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Plan for the lectures:

© Lectures 1-2: Bayesian inference and MCMC foundations

» Bayesian modeling
» MCMC algorithms and demos

© Lectures 3—4: Bayesian approach to inverse problems
» Elements of a Bayesian inverse problem formulation
» Linear—Gaussian problems in detail
» Surrogate modeling and likelihood approximations
» Dimension reduction
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Approximations in MCMC

Efficient sampling is great, but what if each posterior evaluation is very
expensive?

Obvious answer: approximate the expensive part, e.g., the forward model.

This raises many interesting issues:
» What kind of approximation scheme to use? What properties of the
forward model/likelihood are being exploited?

» When to construct the approximation (offline versus online) and what
kind of accuracy to demand from it?

» What is the accuracy of the resulting posterior? Bias in posterior
estimates? Can/should we correct for these?
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Approximations in MCMC

Much work has been done on this topic.

Approximation schemes: coarse-grid PDE models, polynomial expansions,
Gaussian process emulators, reduced-basis methods and reduced-order models,
simplified physics, etc.
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Approximations in MCMC

Much work has been done on this topic.

Approximation schemes: coarse-grid PDE models, polynomial expansions,
Gaussian process emulators, reduced-basis methods and reduced-order models,

simplified physics, etc.
Construction schemes:

» Surrogates accurate over the prior (e.g., convergent in L,%Wicr

posterior-focused (and hence data-dependent) surrogates

sense) versus

» Constructed offline or online during posterior sampling
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Approximations in MCMC

Much work has been done on this topic.

Approximation schemes: coarse-grid PDE models, polynomial expansions,
Gaussian process emulators, reduced-basis methods and reduced-order models,
simplified physics, etc.

Construction schemes:

> Surrogates accurate over the prior (e.g., convergent in L12rprior

posterior-focused (and hence data-dependent) surrogates

sense) versus

» Constructed offline or online during posterior sampling

Errors and corrections:

© Convergence rate of the forward model approximation transfers to the
posterior it induces [M & Xiu 2009; Cotter, Dashti, Stuart 2010]

© Can always correct using a delayed-acceptance scheme [Christen & Fox
2005], but at a price

© Recent work in asymptotically exact online approximations
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Recap of the Bayesian setting

Posterior density of the parameters
m(6) == p(6ly) o< L(y.f(6))p(6)

Ingredients:
» Parameters § € RY; data y € R”
» Prior density p(6) : RY — R+
» Forward model f : RY — R”

» Sometimes a black-box function
» Each evaluation is expensive

Likelihood function £ : R” x R" — Rt

> L(y.f(6)) = p(v]6)
» Each evaluation requires, in principle, an evaluation of f

v
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Forward model approximations

» Simple approach: construct an approximation of f over the prior
distribution

» Convergence of this approximation (e.g., in L;%) yields convergence to
the true posterior

» An initial result [M & Xiu 2009]:
> Let L(y, f(6)) = N(y;f(), /) (additive Gaussian noise)

» Define approximations (FV) s.t. |[f — f]| o < CM™, a >0
(e.g., polynomial approximations for smooth and square integrable f)

» Define corresponding approximate posteriors w"(8) < L(y, f"(8)) p()
» Then, for sufficiently large M,

Dki(mmlm) S M~
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Forward model approximations

» Simple approach: construct an approximation of f over the prior
distribution

» Convergence of this approximation (e.g., in L;%) yields convergence to
the true posterior

» An initial result [M & Xiu 2009]:
> Let L(y, f(6)) = N(y;f(), /) (additive Gaussian noise)

» Define approximations (FV) s.t. |[f — f]| o < CM™, a >0
(e.g., polynomial approximations for smooth and square integrable f)

» Define corresponding approximate posteriors w"(8) < L(y, f"(8)) p()
» Then, for sufficiently large M,

Dki(mmlm) S M~

» More general results in [Cotter, Dashti, Stuart 2010]
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Forward model approximations

» Example: estimate initial perturbation to viscous Burgers' equation
Up + Ul = Vllyy, x € [-1,1]
u(-1) = 146, u(l) = —1.
» Uniform prior on 8, noisy observations of the transition layer location.

