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Agenda

Plan for the lectures:

1 Lectures 1–2: Bayesian inference and MCMC foundations

Bayesian modeling

MCMC algorithms and demos

2 Lectures 3–4: Bayesian approach to inverse problems

Elements of a Bayesian inverse problem formulation

Linear–Gaussian problems in detail

Surrogate modeling and likelihood approximations

Dimension reduction

3 Lecture 4+: Bayesian optimal experimental design or some other

topic TBD
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Inverse problems in the Bayesian perspective

How do inverse problems differ from generic parameter estimation

problems?

Typical characteristics of inverse problems:

Observations indirectly related to parameters

Observations (perhaps) limited in number

Observations are noisy

Parameters are high dimensional (in principle, functions)
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Inverse problems

Key building block: the forward model

A (deterministic) operator G that maps parameters θ to predictions

of the observations

Enters the likelihood function p(y |θ), when combined with a suitable

statistical model

(Simplest) example:

y = G (θ) + ε, ε ∼ N(0, Γobs)

then y |θ ∼ N (G (θ), Γobs)

Here ε represents observational error and (crudely) error in the

forward model
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Inverse problems

Why are inverse problems difficult?

Classically ill-posed:

No solution may match the data (existence)

Linear case, G ∈ Rm×n: ∃ a non-trivial left nullspace Ker(G>)

Many solutions may match the data (uniqueness)

Linear case, G ∈ Rm×n: ∃ a non-trivial nullspace Ker(G )

Ill-conditioning or instability: small changes in data y can lead to
large changes in (unregularized) estimates θ̂(y)

Linear case, G ∈ Rm×n: singular values σi (G ) decay rapidly to zero

Yields sensitivity to noise

Deterministic approach: regularization!
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Inverse problems

Classical regularization approach to inverse problems (an example):

θ̂(y) = arg min ‖y − G (θ)‖2Γobs + λR(θ)

Without regularization term λR, and under an additive Gaussian

noise assumption, this would be the maximum likelihood estimate:

an ill-posed problem (may lack uniqueness and stability)!

With regularization, can be interpreted as a penalized ML estimate

Enormous literature on the design of suitable regularization
functionals R

Basic example: zeroth-order Tikhonov, R(θ) = ‖θ‖22
Also, many techniques for selecting regularization parameter λ

Instead we take a Bayesian statistical perspective. . .
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Bayesian inverse problems

Prior distributions

In inverse problems, prior information plays a key role. Broadly,

priors serve as regularizers.

Intuitive idea: assign lower probability to neighborhoods of θ that

you don’t expect to see, higher probability to neighborhoods of θ

that you do expect to see

Examples
1 Gaussian processes with specified covariance kernel
2 Gaussian Markov random fields
3 Gaussian priors derived from differential operators
4 Hierarchical priors
5 Besov space priors
6 Other non-Gaussian priors
7 Higher-level representations (objects, marked point processes)
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Gaussian process priors

Key idea: any finite-dimensional distribution of the stochastic

process θ(x, ω) : D × Ω→ R is multivariate normal.

In other words: θ(x, ω) is a collection of jointly Gaussian random

variables, indexed by x

Specify via mean function and covariance function

E [θ(x)] = µ(x)
E [(θ(x)− µ) (θ(x′)− µ)] = C (x, x′)

Smoothness of process is controlled by behavior of covariance

function as x′ → x

Common symmetries:

Stationarity: C (x, x′) = C̃ (τ ), where τ = x− x′

Isotropy: C (x, x′) = C̄ (τ), where τ = ‖x− x′‖
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Example: stationary Gaussian random fieldsGaussian process priors 

•! Prior is a stationary Gaussian random field: 

(exponential covariance kernel) (Gaussian covariance kernel) 

 

M(x,!) = µ(x) + "
i
c
i
(!) #

i
(x)

i=1

K

$
(Karhunen-Loève expansion) 

Both are θ(x, ω) : D × Ω→ R, with D = [0, 1]2.
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Gaussian Markov random fields

Key idea: discretize space and specify a sparse inverse covariance

(“precision”) matrix W

p(θ) ∝ exp

(
−

1

2
γθTWθ

)
where γ controls scale

Full conditionals p(θi |θ∼i) are available analytically and may simplify

dramatically.

Represent conditional independence structure via an undirected

graphical model

Example: E [θi |θ∼i ] is just an average of site i ’s nearest neighbors
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Priors through differential operators

Key idea: return to infinite-dimensional setting; again penalize

roughness in θ(x)

Stuart 2010: define the prior using fractional negative powers of the

Laplacian A = −∆:

θ ∼ N
(
θ0, βA−α

)
Sufficiently large α (α > d/2), along with conditions on the

likelihood, ensure that posterior measure is well defined
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GPs, GMRFs, and SPDEs

In fact, all three “types” of Gaussian priors just described are closely

connected.

