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Agenda

Plan for the lectures:
1 Lectures 1–2: Bayesian inference and MCMC foundations

I Bayesian modeling
I MCMC algorithms and demos

2 Lectures 3–4: Bayesian approach to inverse problems
I Elements of a Bayesian inverse problem formulation
I Linear–Gaussian problems in detail
I Surrogate modeling and likelihood approximations
I Dimension reduction
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Approximations in MCMC

Efficient sampling is great, but what if each posterior evaluation is very
expensive?

Obvious answer: approximate the expensive part, e.g., the forward model.

This raises many interesting issues:

I What kind of approximation scheme to use? What properties of the
forward model/likelihood are being exploited?

I When to construct the approximation (offline versus online) and what
kind of accuracy to demand from it?

I What is the accuracy of the resulting posterior? Bias in posterior
estimates? Can/should we correct for these?
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Approximations in MCMC

Much work has been done on this topic.

Approximation schemes: coarse-grid PDE models, polynomial expansions,
Gaussian process emulators, reduced-basis methods and reduced-order models,
simplified physics, etc.

Construction schemes:

I Surrogates accurate over the prior (e.g., convergent in L2πprior sense) versus
posterior-focused (and hence data-dependent) surrogates

I Constructed offline or online during posterior sampling

Errors and corrections:

1 Convergence rate of the forward model approximation transfers to the
posterior it induces [M & Xiu 2009; Cotter, Dashti, Stuart 2010]

2 Can always correct using a delayed-acceptance scheme [Christen & Fox
2005], but at a price

3 Recent work in asymptotically exact online approximations
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Recap of the Bayesian setting

Posterior density of the parameters
π(θ) := p(θ|y) ∝ L(y , f(θ))p(θ)

Ingredients:
I Parameters θ ∈ Rd ; data y ∈ Rn

I Prior density p(θ) : Rd → R+

I Forward model f : Rd → Rn

I Sometimes a black-box function
I Each evaluation is expensive

I Likelihood function L : Rn × Rn → R+

I L(y , f(θ)) = p(y |θ)
I Each evaluation requires, in principle, an evaluation of f
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Forward model approximations

I Simple approach: construct an approximation of f over the prior
distribution

I Convergence of this approximation (e.g., in L2p) yields convergence to
the true posterior

I An initial result [M & Xiu 2009]:
I Let L(y , f(θ)) = N(y ; f(θ), I ) (additive Gaussian noise)
I Define approximations (fM) s.t. ‖f − fM‖L2

p
≤ CM−α, α > 0

(e.g., polynomial approximations for smooth and square integrable f)
I Define corresponding approximate posteriors πM(θ) ∝ L(y , fM(θ)) p(θ)

I Then, for sufficiently large M,

DKL(πM‖π) . M−α

I More general results in [Cotter, Dashti, Stuart 2010]
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Forward model approximations

I Example: estimate initial perturbation to viscous Burgers’ equation
ut + uux = νuxx , x ∈ [−1, 1]

u(−1) = 1 + θ, u(1) = −1.
I Uniform prior on θ, noisy observations of the transition layer location.
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Figure: Convergence of the forward model and the posterior distribution
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Forward model and likelihood approximations

I Posterior-focused surrogates can
improve efficiency
I Posterior-focused polynomial
approximations [Li & M, SISC 2014]

I Data-driven model reduction [Cui, M,
& Willcox IJNME 2014]

I RBF approximations for
θ 7→ L(y , f(θ)) [Bliznyuk et al. 2012,
Joseph 2012]

I In general, samples are then drawn from
an approximate posterior

I Approximation cost borne a priori;
should balance approx error with
sampling error, but difficult to quantify

Posterior contours

Prior contours
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Delayed-acceptance MCMC

How to use approximate likelihoods to accelerate sampling from the exact
posterior?

I Delayed-acceptance MCMC schemes [Christen & Fox 2005]

I Suppose we have a true target density π and a (cheaper)
approximation π̃
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Delayed-acceptance MCMC

How to use approximate likelihoods to accelerate sampling from the exact
posterior?

