{w}_i^T x | y)}{\text{Var} (\tilde{w}_i^T x)} = \frac{\lambda_i}{1 + \lambda_i}
 \]
- Using the Frobenius norm as a loss would instead yield directions of greatest absolute difference between prior and posterior variance.
Example: computerized tomography

X-rays travel from sources to detectors through an object of interest. Intensities from the sources are measured at the detectors, and the goal is to reconstruct the density of the object.

This synthetic example is motivated by real-time X-ray imaging of logs entering a sawmill, for automatic quality control (see http://finnos.fi)
Example: computerized tomography

Weaker data \rightarrow faster decay of generalized eigenvalues \rightarrow lower order approximations possible.

In the limited angle case, roughly $r = 200$ is enough to get a good approximation (with full angle $r \approx 800$ needed). **Variance fields:**
Example: computerized tomography

Approximation of the posterior mean:
$$\mu_{\text{pos}}(y) = \Gamma_{\text{pos}} G^\top \Gamma_{\text{obs}}^{-1} y \approx \sum_{i=1}^{r} \delta_i (1 + \delta_i^2)^{-1} w_i v_i^\top y =: A_r y$$

Note: pre-computing A_r offline enables fast reconstructions for repeated data.
Questions to answer

- How to simulate from or explore general non-Gaussian posterior distributions?
- How to make Bayesian inference computationally tractable when the forward model is expensive (e.g., a PDE) and the parameters are high- or infinite-dimensional?
MCMC in infinite dimensions

- Would like to construct a well-defined MCMC sampler for functions $u \in \mathcal{H}$.
- First, the posterior measure μ_y should be a well-defined probability measure on \mathcal{H} (see Stuart Acta Numerica 2010). For simplicity, let the prior μ_0 be $\mathcal{N}(0, C)$.
- Now let q be the proposal distribution, and consider pair of measures
 $$\nu(du, du') = q(u, du')\mu_y(du), \quad \nu^\perp(du, du') = q(u', du)\mu_y(du');$$
- Then the MCMC acceptance probability is
 $$\alpha(u_k, u') = \min \left\{ 1, \frac{d\nu^\perp}{d\nu}(u_k, u') \right\}$$
- To define a valid transition kernel, we need absolute continuity $\nu^\perp \ll \nu$; in turn, this places requirements on the proposal q.
MCMC in infinite dimensions

- Would like to construct a well-defined MCMC sampler for \textbf{functions} \(u \in \mathcal{H} \).
- First, the posterior measure \(\mu_y \) should be a well-defined probability measure on \(\mathcal{H} \) (see Stuart Acta Numerica 2010). For simplicity, let the prior \(\mu_0 \) be \(\mathcal{N}(0, C) \).
- Now let \(q \) be the proposal distribution, and consider pair of measures
 \[\nu(du, du') = q(u, du')\mu_y(du), \quad \nu^\perp(du, du') = q(u', du)\mu_y(du'); \]
- Then the MCMC acceptance probability is
 \[\alpha(u_k, u') = \min \left\{ 1, \frac{d\nu^\perp}{d\nu}(u_k, u') \right\} \]
- To define a \textbf{valid} transition kernel, we need absolute continuity \(\nu^\perp \ll \nu \); in turn, this places requirements on the proposal \(q \)
One way to produce a valid transition kernel is the preconditioned Crank-Nicolson (pCN) proposal (Cotter et al. 2013):

\[u' = (1 - \beta^2)^{1/2} u_k + \beta \xi_k, \quad \xi_k \sim \mathcal{N}(0, C), \quad \beta \in (0, 1). \]

Practical impact: sampling efficiency does not degenerate as discretization of \(u \) is refined.

More sophisticated versions: combine pCN with Hessian/geometry information, e.g., DILI (dimension-independent likelihood-informed) proposals [Cui, Law, M 2016]

- Approximations of the (local/linearized) posterior covariance as a low-rank update of the prior covariance are essential to scalability.
- Roughly: pCN in directions not informed by the data (infinitely many) + preconditioned MALA in the data-informed directions (finite in number).
Approximations in MCMC

Efficient sampling is great, but what if each posterior evaluation is very expensive?

Obvious answer: *approximate* the expensive part, e.g., the forward model.

This raises many interesting issues:

- What kind of approximation scheme to use? What properties of the forward model/likelihood are being exploited?
- When to construct the approximation (offline versus online) and what kind of accuracy to demand from it?
- What is the accuracy of the resulting posterior? Bias in posterior estimates? Can/should we correct for these?
Approximations in MCMC

Much work has been done on this topic.

Approximation schemes: coarse-grid PDE models, polynomial expansions, Gaussian process emulators, reduced-basis methods and reduced-order models, simplified physics, etc.

Construction schemes:
- Surrogates accurate over the prior (e.g., convergent in $L^2_{\pi_{prior}}$ sense) versus *posterior-focused* (and hence data-driven) surrogates
- Constructed offline or *online* during posterior sampling

Errors and correction:
- Convergence rate of the forward model approximation transfers to the posterior it induces [M & Xiu 2009; Cotter, Dashti, Stuart 2010]
- Can always correct using a *delayed-acceptance* scheme [Christen & Fox 2005], but at a price
- Recent work in *asymptotically exact* online approximations [Conrad, M, Pillai, Smith *JASA* 2016] . . .
Approximations in MCMC

Much work has been done on this topic.

Approximation schemes: coarse-grid PDE models, polynomial expansions, Gaussian process emulators, reduced-basis methods and reduced-order models, simplified physics, etc.

Construction schemes:
- Surrogates accurate over the prior (e.g., convergent in $L^2_{\pi_{\text{prior}}}$ sense) versus *posterior-focused* (and hence data-driven) surrogates
- Constructed offline or *online* during posterior sampling

Errors and correction:
- Convergence rate of the forward model approximation transfers to the posterior it induces [M & Xiu 2009; Cotter, Dashti, Stuart 2010]
- Can always correct using a *delayed-acceptance* scheme [Christen & Fox 2005], but at a price
- Recent work in *asymptotically exact* online approximations [Conrad, M, Pillai, Smith JASA 2016]...
Approximations in MCMC

Much work has been done on this topic.

Approximation schemes: coarse-grid PDE models, polynomial expansions, Gaussian process emulators, reduced-basis methods and reduced-order models, simplified physics, etc.

Construction schemes:

- Surrogates accurate over the prior (e.g., convergent in $L^2_{\pi_{prior}}$ sense) versus *posterior-focused* (and hence data-driven) surrogates
- Constructed offline or *online* during posterior sampling

Errors and correction:

- Convergence rate of the forward model approximation transfers to the posterior it induces [M & Xiu 2009; Cotter, Dashti, Stuart 2010]
- Can always correct using a *delayed-acceptance* scheme [Christen & Fox 2005], but at a price
- Recent work in *asymptotically exact* online approximations [Conrad, M, Pillai, Smith *JASA* 2016]...
Disclaimer: this is a hopelessly incomplete list!

T. A. Moselhy and Y. Marzouk, “Bayesian inference with optimal maps.”

MCMC with surrogate modeling (1)

Disclaimer: this is a hopelessly incomplete list!

