Lectures 1-2: Bayesian inference and MCMC foundations

Youssef Marzouk

Department of Aeronautics and Astronautics Center for Computational Engineering Statistics and Data Science Center

Massachusetts Institute of Technology
http://uqgroup.mit.edu
ymarz@mit.edu

19-22 March 2018

Agenda

Plan for the lectures:

(1) Lectures 1-2: Bayesian inference and MCMC foundations

- Bayesian modeling
- Computational approaches/demos
(2) Lecture 3: Bayesian approach to inverse problems
- What distinguishes inverse problems? Elements of a Bayesian inverse problem formulation
- Linear-Gaussian problems in detail
- Computational issues: surrogate modeling/likelihood approximations, parameter dimension reduction, ...
(3) Lecture 4: Bayesian optimal experimental design or some other topic TBD

Statistical inference

Why is a statistical perspective useful in data assimilation?

- To characterize uncertainty in the parameters and/or state of a system
- To understand how this uncertainty depends on the number and quality of observations, features of the model, prior information, etc.
- To make probabilistic predictions
- To choose useful observations or experiments
- To address questions of model error and model validity; to perform model selection

Bayesian inference

Bayes' rule

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{p(y)}
$$

Key idea: model parameters θ are treated as random variables (For simplicity, we let our random variables have densities)

Notation

- θ are model parameters; y are the data; assume both to be finite-dimensional unless otherwise indicated
- $p(\theta)$ is the prior probability density
- $L(\theta):=p(y \mid \theta)$ is the likelihood function
- $p(\theta \mid y)$ is the posterior probability density
- $p(y)$ is the evidence, or equivalently, the marginal likelihood

Bayesian inference example

Infer the bias $\theta \in[0,1]$ of a coin, given flip outcomes $\left(y_{i}\right)_{i=1}^{n} \in\{0,1\}^{n}$. Convention: outcome $y_{i}=1$ is "heads" and $y_{i}=0$ is "tails."

Elements of the Bayesian formulation:

- Likelihood function
- Single observation: $Y_{i} \sim \operatorname{Ber}(\theta)$, where $\theta:=\mathbb{P}\left[Y_{i}=1\right]$. Hence:

$$
P\left(y_{i} \mid \theta\right)=\theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)}
$$

- Multiple observations are conditionally independent given θ :

- Rewrite more compactly, with $k:=\sum_{i=1}^{n} y_{i}$ heads in n trials:

Bayesian inference example

Infer the bias $\theta \in[0,1]$ of a coin, given flip outcomes $\left(y_{i}\right)_{i=1}^{n} \in\{0,1\}^{n}$. Convention: outcome $y_{i}=1$ is "heads" and $y_{i}=0$ is "tails."

Elements of the Bayesian formulation:

- Likelihood function
- Single observation: $Y_{i} \sim \operatorname{Ber}(\theta)$, where $\theta:=\mathbb{P}\left[Y_{i}=1\right]$. Hence:

$$
P\left(y_{i} \mid \theta\right)=\theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)}
$$

- Multiple observations are conditionally independent given θ :

$$
P\left(y_{1}, \ldots, y_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n} \theta^{y_{i}}(1-\theta)^{1-y_{i}}
$$

- Rewrite more compactly, with $k:=\sum_{i=1}^{n} y_{i}$ heads in n trials:

Bayesian inference example

Infer the bias $\theta \in[0,1]$ of a coin, given flip outcomes $\left(y_{i}\right)_{i=1}^{n} \in\{0,1\}^{n}$. Convention: outcome $y_{i}=1$ is "heads" and $y_{i}=0$ is "tails."

Elements of the Bayesian formulation:

- Likelihood function
- Single observation: $Y_{i} \sim \operatorname{Ber}(\theta)$, where $\theta:=\mathbb{P}\left[Y_{i}=1\right]$. Hence:

$$
P\left(y_{i} \mid \theta\right)=\theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)}
$$

- Multiple observations are conditionally independent given θ :

$$
P\left(y_{1}, \ldots, y_{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n} \theta^{y_{i}}(1-\theta)^{1-y_{i}}
$$

- Rewrite more compactly, with $k:=\sum_{i=1}^{n} y_{i}$ heads in n trials:

$$
P(k \mid \theta, n)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}, \text { i.e., } K \sim \operatorname{Binomial}(\theta, n)
$$

Bayesian inference example

Infer the bias $\theta \in[0,1]$ of a coin, given flip outcomes $\left(y_{i}\right)_{i=1}^{n} \in\{0,1\}^{n}$. Convention: outcome $y_{i}=1$ is "heads" and $y_{i}=0$ is "tails."