1 Draw a proposal y from q(y |xn)

2 Calculate first acceptance ratio

α1(xn, y) = min
{
1,
π̃(y)q(xn|y)

π̃(xn)q(y |xn)

}
3 Put

z =

{
y , with probability α1(xn, y)
xn, with probability 1− α1(xn, y)

and thus define a second proposal q∗

4 Calculate second acceptance ratio

α2(xn, z) = min
{
1,
π(z)q∗(xn|z)

π(xn)q∗(z |xn)

}
5 Put

xn+1 =

{
z , with probability α2(xn, z)
xn, with probability 1− α2(xn, z)
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Delayed-acceptance MCMC

How to use approximate likelihoods to accelerate sampling from the exact
posterior?

I Delayed-acceptance MCMC schemes [Christen & Fox 2005]

I Suppose we have a true target density π and a (cheaper)
approximation π̃

I “Screens” proposals using the cheaper model π̃
I Computed second-stage probability can be close to one for good

approximations
I Still calls π at least once per accepted sample
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Asymptotically exact MCMC using approximations

A different approach:

I Can we construct an asymptotically exact MCMC, via incremental
and infinite refinement of approximations?
I Use local approximations of the forward model or log-likelihood
I Posterior exploration and surrogate construction occur simultaneously
I Asymptotic exactness: convergence of surrogate tied to stationarity of
the MCMC chain

(Conrad, M, Pillai, Smith JASA 2016; Conrad, Davis, M, Pillai, Smith JUQ 2018)

Marzouk (MIT) SFB 1294 Spring School 10 / 44



Metropolis-Hastings MCMC

Given X0, simulate chain {Xt}t≤N according to transition kernel:

MH Kernel K∞(x , ·)

1 Given Xt , draw qt ∼ Q(Xt , ·) from kernel Q with symmetric density
q(x , ·)

2 Compute acceptance ratio

α = min
(
1,
L(y , f(qt))p(qt)

L(y , f(Xt))p(Xt)

)
3 Draw u ∼ U(0, 1). If u < α, let Xt+1 = qt , otherwise Xt+1 = Xt .

I Evaluates forward model N times
I Run time can be dominated by cost of f
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MCMC with a surrogate and posterior adaptation

Given X0, initialize a sample set S0, then simulate chain {Xt} with kernel:

MH Kernel Kt(x , ·)

1 Given Xt , draw qt ∼ Q(Xt , ·) from kernel Q with symmetric density
q(x , ·)

2 Compute acceptance ratio

α = min

(
1,
L(y , f̃t(qt))p(qt)

L(y , f̃t(Xt))p(Xt)

)
3 As needed, select new samples near qt or Xt , yielding St ⊆ St+1.

Refine f̃t → f̃t+1.
4 Draw u ∼ U(0, 1). If u < α, let Xt+1 = qt , otherwise Xt+1 = Xt .

I Approximation f̃t built from sample set St = {θi : f(θi) has been run}
I Continue adaptation forever (as t →∞)
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Local approximations

I To compute the approximation f̃(θ), construct a model over the ball
BR(θ)

I Use samples θi ∈ S at distance r = ‖θ − θi‖ with weight

w(r) =

{
0 < w ′(r) ≤ 1 r ≤ R

0 else
I Choose R so that M(d) samples have non-zero weight, e.g., where

M(d) ensures that a quadratic is fully determined

I Approximations converge locally under loose conditions
(e.g., f continuously differentiable with Lipschitz gradients)
I For example, quadratic approximations over BR(θ) [Conn et al.]:

‖f −QR f‖ ≤ κ(ν, λ, d)R3
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Local approximation illustration

earlier times later times
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Experimental design: triggering refinement

1 Random refinement βt

I With probability βt , such that
∑

t βt =∞, refine near Xt or qt

2 Acceptance probability error indicator γt
I Estimate error in acceptance ratio using cross-validation

α+
i = min

(
1,
L(y , f̃∼i

t (qt))p(qt)