Linear (fractional) SPDE:(
κ2 −∆

)β/2
θ(x) =W(x), x ∈ Rd , β = ν + d/2, κ > 0, ν > 0

Then θ(x) is a Gaussian field with Matérn covariance:

C (x, x′) =
σ2

2ν−1Γ(ν)
(κ‖x− x′‖)νKν (κ‖x− x′‖)

Covariance kernel is Green’s function of differential operator(
κ2 −∆

)β
C (x, x′) = δ(x− x′)

ν = 1/2 equivalent to exponential covariance; ν →∞ equivalent to

squared exponential covariance

Can construct a discrete GMRF that approximates the solution of
SPDE (See Lindgren, Rue, Lindström JRSSB 2011.)
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Hierarchical Gaussian priors

Inverse Problems 24 (2008) 034013 D Calvetti and E Somersalo
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Figure 1. Three realization drawn from the prior (6) with constant variance θj = θ0 (left) and from
the corresponding prior where the variance is 100–fold at two points indicated by arrows (right).

where X and W are the n-variate random variables with components Xj and Wj , respectively,
and

L =





1
−1 1

. . .
. . .

−1 1




, D = diag(θ1, θ2, . . . , θn). (5)

Since W is a standard normal random variable, relation (4) allows us to write the (prior)
probability density of X as

πprior(x) ∝ exp
(
− 1

2‖D−1/2LX‖2). (6)

Not surprisingly, the first-order autoregressive Markov model leads to a first-order smoothness
prior for the variable X. The variance vector θ expresses the expected variability of the signal
over the support interval, and provides a handle to control the qualitative behavior of the signal.
Assume, for example, that we set θj = θ0 = const., 1 ! j ! n, leading to a homogenous
smoothness over the support interval. By changing some of the components, e.g., setting
θk = θ# = 100θ0 for some k, #, we expect the signal to have jumps of standard deviation√

θk =
√

θ# = 10
√

θ0 at the grid intervals [tk−1, tk] and [t#−1, t#]. This is illustrated in
figure 1, where we show some random draws from the prior. It is important to note that the
higher values of θj s do not force, but make the jumps simply more likely to occur by increasing
the local variance.

This observation suggests that when the number, location and expected amplitudes of the
jumps are known, that is, when the prior information is quantitative, the first-order Markov
model provides the means to encode the available information into the prior. Suppose now that
the only available information about the solution of the inverse problem is qualitative: jumps
may occur, but there is no available information of how many, where and how large. Adhering
to the Bayesian paradigm, we express this lack of quantitative information by modeling the
variance of the Markov process as a random variable. The estimation of the variance vector
thus becomes a part of the inverse problem.

4

Calvetti & Somersalo, Inverse Problems 24 (2008) 034013.
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Hierarchical Gaussian priors

Inverse Problems 24 (2008) 034013 D Calvetti and E Somersalo

Iteration 1 Iteration 3 Iteration 5

Iteration 1 Iteration 3 Iteration 5

Figure 4. Approximation of the MAP Estimate of the image (top row) and of the variance (bottom
row) after 1, 3 and 5 iteration of the cyclic algorithm when using the GMRES method to compute
the updated of the image at each iteration step.

Iteration 1 Iteration 3 Iteration 7

Iteration 1 Iteration 3 Iteration 7

Figure 5. Approximation of the MAP estimate of the image (top row) and of the variance (bottom
row) after 1, 3 and 5 iteration of the cyclic algorithm when using the CGLS method to compute
the updated of the image at each iteration step

The graphs displayed in figure 6 refer to the CGLS iteration with inverse gamma hyperprior.
The value of the objective function levels off after five iterations, and this could be the basis
for a stopping criterion. Note that after seven iterations, the norm of the estimation error
starts to grow again, typical of algorithms which exhibit semi-convergence. The speckling
phenomenon, by which individual pixel values close to the discontinuity start to diverge
is partly responsible for the growth of the error. This suggests that the iterations should be
stopped soon after the settling of the objective function. The fact that the norm of the derivative
is small already at the end of the first iterations which indicate that the sequential iteration
finds indeed a good approximation to a minimizer.

15

Calvetti & Somersalo, Inverse Problems 24 (2008) 034013.
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Non-Gaussian priors

Besov space Bspq(T):

θ(x) = c0 +

∞∑
j=0

2j−1∑
h=0

wj ,hψj ,h(x)

and

‖θ‖Bspq(T) :=

|c0|q +

∞∑
j=0

2jq(s+ 1
2
− 1
p

)

2j−1∑
h=0

|wj ,h|p
q/p


1/q

<∞.

Consider p = q = s = 1:

‖θ‖B111(T) = |c0|+
∞∑
j=0

2j−1∑
h=0

2j/2|wj ,h|.