Elements of the Bayesian formulation:

- Prior distribution
- Use $\Theta \sim \operatorname{Beta}\left(\beta_{1}, \beta_{2}\right)$:

$$
p\left(\theta \mid \beta_{1}, \beta_{2}\right) \propto \theta^{\beta_{1}-1}(1-\theta)^{\beta_{2}-1}
$$

- Uniform distribution is a special case: $\operatorname{Beta}(1,1)=\mathcal{U}(0,1)$
- Posterior distribution
- Posterior density follows from simple algebra: $p\left(\theta \mid k, n, \beta_{1}, \beta_{2}\right) \propto p(k \mid \theta, n) p\left(\theta \mid \beta_{1}, \beta_{2}\right) \propto \theta^{k+\beta_{1}-1}(1-\theta)^{n-k+\beta_{2}-1}$ i.e., $\Theta \mid k, n \sim \operatorname{Beta}\left(\beta_{1}+k, \beta_{2}+n-k\right)$
- This happens to be a conjugate Bayesian model!

Bayesian inference example

Infer the bias $\theta \in[0,1]$ of a coin, given flip outcomes $\left(y_{i}\right)_{i=1}^{n} \in\{0,1\}^{n}$. Convention: outcome $y_{i}=1$ is "heads" and $y_{i}=0$ is "tails."

Elements of the Bayesian formulation:

- Prior distribution
- Use $\Theta \sim \operatorname{Beta}\left(\beta_{1}, \beta_{2}\right)$:

$$
p\left(\theta \mid \beta_{1}, \beta_{2}\right) \propto \theta^{\beta_{1}-1}(1-\theta)^{\beta_{2}-1}
$$

- Uniform distribution is a special case: $\operatorname{Beta}(1,1)=\mathcal{U}(0,1)$
- Posterior distribution
- Posterior density follows from simple algebra:

$$
\begin{aligned}
& \quad p\left(\theta \mid k, n, \beta_{1}, \beta_{2}\right) \propto p(k \mid \theta, n) p\left(\theta \mid \beta_{1}, \beta_{2}\right) \propto \theta^{k+\beta_{1}-1}(1-\theta)^{n-k+\beta_{2}-1} \\
& \text { i.e., } \Theta \mid k, n \sim \operatorname{Beta}\left(\beta_{1}+k, \beta_{2}+n-k\right)
\end{aligned}
$$

- This happens to be a conjugate Bayesian model!

Coin flip example 1/2 [Sivia 2006]

from Sivia \& Skilling, Data Analysis: a Bayesian Tutorial, Oxford UP (2006).

Coin flip example 1/2 [Sivia 2006]

from Sivia \& Skilling, Data Analysis: a Bayesian Tutorial, Oxford UP (2006).

Coin flip example 2/2 [Sivia 2006]

Coin flip example 2/2 [Sivia 2006]

[^0]
Linear regression example

Bayesian linear regression

$$
y_{i}=\theta_{0}+\boldsymbol{\theta}_{1}^{\top} \mathbf{x}_{i}+\xi_{i}, \quad y_{i}, \theta_{0} \in \mathbb{R} ; \mathbf{x}_{i}, \boldsymbol{\theta}_{1} \in \mathbb{R}^{d} ; \xi_{i} \sim N\left(0, \sigma^{2}\right)
$$