L(y , f̃t(Xt))p(Xt)

)
α−i = min

(
1,
L(y , f̃t(qt))p(qt)

L(y , f̃∼i
t (Xt))p(Xt)

)
I Compute error indicators

ε+ = max
i
|α− α+

i | ε− = max
i
|α− α−i |

I Refine if ε+ > γt or ε− > γt
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Experimental design: performing refinement

Local space filling refinement

To space fill near ξt = Xt or ξt = qt , given radius R, locally solve
θ∗ = argmax

‖ξt−θ′‖2≤R
min
θi∈St

‖θ′ − θi‖2

beginning at ξt and add θ∗ → St+1

Filling in directionsCloser points

I Alternative approach: use [Moré & Sorensen 1983] to add a new
point while explicitly controlling poisedness
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Ergodicity of approximate samplers

Theorem (Conrad, M, Pillai, Smith 2016)

Let the log-posterior be approximated with local quadratic models.
Assume that θ ∈ X ⊆ Rd for compact X or that π(θ) := p(θ|y) obeys a
Gaussian envelope condition.

Then, under standard regularity assumptions for geometrically ergodic
kernel K∞ and posterior π, the chain Xt converges to the exact posterior:

lim
t→∞
‖P(Xt)− π‖TV = 0.
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A framework for approximate samplers

Many algorithmic variations:

I Target of approximation
I Forward model: f(θ)
I Log-likelihood: logL(y , f(θ))

I Types of local approximations
I Regression with low-order polynomials
I Gaussian process regression
I Quadratic regression given derivatives ∂θf

I MCMC kernels
I Random-walk Metropolis, adaptive Metropolis
I Proposals (e.g., MALA, manifold MALA, HMC) that extract derivative
information from the approximation

I Parallel chains, sharing a common pool of model evaluations S
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Example: elliptic PDE inverse problem

I Elliptic PDE inverse problem: ∇ · (κ(x)∇u(x)) = −f
I Infer permeability field κ(x) from limited/noisy observations of

pressure u
I Karhunen-Loève expansion: logκ(x) =

∑d
i=1 θi

√
λiφi(x). Standard

Gaussian priors on θi .
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Example: genetic toggle switch

I Model for genetic
“toggle switch”
synthesized in E. coli

I ODE system, six
parameters to infer

I Uniform priors, Gaussian
observational errors

I Real experimental data 10-6 10-5 10-4 10-3 10-2

Concentration [IPTG]
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Genetic toggle switch posterior
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Genetic toggle switch: accuracy versus cost
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A framework for approximate samplers

Many algorithmic variations:

I Target of approximation
I Forward model: f(θ)
I Log-likelihood: logL(y , f(θ))

I Types of local approximations
I Regression with low-order polynomials
I Gaussian process regression
I Quadratic regression given derivatives ∂θf

I MCMC kernels
I Random-walk Metropolis, adaptive Metropolis
I Proposals (e.g., MALA, manifold MALA, HMC) that extract derivative
information from the approximation

I Parallel chains, sharing a common pool of model evaluations S
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Groundwater tracer transport model

I Nonlinear PDE for hydraulic head
∇ · (hκ∇h) = −fh

I Darcy velocity (u, v) = −hκ∇h then enters tracer transport equation:

∂c
∂t

+∇ ·
((

dmI + dl

[
u2 uv
uv v2

])
∇c
)
−
[
u
v

]
· ∇c = −ft ,

I Tracer advects according to velocity and well forcing

I Observe tracer concentration at
well locations, at several times,
with Gaussian error

I Infer for piecewise constant
conductivities; log-normal priors

I Forward model takes about 13
seconds to evaluate

Log-conductivity field (logκ)
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Groundwater tracer transport problem

hydraulic head and Darcy velocity tracer concentrations
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Tracer transport problem: posterior distribution
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Parallel local approximation

I Now: build a common pool of model runs S across parallel workers
I Run k chains of 105 steps each

I Discard 10% of each chain as burn-in; use effective sample size (ESS)
to measure efficiency