Then the distribution of θ is a Besov prior if αc0 and α2j/2wj ,h are

independent and Laplace(1).

Loosely, π(θ) = exp
(
−α‖θ‖B111(T)

)
.
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Non-Gaussian priors

Level set representations

Dunlop, Iglesias, & Stuart, Stat. Comp. 27 (2017), 1555–1584.
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Non-Gaussian priors

Heavy-tailed priors and sample sparsity

Hosseini, SIAM JUQ 5 (2017), 1024–1060.
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Higher-level representations

Marked point processes, and more:

Rue & Hurn, Biometrika 86 (1999), 649–660.
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Bayesian inference

Hierarchical modeling

One of the key flexibilities of the Bayesian construction!

Hierarchical modeling has important implications for the design of

efficient MCMC samplers

Examples:

1 Unknown noise variance
2 Unknown variance of a Gaussian process prior (cf. choosing the

regularization parameter)
3 Many more, as dictated by the physical models at hand
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Example: prior variance hyperparameter in an inverse

diffusion problem
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Figure: Posterior marginal density of the variance hyperparameter σ2, versus

quality of data (number and noise variance ς2), contrasted with its prior density.

“Regularization” λ ∝ ς2/σ2.
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The linear Gaussian model

A key building-block problem:

Parameters θ ∈ Rn, observations y ∈ Rm

Forward model f (θ) = Gθ, where G ∈ Rm×n

Additive noise yields observations: y = Gθ + ε

ε ∼ N(0, Γobs) and is independent of θ

Endow θ with a Gaussian prior, θ ∼ N(µpr, Γpr).

Posterior probability density

p(θ|y) ∝ p(y |θ)p(θ) = L(θ)p(θ) ∝ exp

(
−

1

2
(y − Gθ)> Γ−1obs (y − Gθ)

)
× exp

(
−

1

2
(θ − µpr)>Γ−1pr (θ − µpr)

)
∝ exp

(
−

1

2
(θ − µpos)> Γ−1pos (θ − µpos)

)
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The linear Gaussian model

Posterior is again Gaussian:

Γpos =
(

G>Γ−1obsG + Γ−1pr
)−1

= Γpr − ΓprG
> (G ΓprG

> + Γobs
)−1

G Γpr

= (I − K G ) Γpr

µpos = Γpos
(

G>Γ−1obsy + Γ−1pr µpr
)

In the context of filtering, K is known as the (optimal) Kalman gain.

H := G>Γ−1obsG is the Hessian of the negative log-likelihood

How does low rank of H affect the structure of the posterior? How

does H interact with the prior?
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Likelihood-informed directions

Consider the Rayleigh ratio

R(w) =
w>Hw

w>Γ−1pr w
.

When R(w) is large, likelihood dominates the prior in direction w .

The ratio is maximized by solutions to the generalized eigenvalue problem

Hw = λΓ−1pr w .

The posterior covariance can be written as a negative update along these

“likelihood-informed” directions, and approximations can be obtained using

the r largest eigenvalues:

Γpos = Γpr −
n∑
i=1

λi
1 + λi

wiw
>
i ≈ Γpr −

r∑
i=1

λi
1 + λi

wiw
>
i
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Optimality results for Γ̂pos

The approximation

Γ̂pos = Γpr −
r∑
i=1

λi
1 + λi

wiw
>
i

is optimal in a class of loss functions L(Γ̂pos, Γpos) for

approximations of form Γ̂pos = Γpr − KK>, where rank(K ) ≤ r .

[Spantini et al. SIAM J. Sci. Comp. 2016]
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A metric between covariance matrices

Fisher-Rao/Förstner metric

Let A,B � 0, and (σi) be the eigenvalues

of (A,B). Then:

d2F (A,B) = tr
[

ln2
(

B−
1
2AB−

1
2

)]
=

∑
i

ln2 (σi)

B−1/2AB−1/2

σ1
σ2

Compare curvatures: sup
u

u>Au
u>Bu

= σ1

Unique geodesic distance on Sym+ satisfying invariances:

dF (A,B) = dF
(

A−1,B−1
)

dF (A,B) = dF
(

MAM>, MBM>
)

Frobenius dF (A,B) = ‖A− B‖F does not share these properties
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Remarks on the optimal approximation

Γ̂∗pos = Γpr − KK>, KK> =

r∑
i=1

λi
1 + λi

wiw
>
i

Γ̂∗pos is the minimizer of dF between Γpos and an element of

Mr = {Γpr − KK> : rank(K ) ≤ r}.

Γ̂∗pos also minimizes the Hellinger distance and the Kullback–Leibler

divergence between N (µpos(y), Γ ∈Mr ) and N (µpos(y), Γpos).