- Let the data consist of n observations $\mathcal{D}_{n} \equiv\left\{\left(y_{i}, \mathbf{x}_{i}\right)\right\}_{i=1}^{n}$
- Define the matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rows $\mathbf{x}_{i}, \mathbf{y} \in \mathbb{R}^{n}$ as a column vector of $y_{1} \ldots y_{n}, \overline{\boldsymbol{\theta}}=\left[\theta_{0} ; \boldsymbol{\theta}_{1}\right] \in \mathbb{R}^{d+1}, \mathbf{1} \in \mathbb{R}^{n}$ as a vector of ones, and \mathbf{I}_{n} as the n-dimensional identity matrix
- Bayesian model: likelihood and prior:

$$
\begin{aligned}
\mathbf{y} \mid \theta_{0}, \boldsymbol{\theta}_{1} & \sim N\left(\mathbf{1} \theta_{0}+\mathbf{X} \theta_{1}, \sigma^{2} \mathbf{I}_{n}\right) \\
\overline{\boldsymbol{\theta}} & \sim N\left(\boldsymbol{\mu}_{p r}, \boldsymbol{\Sigma}_{p r}\right)
\end{aligned}
$$

- Yields the joint ($d+1$-dimensional) posterior distribution of constant term θ_{0} and "slopes" $\boldsymbol{\theta}_{1}$

Bayesian inference

Summaries of the posterior distribution

What information to extract?

- Posterior mean of θ; maximum a posteriori (MAP) estimate of θ
- Posterior covariance or higher moments of θ
- Quantiles
- Credibile intervals: $C(y)$ such that $\mathbb{P}[\theta \in C(y) \mid y]=1-\alpha$.
- Credible intervals are not uniquely defined above; thus consider, for example, the HPD (highest posterior density) region.
- Posterior realizations: for direct assessment, or to estimate posterior expectations

Bayesian and frequentist paradigms

Understanding both perspectives is useful and important. . .

Key differences between these two statistical paradigms

- Frequentists do not assign probabilities to unknown parameters θ. One can write likelihoods $p_{\theta}(y) \equiv p(y \mid \theta)$ but not priors $p(\theta)$ or posteriors. θ is not a random variable.
- In the frequentist viewpoint, there is no single preferred methodology for inverting the relationship between parameters and data. Instead, consider various estimators $\hat{\theta}(y)$ of θ.
- The estimator $\hat{\theta}$ is a random variable. Why? Frequentist paradigm considers y to result from a random and repeatable experiment.

Bayesian and frequentist paradigms

Key differences (continued)

- Evaluate quality of $\hat{\theta}$ through various criteria: bias, variance, mean-square error, consistency, efficiency, ...
- One common frequentist approach is maximum likelihood estimation: $\hat{\theta}_{M L}=\operatorname{argmax}_{\theta} p(y \mid \theta)$. (View $p(y \mid \theta)$ as a family of distributions indexed by θ.)
- Link to Bayesian approach: MAP estimate maximizes a "penalized likelihood."
- What about Bayesian versus frequentist prediction of $y_{\text {new }} \Perp y \mid \theta$?
- Frequentist: use "plug-in" estimate of θ
- Bayesian: posterior prediction via integration

Statistical problems

Canonical statistical problems

- Density estimation: observe realizations $\left\{y^{(i)}\right\}$ of a random variable Y and use them to learn the probability distribution (density) of Y. Parametric (e.g., $\left.p_{\theta}(y)\right)$ and nonparametric approaches.
- Regression: observe dependence of a response or output variable Y on a covariate or input variable X. Consider a model $p(y \mid x, \theta)$; learn θ and predict future $y \mid x$.
- Classification: like regression, but response variable ranges over a finite set.

Not all statistical problems fall cleanly into one of these three categories. But core aspects of these problems are worth studying!

Bayesian inference

Likelihood functions (initial summary)

- In general, $p(y \mid \theta)=p_{\theta}(y)$ is a probabilistic model for the data
- Preview: in inverse problems, the likelihood function is where the forward model appears, along with a noise model and (if applicable) an expression for model discrepancy
- Preview: in filtering, the likelihood function might be simpler (e.g., direct noisy observations of the state)

Bayesian inference

Prior distributions (initial summary)

- Much can be written about choosing priors.
- Intuitive idea: assign lower probability to neighborhoods of θ that you don't expect to see, higher probability to neighborhoods of θ that you do expect to see.
- Preview: in ill-posed parameter estimation problems, e.g., inverse problems, prior information plays a key role!
- Preview: in filtering problems, the prior is often the result of "applying" the dynamics to an earlier distribution on the state