I ESS per chain–hour would be constant with a naïve implementation
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Error versus run time
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Parallel efficiency
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Further directions

I Refinement rates: balance bias (due to structural error in surrogate)
with variance (due to finite # of MCMC samples)
I Both under-refining or over-refining are undesirable
I Constants are generally unknown; let bias2 and variance → 0 at the
same rate

I Hybrid global + local approximations
I Noisy density evaluations, pseudomarginal MCMC

I Marginalize out unimportant variables in high-dimensional problems
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Part 2: dimension reduction

Conjecture: in many situations, the data are informative only on a
low-dimensional subspace

“ Rd = Xr︸︷︷︸
πpos 6= πpr

+ X⊥︸︷︷︸
πpos ≈ πpr

”
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Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

π̃pos(x) ∝ L̃(Prx)πpr(x)

for some positive function L̃ and some linear projector Pr ∈ Rd×dwith rank r .

Pr induces a decomposition of the space

x = xr + x⊥

{
xr ∈ Im(Pr )
x⊥ ∈ Ker(Pr )

By construction, x 7→ L̃(Prx) = L̃(xr ) is only a function of xr ∈ Im(Pr ) ≡ Rr .
If r � d :
I Build surrogates for the low-dimensional function xr 7→ L̃(xr ) with a

reasonable complexity,

I Design structure-exploiting MCMC algorithms to sample from πpos (e.g.,
[Cui, Law, M 2016; Beskos, Girolami, Lan, Farrell, Stuart 2017])
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A zoo of methods for constructing Pr and L̃

I Pr can be defined as a projector on the dominant eigenspace of a matrix
H ∈ Rd×d which contains “relevant information”

I Prior covariance
H = Γpr

I Likelihood informed subspace (LIS) [Cui et al 2014]

HLIS(y) =

∫ (
∇G

)T
Γ−1obs

(
∇G

)
dπpos

I Active subspace (AS) [Constantine, Kent, Bui-Thanh 2015]

HAS(y) =

∫ (
∇ logLy

)(
∇ logLy

)T
dπpr

I Definition of L̃:
I A common choice (LIS)

L̃(Prx) = Ly (Prx)

I Or via the conditional expectation of the log-likelihood (AS)

L̃(Prx) = expEπpr [logLy |Prx ]
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Objective

I Within the approximation class

π̃pos(x) ∝ L̃(Prx)πpr(x) with
{
L̃ : Rd → R+

Pr ∈ Rd×d rank-r projector

what is the “best” approximation of πpos?

I In practice, can we build such an approximation?

(Joint work with O. Zahm, T. Cui, K. Law, A. Spantini)
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Best approximation problem

For a given rank r , consider the minimization problem

min
Pr ,L̃

DKL
(
πpos

∣∣∣∣π̃pos) with π̃pos(x) ∝ L̃(Prx)πpr(x)

where DKL(·||·) denotes the Kullback-Leibler divergence.

Optimal function L̃ for a given projector Pr

For any projector Pr ∈ Rd×d , a minimizer of L̃ 7→ DKL
(
πpos

∣∣∣∣π̃pos) satisfies
L̃(Prx) = Eπpr

(
Ly
∣∣Prx

)
The best approximation problem becomes

min
Pr

DKL
(
πpos

∣∣∣∣π∗pos) where π∗pos(x) ∝ Eπpr
(
Ly
∣∣Prx

)
πpr(x)

But solving this problem appears intractable in general. . .
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An upper bound

Assumption on the prior: there exists a SPD matrix Σ ∈ Rd×d such that

−∇2 logπpr(x) � Σ ∀x ∈ Rd

I In other words, we assume that the prior is strongly log-concave
I Any Gaussian πpr = N (µpr, Γpr) satisfies this assumption with Σ = Γ−1pr