error
3

oD, IT7)
10° _g-1IG - Gyl.2

Figure: Convergence of the forward model and the posterior distribution
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Forward model and likelihood approximations

» Posterior-focused surrogates can
improve efficiency Posterior contours
» Posterior-focused polynomial
approximations [Li & M, SISC 2014]
» Data-driven model reduction [Cui, M,
& Willcox IJNME 2014]

» RBF approximations for
60— L(y,f(0)) [Bliznyuk et al. 2012,
Joseph 2012]
» In general, samples are then drawn from
an approximate posterior

» Approximation cost borne a priori;
should balance approx error with
sampling error, but difficult to quantify

Prior contours
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Delayed-acceptance MCMC

How to use approximate likelihoods to accelerate sampling from the exact
posterior?

» Delayed-acceptance MCMC schemes [Christen & Fox 2005]

» Suppose we have a true target density 7 and a (cheaper)
approximation 7

Marzouk (MIT) SFB 1294 Spring School 9/ 44



Delayed-acceptance MCMC

How to use approximate likelihoods to accelerate sampling from the exact
posterior?

@ Draw a proposal y from q(y|x,)
@ Calculate first acceptance ratio

: m(y)a(xnly)
catm) =minf1. S
© Put
L { y, with probability a1 (xs, y)
| xn, with probability 1 — ai(x,, y)
and thus define a second proposal g*

© Calculate second acceptance ratio
oo(xp, 2) = min{l 7(2)q"0alz) }
' " T(Xn)G*(2]Xn)
©Q Put
[z, with probability az(xp, 2)
Xnt1 = { X, Wwith probability 1 — aa(xp, 2)
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Delayed-acceptance MCMC

How to use approximate likelihoods to accelerate sampling from the exact
posterior?
» Delayed-acceptance MCMC schemes [Christen & Fox 2005]

» Suppose we have a true target density 7 and a (cheaper)
approximation 7

v

“Screens” proposals using the cheaper model 7

v

Computed second-stage probability can be close to one for good
approximations

v

Still calls 7 at least once per accepted sample
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Asymptotically exact MCMC using approximations

A different approach:

» Can we construct an asymptotically exact MCMC, via incremental
and infinite refinement of approximations?

» Use local approximations of the forward model or log-likelihood

» Posterior exploration and surrogate construction occur simultaneously

» Asymptotic exactness: convergence of surrogate tied to stationarity of
the MCMC chain

(Conrad, M, Pillai, Smith JASA 2016; Conrad, Davis, M, Pillai, Smith JUQ 2018)
Marzouk (MIT)

SFB 1294 Spring School 10 / 44



Metropolis-Hastings MCMC

Given Xp, simulate chain {X;}+<n according to transition kernel:

MH Kernel Ko (x, )

Q Given X, draw g: ~ Q(Xt, -) from kernel Q with symmetric density
q(x. )
@ Compute acceptance ratio
. L(y.f(q:))p(q:) )
a=min|{ 1,
( Ly, f(X:))p(X¢)
© Draw u~U(0,1). If u < a, let Xey1 = g¢, otherwise Xip1 = Xt.

» Evaluates forward model N times
» Run time can be dominated by cost of f
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MCMC with a surrogate and posterior adaptation

Given Xp, initialize a sample set Sp, then simulate chain {X;} with kernel:

MH Kernel K(x, -)

Q@ Given X, draw gt ~ Q(Xt, -) from kernel Q with symmetric density
q(x.-)
@ Compute acceptance ratio
f
& — | ﬁ(YYNt(CIt))P(CIt)
L(y, f:(Xe))p(Xe)
© As needed, select new samples near gy or X¢, yielding S¢ © Sp1.
Refine f; — fry1.
©Q Draw u~U(0,1). If u < a, let Xey1 = gr, otherwise Xep1 = Xt.