Bayesian inference

Hierarchical modeling

- One of the key flexibilities of the Bayesian construction!
- Hierarchical modeling has important implications for the design of efficient MCMC samplers (later in the lecture)
- Examples:
(1) Unknown noise variance
(2) Unknown scale of the prior (cf. choosing the regularization parameter in an inverse problem)
(3) Many more, as dictated by the physical and statistical models at hand

Hierarchical modeling example

- State-space model with static parameters

- Ingredients of the Bayesian model:
- Transition density $\pi_{Z_{k} \mid Z_{k-1}, \Theta}$
- Observation density (likelihood) $\pi_{Y_{k} \mid Z_{k}}$
- Prior on static parameters π_{Θ}
- Prior on initial condition $\pi_{Z_{0}}$
- Posterior density:

Hierarchical modeling example

- State-space model with static parameters

- Ingredients of the Bayesian model:
- Transition density $\pi_{Z_{k} \mid Z_{k-1}, \Theta}$
- Observation density (likelihood) $\pi_{Y_{k} \mid Z_{k}}$
- Prior on static parameters π_{Θ}
- Prior on initial condition $\pi_{Z_{0}}$
- Posterior density:

$$
\pi_{\mathrm{Z}_{0: N}, \Theta \mid \mathrm{y}_{0: N}} \propto \pi_{\Theta} \pi_{\mathrm{Z}_{0}}\left(\prod_{k=1}^{N} \pi_{\mathrm{Z}_{k} \mid \mathrm{Z}_{k-1}, \Theta}\right)\left(\prod_{j=1}^{N} \pi_{\mathrm{y}_{j} \mid \mathrm{Z}_{j}}\right)
$$

Questions yet to answer

- How to simulate from or explore general non-Gaussian posterior distributions? (This lecture)
- How to make Bayesian inference computationally tractable when the forward model is expensive (e.g., a PDE) and the parameters are high- or infinite-dimensional? (Lecture \#3)

MCMC overview

Markov chain Monte Carlo (MCMC)

- Metropolis-Hastings algorithm, transition kernels, ergodicity
- Mixture and cycles of kernels
- Gibbs sampling
- Gradient-exploiting MCMC, adaptive MCMC, other practicalities
- Using approximations (e.g., approximate likelihoods) within MCMC

Why Markov chain Monte Carlo (MCMC)?

In general, MCMC provides a means of sampling ("simulating") from an arbitrary distribution.

- The density $\pi(x)$ need be known only up to a normalizing constant
- Utility in inference and prediction: write both as posterior expectations, $\mathbb{E}_{\boldsymbol{\pi}} f$.

Then

- $x^{(i)}$ will be asymptotically distributed according to π
- x(i) will not be i.i.d. In other words, we must pay a price!

Why Markov chain Monte Carlo (MCMC)?

In general, MCMC provides a means of sampling ("simulating") from an arbitrary distribution.

- The density $\pi(x)$ need be known only up to a normalizing constant
- Utility in inference and prediction: write both as posterior expectations, $\mathbb{E}_{\boldsymbol{\pi}} f$.

Then

$$
\mathbb{E}_{\pi} f \approx \frac{1}{n} \sum_{i}^{n} f\left(x^{(i)}\right)
$$

- $x^{(i)}$ will be asymptotically distributed according to π
- $x^{(i)}$ will not be i.i.d. In other words, we must pay a price!

Construction of an MCMC sampler

Define a Markov chain (i.e., discrete time). For real-valued random variables, the chain has a continuous-valued state space (e.g., \mathbb{R}^{d}). Ingredients of the definition:

- Initial distribution, $x_{0} \sim \pi_{0}$
- Transition kernel $K\left(x_{n}, x_{n+1}\right)$.

$$
\mathbb{P}\left(X_{n+1} \in A \mid X_{n}=x\right)=\int_{A} K\left(x, x^{\prime}\right) d x^{\prime}
$$

(Analogy: consider matrix of transition probabilities for a finite state space.)
Markov property: X_{n+1} depends only on X_{n}.
Goal: design transition kernel K such that chain converges asymptotically to the target distribution π independently of the initial distribution (starting point).