Upper bound for the KL-divergence

For any projector Pr we have

DKL
(
πpos

∣∣∣∣π∗pos) ≤ 1
2
trace

(
Σ−1

(
Id − Pr

)TH(y)
(
Id − Pr

))
where π∗pos(x) ∼ Eπpr

(
Ly
∣∣Prx

)
πpr(x) and

H(y) =

∫ (
∇ logLy

)(
∇ logLy

)T
dπpos

I The proof relies on logarithmic Sobolev inequalities [Ledoux 1997]

I This upper bound is quadratic w.r.t. Pr
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Minimizer of the upper bound

I Let (λi , vi ) be the i-th eigenpair of the generalized eigenvalue problem:

H(y)vi = λiΣvi

I A minimizer of the upper bound is given by

P∗r =

(
r∑

i=1

vivi
T

)
Σ

I With the choice π∗pos(x) ∝ E(Ly |P∗r x)πpr(x) we have

DKL
(
πpos

∣∣∣∣π∗pos) ≤ 1
2

d∑
i=r+1

λi

This may not be a solution to the best approximation problem!

However:
I we can choose the rank r = r(ε) such that DKL

(
πpos

∣∣∣∣π∗pos) ≤ ε
I a strong decay in λi ensures r(ε)� d
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Approach

1 Compute

H(y) =

∫ (
∇ logLy

)(
∇ logLy

)T
dπpos.

2 Solve the generalized eigenvalue problem

H(y)vi = λiΣvi ,

and assemble P∗r .

3 Compute the conditional expectation

L̃(P∗r x) = E(Ly |P∗r x).

Then π∗pos(x) ∝ L̃(P∗r x)πpr(x) satisfies

DKL
(
πpos

∣∣∣∣π∗pos) ≤ 1
2

d∑
i=r+1

λi
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Numerical illustration: heat equation on Ω = [0, 1]2

Parameter

x = logκ ∼ N (0, Γpr)

Γpr: exponential kernel

Model
−∇

(
κ∇u

)
= 0 in Ω

u = x1 + x2 on ∂Ω

Observation

y = uΩobs +N (0, Γobs)

where Ωobs = [.35, .65]2

logκtrue utrue yobs

After discretization, the dimension of the problem is d = 2730
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Approximation of the conditional expectation

Assume we can exactly compute

H(y) =

∫ (
∇ logLy

)(
∇ logLy

)T
dπpos

Instead of computing the expensive conditional expectation, we use

L̃(P∗r x) = Ly (P∗r x + ξ⊥) with ξ ∼ πpr(x)
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Comparison with other methods:

HLIS(y) =

∫ (
∇G

)T
Γ−1obs

(
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H = Γpr
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Monte Carlo approximation for H

H =

∫
f (x) ρ(x)dx

Monte Carlo
≈ H(K) =

1
K

K∑
k=1

f (x (k)) with x (k) iid∼ ρ(x)

f (x) ρ = πpr ρ = πpos

(∇ logL)(∇ logL)T AS New method

(∇G )T Γ−1obs(∇G ) LIS-PR LIS

I Draw the samples x (1), x (2), . . .

I ρ = πpr : readily available
I ρ = πpos : MCMC/importance sampling

I “Information” per sample

I AS/new method : rank
(
f (x (k))

)
= 1

I LIS-PR/LIS : rank
(
f (x (k))

)
≥ 1
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Approximation of the projector

Compute Pr from H(K) and plot the upper bound

1
2
trace

(
Σ−1

(
Id − Pr

)
H(y)

(
Id − Pr

))
= function(r).
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Implementations and links

Dimension reduction in practice:

I Since posterior samples are required to identify H, one typically uses
iterative schemes: MCMC [Cui et al. 2014; Cui, Law, M 2016], or importance
sampling [Cui, Willcox, M 2016]

I Other issues: sample size bounds for error due to H(K) and approximation
of conditional expectation
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Implementations and links

Linking dimension reduction to model reduction:

I Parameter dimension reduction makes forward model/likelihood
approximation easier

I Should only care about response of the forward model along parameter
dimensions informed by the data

I Model reduction can exploit “locality” in two senses: parameter dimension
reduction and posterior concentration relative to the prior [Cui, Willcox, M
2016]
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