» Approximation f; built from sample set S; = {6; : £(6;) has been run}

» Continue adaptation forever (as t — o0)
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Local approximations

» To compute the approximation IN’(G), construct a model over the ball
Br(0)
» Use samples 6; € S at distance r = ||6 — 6;|| with weight
o<w/(r)<1 <R
w(r) = w'(r) < r<
0 else

» Choose R so that M(d) samples have non-zero weight, e.g., where
M(d) ensures that a quadratic is fully determined

» Approximations converge locally under loose conditions
(e.g., f continuously differentiable with Lipschitz gradients)

» For example, quadratic approximations over Bg(0) [Conn et al:

If — Qrf|| < k(v, X, d)R?
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Local approximation illustration

earlier times later times
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Experimental design: triggering refinement

@ Random refinement 3;

» With probability B¢, such that >, 8¢ = oo, refine near X; or q;

© Acceptance probability error indicator y;
» Estimate error in acceptance ratio using cross-validation

4 min<1 ﬁ(y.fr"(qt»p(qt)) a_mm<1 c(y.ﬁ(qt))p(qt)>

* Lo RO(X) ) Ly T (X0)p(Xe)

» Compute error indicators

et = *

max |a — o € =max|a—a;
1 1

» Refine if et > v ore™ >
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Experimental design: performing refinement

Local space filling refinement

To space fill near & = X; or & = @¢, given radius R, locally solve

6* = argmax min [|6' — 6|2
l€:—0|.<R Bi€St

beginning at & and add 6* — Sy 1

[ ]
[ ] [} °
° [ )
) ‘I?. o o l
[ ] [ ) [ ]
[ ]
[
[ ]
Closer points Filling in directions

» Alternative approach: use [Moré & Sorensen 1983] to add a new
point while explicitly controlling poisedness
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Ergodicity of approximate samplers

Theorem (Conrad, M, Pillai, Smith 2016)

Let the log-posterior be approximated with local quadratic models.
Assume that § € X C RY for compact X or that 7(6) := p(8]y) obeys a
Gaussian envelope condition.

Then, under standard regularity assumptions for geometrically ergodic
kernel K, and posterior 7, the chain X; converges to the exact posterior:

t'l}”go”P(Xt) — 7|l =0.
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A framework for approximate samplers

Many algorithmic variations:

» Target of approximation

» Forward model: f(0)

> Log-likelihood: log L(y, f(8))
» Types of local approximations

» Regression with low-order polynomials
» Gaussian process regression
» Quadratic regression given derivatives Opf

» MCMC kernels

» Random-walk Metropolis, adaptive Metropolis
» Proposals (e.g., MALA, manifold MALA, HMC) that extract derivative
information from the approximation

» Parallel chains, sharing a common pool of model evaluations S
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Example: elliptic PDE inverse problem

» Elliptic PDE inverse problem: V - (k(x)Vu(x)) = —f

» Infer permeability field k(x) from limited/noisy observations of
pressure u

» Karhunen-Loéve expansion: log k(x) = Z,d:l 0ivAipi(x). Standard
Gaussian priors on 0;.

5

10

%]
C
k]
®
3
% 10 — True model
5 — Linear
9] — Quadratic
£ — GP
3 10° ]
E f
(o]
= M
10°
10* 10°
MCMC step

Cost of chains
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» Elliptic PDE inverse problem: V - (k(x)Vu(x)) = —f

» Infer permeability field k(x) from limited/noisy observations of
pressure u
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Example: genetic toggle switch

» Model for genetic < i I ,
“ o 2 f
toggle switch g I f t
. . . Q -
synthesized in E. coli S 0.8 [
~
» ODE system, six ¢ 06
- £
parameters to infer 2 o4
» Uniform priors, Gaussian éoz
observational errors 2
) 0.0b— CE— : : —
» Real experimental data 10° 10° 10" 10° 10?

Concentration [IPTG]
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Genetic toggle switch: accuracy versus cost

.
o

@ 10°} il

[}

9]

= — True model
= — Linear
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A framework for approximate samplers

Many algorithmic variations:

» Target of approximation

> Log-likelihood: log L(y, f(8))
» Types of local approximations
» Regression with low-order polynomials

» MCMC kernels
» Random-walk Metropolis, adaptive Metropolis

» Parallel chains, sharing a common pool of model evaluations S
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Groundwater tracer transport model

» Nonlinear PDE for hydraulic head
V- (hkVh) = —f

» Darcy velocity (u, v) = —hxkV h then enters tracer transport equation:

oc U uv u
¢ o (oo £ )we) [ 2] wem

» Tracer advects according to velocity and well forcing

Log-conductivity field (log k)