Construction of an MCMC sampler (cont.)

Goal: choose transition kernel K such that chain converges asymptotically to the target distribution π independently of the starting point.

- Use realizations of X_{n}, X_{n-1}, \ldots in a Monte Carlo estimator of posterior expectations (an ergodic average)
- Would like to converge to the target distribution quickly and to have samples as close to independent as possible
- Price for non-i.i.d. samples: greater variance in MC estimates of posterior expectations

Metropolis-Hastings algorithm

A simple recipe! From x_{n} to x_{n+1} :
(1) Draw a proposal y from $q\left(y \mid x_{n}\right)$
(2) Calculate acceptance ratio

$$
\alpha\left(x_{n}, y\right)=\min \left\{1, \frac{\pi(y) q\left(x_{n} \mid y\right)}{\pi\left(x_{n}\right) q\left(y \mid x_{n}\right)}\right\}
$$

(3) Put

$$
x_{n+1}= \begin{cases}y, & \text { with probability } \alpha\left(x_{n}, y\right) \\ x_{n}, & \text { with probability } 1-\alpha\left(x_{n}, y\right)\end{cases}
$$

Metropolis-Hastings algorithm

Notes on the algorithm:

- If $q\left(y \mid x_{n}\right) \propto \pi(y)$ then $\alpha=1$. Thus we "correct" for sampling from q, rather than from π, via the Metropolis acceptance step.
- q does not have to be symmetric. If the proposal is symmetric, the acceptance probability simplifies (a "Hastings" proposal).
- π need be evaluated only up to a multiplicative constant

Metropolis-Hastings algorithm

What is the transition kernel of the Markov chain we have just defined?

- Hint: it is not q !
- Informally, it is $K\left(x_{n}, x_{n+1}\right)=p\left(x_{n+1} \mid\right.$ accept $) \mathbb{P}[$ accept $]+p\left(x_{n+1} \mid\right.$ reject $) \mathbb{P}[$ reject $]$
- More precisely, we have:

Metropolis-Hastings algorithm

What is the transition kernel of the Markov chain we have just defined?

- Hint: it is not q !
- Informally, it is

$$
K\left(x_{n}, x_{n+1}\right)=p\left(x_{n+1} \mid \text { accept }\right) \mathbb{P}[\text { accept }]+p\left(x_{n+1} \mid \text { reject }\right) \mathbb{P}[\text { reject }]
$$

- More precisely, we have:

Metropolis-Hastings algorithm

What is the transition kernel of the Markov chain we have just defined?

- Hint: it is not q !
- Informally, it is

$$
K\left(x_{n}, x_{n+1}\right)=p\left(x_{n+1} \mid \text { accept }\right) \mathbb{P}[\text { accept }]+p\left(x_{n+1} \mid \text { reject }\right) \mathbb{P}[\text { reject }]
$$

- More precisely, we have:

$$
\begin{aligned}
K\left(x_{n}, x_{n+1}\right) & =p\left(x_{n+1} \mid x_{n}\right) \\
& =q\left(x_{n+1} \mid x_{n}\right) \alpha\left(x_{n}, x_{n+1}\right)+\delta_{x_{n}}\left(x_{n+1}\right) r\left(x_{n}\right) \\
\text { where } r\left(x_{n}\right) & \equiv \int q\left(y \mid x_{n}\right)\left(1-\alpha\left(x_{n}, y\right)\right) d y
\end{aligned}
$$

Metropolis-Hastings algorithm

Now, some theory. What are the key questions?
(1) Is π a stationary distribution of the chain? (Is the chain π-invariant?)

- Stationarity: π is such that $X_{n} \sim \pi \Rightarrow X_{n+1} \sim \pi$
(2) Does the chain converge to stationarity? In other words, as $n \rightarrow \infty$, does $\mathcal{L}\left(X_{n}\right)$ converge to π ?
(3) Can we use paths of the chain in Monte Carlo estimates?