These results can also be used to devise optimal approximations for
the posterior mean (e.g., a low-rank matrix applied to the data y )

Minimize Bayes risk for squared-error loss weighted by the posterior

precision
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Remarks on the optimal approximation

Γ̂∗pos = Γpr − KK>, KK> =

r∑
i=1

λi
1 + λi

wiw
>
i

The form of the optimal update is widely used (Flath et al. 2011)

Compute with Lanczos, randomized SVD, etc.

Directions w̃i = Γ−1pr wi maximize the relative difference between

prior and posterior variance:

Var
(

w̃>i x
)
− Var

(
w̃>i x | y

)
Var

(
w̃>i x

) =
λi

1 + λi

Using the Frobenius norm as a loss would instead yield directions of

greatest absolute difference between prior and posterior variance.
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Example: computerized tomography

X-rays travel from sources to detectors through an object of interest. Intensities

from the sources are measured at the detectors, and the goal is to reconstruct

the density of the object.
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This synthetic example is motivated by real-time X-ray imaging of logs entering

a sawmill, for automatic quality control (see http://finnos.fi)
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Example: computerized tomography

Weaker data → faster decay of generalized eigenvalues → lower order

approximations possible.
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In the limited angle case, roughly r = 200 is enough to get a good

approximation (with full angle r ≈ 800 needed). Variance fields:

pri or

ï5.8

ï5.6
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rank = 50 rank = 100 rank = 200 poste ri or

ï7

ï6.8

ï6.6

ï6.4

ï6.2
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Example: computerized tomography

Approximation of the posterior mean:

µpos(y) = Γpos G>Γ−1obs y ≈
∑r
i=1 δi (1 + δ2i )−1wiv

>
i y =: Ar y

Note: pre-computing Ar offline enables fast reconstructions for repeated data
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Questions to answer

How to simulate from or explore general non-Gaussian posterior

distributions?

How to make Bayesian inference computationally tractable when the

forward model is expensive (e.g., a PDE) and the parameters are

high- or infinite-dimensional?
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MCMC in infinite dimensions

Would like to construct a well-defined MCMC sampler for functions

u ∈ H.

First, the posterior measure µy should be a well-defined probability

measure on H (see Stuart Acta Numerica 2010). For simplicity, let

the prior µ0 be N (0,C ).

Now let q be the proposal distribution, and consider pair of measures

ν(du, du′) = q(u, du′)µy (du), ν⊥(du, du′) = q(u′, du)µy (du′);

Then the MCMC acceptance probability is

α(uk , u′) = min

{
1,

dν⊥

dν
(uk , u′)

}
To define a valid transition kernel, we need absolute continuity

ν⊥ � ν; in turn, this places requirements on the proposal q
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MCMC in infinite dimensions (cont.)

One way to produce a valid transition kernel is the preconditioned

Crank-Nicolson (pCN) proposal (Cotter et al. 2013):

u′ = (1− β2)1/2uk + βξk , ξk ∼ N (0,C ), β ∈ (0, 1).

Practical impact: sampling efficiency does not degenerate as

discretization of u is refined

More sophisticated versions: combine pCN with Hessian/geometry
information, e.g., DILI (dimension-independent likelihood-informed)
proposals [Cui, Law, M 2016]

Approximations of the (local/linearized) posterior covariance as a

low-rank update of the prior covariance are essential to scalability

Roughly: pCN in directions not informed by the data (infinitely many)

+ preconditioned MALA in the data-informed directions (finite in

number)
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Approximations in MCMC

Efficient sampling is great, but what if each posterior evaluation is very

expensive?

Obvious answer: approximate the expensive part, e.g., the forward model.

This raises many interesting issues:

What kind of approximation scheme to use? What properties of the

forward model/likelihood are being exploited?

When to construct the approximation (offline versus online) and

what kind of accuracy to demand from it?

What is the accuracy of the resulting posterior? Bias in posterior

estimates? Can/should we correct for these?
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Approximations in MCMC

Much work has been done on this topic.

Approximation schemes: coarse-grid PDE models, polynomial expansions,

Gaussian process emulators, reduced-basis methods and reduced-order models,

simplified physics, etc.

Construction schemes:

Surrogates accurate over the prior (e.g., convergent in L2πprior sense) versus

posterior-focused (and hence data-driven) surrogates

Constructed offline or online during posterior sampling

Errors and correction:

Convergence rate of the forward model approximation transfers to the

posterior it induces [M & Xiu 2009; Cotter, Dashti, Stuart 2010]

Can always correct using a delayed-acceptance scheme [Christen & Fox

2005], but at a price

Recent work in asymptotically exact online approximations [Conrad, M,

Pillai, Smith JASA 2016]. . .
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Advanced posterior sampling for inverse problems (2)
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MCMC with surrogate modeling (1)
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