» Observe tracer concentration at -
well locations, at several times, 16
with Gaussian error 0.8

X

» Infer for piecewise constant 0.0

conductivities; log-normal priors oe

-1.6
» Forward model takes about 13

seconds to evaluate

-2.4
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Groundwater tracer transport problem

hydraulic head and Darcy velocity tracer concentrations

15 15
E 1 £ 1
£ £
: R E
= 05 S 0.5
0 . 0
0o 0 L 0o O x

y coordinate y coordinate
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Tracer transport problem: posterior distribution
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Parallel local approximation

v

Now: build a common pool of model runs S across parallel workers

v

Run k chains of 10° steps each

v

Discard 10% of each chain as burn-in; use effective sample size (ESS)
to measure efficiency

v

ESS per chain—hour would be constant with a naive implementation
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Error versus run time

Squared relative error

1071 E
1077 L
107° ‘ ‘
10° 10'
Run-time (hours)
Darker shades = more parallel chains, k € {1, ..., 30}.
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Parallel efficiency

»
\

"
0y
‘

'SS/(chain-hour)

J
e
T

F
@

10° 10°

Run-time (hours)

Darker shades = more parallel chains, k € {1, ..., 30}.
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Further directions

» Refinement rates: balance bias (due to structural error in surrogate)
with variance (due to finite # of MCMC samples)

» Both under-refining or over-refining are undesirable
» Constants are generally unknown; let bias? and variance — 0 at the
same rate

» Hybrid global + local approximations
» Noisy density evaluations, pseudomarginal MCMC
» Marginalize out unimportant variables in high-dimensional problems
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Part 2: dimension reduction

Conjecture: in many situations, the data are informative only on a
low-dimensional subspace

Tpr ()

" 7]
RY = X, + X1
—~— ~—
Tpos # Tpr Tpos ~ Tpr
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Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

Tpos(X) oc L(Prx)mpe(X)

for some positive function £ and some linear projector P, € R9*9with rank r.
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Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

Tpos(X) oc L(Prx)mpe(X)

for some positive function £ and some linear projector P, € R9*9with rank r.

P, induces a decomposition of the space

X € Im(P;)

X=Xk XL { x1 € Ker(P)

By construction, x — £(P,x) = L(x,) is only a function of x, € Im(P,) = R".
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Low effective dimensionality of Bayesian inverse problems

Underlying idea: the posterior distribution can be well approximated by

Tpos(X) oc L(Prx)mpe(X)

dxd

for some positive function £ and some linear projector P, € R*%with rank r.

P, induces a decomposition of the space

- { xr € Im(P))
x1 € Ker(P)
By construction, x — £(P,x) = L(x,) is only a function of x, € Im(P,) = R".
If r<d:
» Build surrogates for the low-dimensional function x, — £(x,) with a
reasonable complexity,

» Design structure-exploiting MCMC algorithms to sample from m,0s (€.9.,
[Cui, Law, M 2016; Beskos, Girolami, Lan, Farrell, Stuart 2017])
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A zoo of methods for constructing P, and L

» P, can be defined as a projector on the dominant eigenspace of a matrix
H € R*9 which contains “relevant information”
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A zoo of methods for constructing P, and L

» P, can be defined as a projector on the dominant eigenspace of a matrix
H € R*9 which contains “relevant information”

» Prior covariance

H=T,
> Likelihood informed subspace (LIS) [Cui et al 2014]
T _
Hus(y) = / (VG) T (VG) dmpos
» Active subspace (AS) [Constantine, Kent, Bui-Thanh 2015]

Has(y) :/(Vlogﬁy)(VIOQ c,)" dm,
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A zoo of methods for constructing P, and L

» P, can be defined as a projector on the dominant eigenspace of a matrix
H € R*9 which contains “relevant information”

» Prior covariance

H=T,
> Likelihood informed subspace (LIS) [Cui et al 2014]
T _
Hus(y) = / (VG) T (VG) dmpos
» Active subspace (AS) [Constantine, Kent, Bui-Thanh 2015]

Has(y) :/(Vlogﬁy) (ViogL,)" dmy

» Definition of L:
» A common choice (LIS)

L(P,x) = L,(Px)
» Or via the conditional expectation of the log-likelihood (AS)

L(Prx) = expEq,[log L, |P,x]
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» Within the approximation class

L£:RY - RF

Tpos(X) o L(Prx)Tpr(x) with { P, € R¥*9 rank-r projector

what is the “best” approximation of Tpes?