A sufficient (but not necessary) condition for (1) is detailed balance (also called 'reversibility')

- This expresses an equilibrium in the flow of the chain
- Hence $\int \pi\left(x_{n}\right) K\left(x_{n}, x_{n+1}\right) d x_{n}=\int \pi\left(x_{n+1}\right) K\left(x_{n+1}, x_{n}\right) d x_{n}=$
- As an exercise, verify detailed balance for the M-H kernel defined on the previous slide.

Metropolis-Hastings algorithm

Now, some theory. What are the key questions?
(1) Is π a stationary distribution of the chain? (Is the chain π-invariant?)

- Stationarity: π is such that $X_{n} \sim \pi \Rightarrow X_{n+1} \sim \pi$
(2) Does the chain converge to stationarity? In other words, as $n \rightarrow \infty$, does $\mathcal{L}\left(X_{n}\right)$ converge to π ?
(3) Can we use paths of the chain in Monte Carlo estimates?

A sufficient (but not necessary) condition for (1) is detailed balance (also called 'reversibility'):

$$
\pi\left(x_{n}\right) K\left(x_{n}, x_{n+1}\right)=\pi\left(x_{n+1}\right) K\left(x_{n+1}, x_{n}\right)
$$

- This expresses an equilibrium in the flow of the chain
- As an exercise, verify detailed balance for the M-H kernel defined on the previous slide.

Metropolis-Hastings algorithm

Now, some theory. What are the key questions?
(1) Is π a stationary distribution of the chain? (Is the chain π-invariant?)

- Stationarity: π is such that $X_{n} \sim \pi \Rightarrow X_{n+1} \sim \pi$
(2) Does the chain converge to stationarity? In other words, as $n \rightarrow \infty$, does $\mathcal{L}\left(X_{n}\right)$ converge to π ?
(3) Can we use paths of the chain in Monte Carlo estimates?

A sufficient (but not necessary) condition for (1) is detailed balance (also called 'reversibility'):

$$
\pi\left(x_{n}\right) K\left(x_{n}, x_{n+1}\right)=\pi\left(x_{n+1}\right) K\left(x_{n+1}, x_{n}\right)
$$

- This expresses an equilibrium in the flow of the chain
- Hence $\int \pi\left(x_{n}\right) K\left(x_{n}, x_{n+1}\right) d x_{n}=\int \pi\left(x_{n+1}\right) K\left(x_{n+1}, x_{n}\right) d x_{n}=$ $\pi\left(x_{n+1}\right) \int K\left(x_{n+1}, x_{n}\right) d x_{n}=\pi\left(x_{n+1}\right)$.
- As an exercise, verify detailed balance for the M-H kernel defined on the previous slide.

Metropolis-Hastings algorithm

Beyond π-invariance, we also need to establish (2) and (3) from the previous slide. This leads to additional technical requirements:

- π-irreducibility: for every set A with $\pi(A)>0$, there exists n such that $K^{n}(x, A)>0 \forall x$.
- Intuition: chain visits any measurable subset with nonzero probability in a finite number of steps. Helps you "forget" the initial condition.
Sufficient to have $q(y \mid x)>0$ for every $(x, y) \in \chi \times \chi$.
- Aperiodicity: "don't get trapped in cycles"

Metropolis-Hastings algorithm

When these requirements are satisfied (i.e., chain is irreducible and aperiodic, with stationary distribution π) we have
(1)

$$
\lim _{n \rightarrow \infty}\left\|\int K^{n}(x, \cdot) \mu(d x)-\pi(\cdot)\right\|_{T V}=0
$$

for every initial distribution μ.

- K^{n} is the kernel for n transitions
- This yields the law of $X_{n}: \int K^{n}(x, \cdot) \mu(d x)=\mathcal{L}\left(X_{n}\right)$
- The total variation distance $\left\|\mu_{1}-\mu_{2}\right\|_{T V}=\sup _{A}\left|\mu_{1}(A)-\mu_{2}(A)\right|$ is the largest possible difference between the probabilities that the two measures can assign to the same event.