» |n practice, can we build such an approximation?

(Joint work with O. Zahm, T. Cui, K. Law, A. Spantini)
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Best approximation problem

For a given rank r, consider the minimization problem

r;ﬂg Dt (Trpos || Tpos) With  Tpes(X) o< L(P,x)Tpr(x)

where Dk (+]|-) denotes the Kullback-Leibler divergence.
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r;ﬂg Dt (Trpos || Tpos) With  Tpes(X) o< L(P,x)Tpr(x)

where Dk (+]|-) denotes the Kullback-Leibler divergence.

Optimal function L for a given projector P,

For any projector P, € RY*9, a minimizer of £ > Dyt (pos|[Tpos) satisfies

L(Px) = En, (Ly|P,x)
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Best approximation problem

For a given rank r, consider the minimization problem
min Dii (Tpos||Tpos) With  Tpes(X) o< L(P,x)Tpr(x)
P..L

where Dk (+]|-) denotes the Kullback-Leibler divergence.

Optimal function L for a given projector P,

For any projector P, € RY*9, a minimizer of £ > Dyt (pos|[Tpos) satisfies

L(Px) = En, (Ly|P,x)

The best approximation problem becomes
min Dt (Trpos| | Thos) where o (X) o< En, (Ly|Prx) mor(x)
But solving this problem appears intractable in general. ..
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An upper bound

Assumption on the prior: there exists a SPD matrix £ € R9*9 such that

—V?log Ty (x) = Vx € RY

> In other words, we assume that the prior is strongly log-concave

> Any Gaussian 7, = N (upr, [pr) satisfies this assumption with ¥ =1
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An upper bound

Assumption on the prior: there exists a SPD matrix £ € R9*9 such that

—V?log Ty (x) = Vx € RY

> In other words, we assume that the prior is strongly log-concave

> Any Gaussian 7, = N (upr, [pr) satisfies this assumption with ¥ =1

Upper bound for the KL-divergence

For any projector P, we have

1
Dii (Trpos || Tis) < Strace (Z‘l(ld - P) TH(y)(/d — pr)>

where W;os(x) ~ IE'/rpr (Ey|PrX)7Tpr(X) and
) = [ (Teac,)(VIoa L) e

» The proof relies on logarithmic Sobolev inequalities [Ledoux 1997]

» This upper bound is quadratic w.r.t. P,
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Minimizer of the upper bound

> Let (), v;) be the i-th eigenpair of the generalized eigenvalue problem:
H(y)v, = >\,‘ZV,‘

» A minimizer of the upper bound is given by
r
P = (Z v,v,T>Z
i=1

> With the choice 7% (x) o< E(Ly|P;x)mp(x) we have

pos

d

1
DKL(WPOSHWSOS) = 2 Z Ai
i=r+1
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Minimizer of the upper bound

> Let (), v;) be the i-th eigenpair of the generalized eigenvalue problem:
H(y)v, = >\,‘ZV,‘

» A minimizer of the upper bound is given by
r
Pl = <Z \/,v,T)Z
i=1

> With the choice 7% (x) o< E(Ly|P;x)mp(x) we have

pos

d

1
DKL(WPOSHWSOS) = 2 Z Ai
i=r+1

This may not be a solution to the best approximation problem!
However:
» we can choose the rank r = r(g) such that Dy (Tpes||T70s) < €
» a strong decay in \; ensures r(g) < d
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Approach

@ Compute
H(y) = / (VIog £,) (VIog £y) T dtpes.

@ Solve the generalized eigenvalue problem
H(y)Vi = \>v;,

and assemble P;.

© Compute the conditional expectation

L(P:x) = E(L,|P!x).