Metropolis-Hastings algorithm

When these requirements are satisfied (i.e., chain is irreducible and aperiodic, with stationary distribution π) we have
(2) For $h \in L_{\pi}^{1}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i}^{n} h\left(x^{(i)}\right)=\mathbb{E}_{\pi}[h] \text { w.p. } 1
$$

This is a strong law of large numbers that allows computation of posterior expectations.

Obtaining a central limit theorem, or more generally saying anything about the rate of convergence to stationarity, requires additional conditions (e.g., geometric ergodicity).

See [Roberts \& Rosenthal 2004] for an excellent survey of MCMC convergence results.

Metropolis-Hastings diagnostics

What about the quality of MCMC estimates?

What is the price one pays for correlated samples?

Compare Monte Carlo (iid) and MCMC estimates of $\mathbb{E}_{\boldsymbol{\pi}} h$ (and for the latter, assume we have a CLT):
Monte Carlo

where

is the integrated autocorrelation time.

Effective sample size (ESS) is then n / θ

Metropolis-Hastings diagnostics

What about the quality of MCMC estimates?
What is the price one pays for correlated samples?
Compare Monte Carlo (iid) and MCMC estimates of $\mathbb{E}_{\boldsymbol{\pi}} h$ (and for the latter, assume we have a CLT):
Monte Carlo

$$
\operatorname{Var}\left[\bar{h}_{n}\right]=\frac{\operatorname{Var}_{\pi}[h(X)]}{n}
$$

MCMC

$$
\operatorname{Var}\left[\bar{h}_{n}\right]=\theta \frac{\operatorname{Var}_{\pi}[h(X)]}{n}
$$

where

$$
\theta=1+2 \sum_{s>0}^{\infty} \operatorname{corr}\left(h\left(X_{i}\right), h\left(X_{i+s}\right)\right)
$$

is the integrated autocorrelation time.

Metropolis-Hastings diagnostics

What about the quality of MCMC estimates?
What is the price one pays for correlated samples?
Compare Monte Carlo (iid) and MCMC estimates of $\mathbb{E}_{\boldsymbol{\pi}} h$ (and for the latter, assume we have a CLT):
Monte Carlo

$$
\operatorname{Var}\left[\bar{h}_{n}\right]=\frac{\operatorname{Var}_{\pi}[h(X)]}{n}
$$

MCMC

$$
\operatorname{Var}\left[\bar{h}_{n}\right]=\theta \frac{\operatorname{Var}_{\pi}[h(X)]}{n}
$$

where

$$
\theta=1+2 \sum_{s>0}^{\infty} \operatorname{corr}\left(h\left(X_{i}\right), h\left(X_{i+s}\right)\right)
$$

is the integrated autocorrelation time.
Effective sample size (ESS) is then n / θ

Metropolis-Hastings algorithm

Now try a very simple computational demonstration (in MATLAB): MCMC sampling from a univariate distribution

Look at autocorrelation and visual diagnostics (e.g., trace of chain)

Other Metropolis-Hastings diagnostics

Example: multivariate potential scale reduction factor (MPSRF) [Brooks \& Gelman 1998]

- Run multiple "replicate" chains from over-dispersed starting points.
- Compute:
- Pooled-sample covariance estimate (across all chains) $\hat{\mathbf{V}}$ (tends to over-estimate)
- Average of individual-chain sample covariance estimates W (tends to under-estimate)
- Let $\hat{R}^{1 / 2}$ be the largest generalized eigenvalue of the pencil ($\hat{\mathbf{V}}, \mathbf{W}$).
- Diagnostic: value of statistic $\hat{R}^{1 / 2}$ approaches 1 (from above) as the chains become similar

More sophisticated Metropolis-Hastings

- M-H construction was extremely general.
- Achieving efficient sampling (good "mixing") requires more exploitation of problem structure.
(1) Mixtures of kernels
(2) Cycles of kernels; Gibbs sampling
(3) Adaptive MCMC
(9) Gradient- and Hessian-exploiting MCMC
(5) MCMC in infinite dimensions

Mixtures and cycles

Mixtures of kernels

- Let K_{i} all have π as limiting distribution
- Use a convex combination: $K^{*}=\sum_{i} \nu_{i} K_{i}$
- ν_{i} is the probability of picking transition kernel K_{i} at a given step of the chain
- Kernels can correspond to transitions that each have desirable properties, e.g., local versus global proposals