Then /o, (x) oc L(P}x)Ty(x) satisfies

d

1
DKL(WposHﬂ;os) S 5 Z >\i
i=r+1
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Numerical illustration: heat equation on Q = [0, 1]°

x =logk ~N(0,Tp) =Viere) =0 @ Y = ugy,, + N (0, Tobs)
= 16,9
or: exponential kernel U=x+x on where Qqps = [.35, .65]?
|09 Ktrue ~ Utrue Yobs

= ——

>

>

e

After discretization, the dimension of the problem is d = 2730
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Numerical illustration: heat equation on Q = [0, 1]°

X = Iog K~ N(O, rpr) _V(KIVU) =0l & Y = UQq, +N(0, rObS)
= 16,9
or: exponential kernel U=x+x on where Qqps = [.35, .65]?
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Numerical illustration: heat equation on Q = [0, 1]°

x =logk ~ N(O, rpr) _V(KIVU) =0 in@ Y = U, +N(0, rObS)
= 16,9
or: exponential kernel u=xitx on where Qqps = [.35, .65]?
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Approximation of the conditional expectation

Assume we can exactly compute

H(y) = / (VIog £,)(V1og L)) drpos

Instead of computing the expensive conditional expectation, we use

L(PIx)=Ly,(Pix+¢&1) with & ~ mp(x)

T T T
" new method ||
- B
] =mn upper bound [
|- |
L

*
L4
L4
.
4,
2,

Kullback-Leibler divergence

10727 I I I I I I I
0 20 40 60 80 100 120 140

rank r
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Approximation of the conditional expectation

Assume we can exactly compute

H(y) = / (VIog £,)(V1og L)) drpos

Instead of computing the expensive conditional expectation, we use

L(PIx)=Ly,(Pix+¢&1) with & ~ mp(x)

T T T
new method ;
=mn upper bound [

103 @A\

3 LIS 1 Comparison with other methods:
s ]
a0 F —— Prior Cov. | T __
P Hus() = [ (V6) 5 (V6) dmes
g 10
z f T
g Has(y) = / (Viog Ly)(VliogLy) dmy
g 100F
3 i H=Tp
s -1
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Monte Carlo approximation for

K
/f(x (x)dx Momg eyt = Z with x9S p(x)
K=
f(X) ‘ P = Tpr ‘ P = Tpos
(Vlog £)(Viog L) AS New method
(VG)TZL(VG) | LISPR LIS

» Draw the samples x(!) x(2) .

» p =, : readily available

> 0= Tpos : MCMC/importance sampling
» “Information” per sample

» AS/new method : rank(f(x(¥)))

) =1
» LIS-PR/LIS : rank(f(x(9)) > 1

Vv
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Approximation of the projector

Compute P, from H() and plot the upper bound

%trace (Z’l(/d — POHY)(la — P,)) = function(r).

T T T
10° =nn Upper bound : 10° snn Upper bound : 10° wns Upper bound :
| New method | New method [ ] New method |
\ —— Prior Cov. H —— Prior Cov. H \ —— Prior Cov. H
\ H H H
102 A —AS I 1021 — AS I 1021 — AS I
NN — LIS f E x\ — LIS f E — LIS B
b X — LIS-PR H [ —— LIS-PR H [ —— LIS-PR H

ML i \\\ b
100 % E 10! F E 10t F . E
‘e, ~o F e " 1 F S 1
(N | r N S~ 1 [ N 1
‘e, ) | e Y | N 3
100 | %o, E 100 | %o, ~d 100 | E
*, g f *, 1 f 1
*, 1 t *, 1 t S
., J F . 1 F ™S 1
1071 F ‘o, 1071 g ‘o N 1071 g DN
‘el [ el £ .
—2 L Il —2 Il Il —2 Il Il
10 0 50 100 150 10 50 100 150 10 0 50 100 150
rank r rank r rank r
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Implementations and links

Dimension reduction in practice:

> Since posterior samples are required to identify H, one typically uses
iterative schemes: MCMC [Cui et al. 2014; Cui, Law, M 2016], or importance
sampling [Cui, Willcox, M 2016]

> Other issues: sample size bounds for error due to H¥) and approximation
of conditional expectation
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Implementations and links

Linking dimension reduction to model reduction:

» Parameter dimension reduction makes forward model/likelihood
approximation easier

» Should only care about response of the forward model along parameter
dimensions informed by the data

» Model reduction can exploit “locality” in two senses: parameter dimension
reduction and posterior concentration relative to the prior [Cui, Willcox, M
2016]
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