Cycles of kernels

- Split multivariate state vector into blocks that are updated separately; each update is accomplished by transition kernel K_{j}
- Need to combine kernels. Cycle $=$ a systematic scan, $K^{*}=\prod_{j} K_{j}$

Componentwise Metropolis-Hastings

This is an example of using a cycle of kernels

- Let $\mathbf{x}=\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}$
- Proposal $q_{i}(y \mid \mathbf{x})$ updates only component i
- Walk through components of the state sequentially, $i=1 \ldots d$:
- Propose a new value for component i using

$$
q_{i}\left(y^{i} \mid x_{n+1}^{1}, \ldots, x_{n+1}^{i-1}, x_{n}^{i}, x_{n}^{i+1}, \ldots, x_{n}^{d}\right)
$$

- Accept $\left(x_{n+1}^{i}=y^{i}\right)$ or reject $\left(x_{n+1}^{i}=x_{n}^{i}\right)$ this component update with acceptance probability

$$
\alpha_{i}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)=\min \left\{1, \frac{\pi\left(\mathbf{y}_{i}\right) q_{i}\left(x_{n}^{i} \mid \mathbf{y}_{i}\right)}{\pi\left(\mathbf{x}_{i}\right) q_{i}\left(y^{i} \mid \mathbf{x}_{i}\right)}\right\}
$$

where \mathbf{x}_{i} and \mathbf{y}_{i} differ only in component i

$$
\begin{aligned}
& \mathbf{y}_{i} \equiv\left(x_{n+1}^{1}, \ldots, x_{n+1}^{i-1}, y, x_{n}^{i+1}, \ldots, x_{n}^{d}\right) \text { and } \\
& \mathbf{x}_{i} \equiv\left(x_{n+1}^{1}, \ldots, x_{n+1}^{i-1}, x_{n}^{i}, x_{n}^{i+1}, \ldots, x_{n}^{d}\right)
\end{aligned}
$$

Gibbs sampling

- One very useful cycle is the Gibbs sampler.
- Requires the ability to sample directly from the full conditional distribution $\pi\left(x_{i} \mid \mathbf{x}_{\sim}\right)$.
- $\mathbf{x}_{\sim i}$ denotes all components of \mathbf{x} other than x_{i}
- In problems with appropriate structure, generating independent samples from the full conditional may be feasible while sampling from π is not.
- x_{i} can represent a block of the state vector, rather than just an individual component
- A Gibbs update is a proposal from the full conditional; the acceptance probability is identically one!

$$
\begin{aligned}
\alpha_{i}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) & =\min \left\{1, \frac{\pi\left(\mathbf{y}_{i}\right) q_{i}\left(x_{n}^{i} \mid \mathbf{y}_{i}\right)}{\pi\left(\mathbf{x}_{i}\right) q_{i}\left(y^{i} \mid \mathbf{x}_{i}\right)}\right\} \\
& =\min \left\{1, \frac{\pi\left(y_{i} \mid \mathbf{x}_{\sim i}\right) \pi\left(\mathbf{x}_{\sim i}\right) \pi\left(x_{n}^{i} \mid \mathbf{x}_{\sim i}\right)}{\pi\left(x_{n}^{i} \mid \mathbf{x}_{\sim i}\right) \pi\left(\mathbf{x}_{\sim i}\right) \pi\left(y^{i} \mid \mathbf{x}_{\sim i}\right)}\right\}=1
\end{aligned}
$$

Gibbs sampling example \#1

Correlated bivariate normal

$$
x \sim N\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]\right)
$$

Full conditionals are:

$$
\begin{aligned}
& x_{1} \left\lvert\, x_{2} \sim N\left(\mu_{1}+\frac{\sigma_{1}}{\sigma_{2}} \rho\left(x_{2}-\mu_{2}\right),\left(1-\rho^{2}\right) \sigma_{1}^{2}\right)\right. \\
& x_{2} \mid x_{1} \sim \ldots
\end{aligned}
$$

See computational demo

Gibbs sampling example \#2

Bayesian linear regression with a variance hyperparameter

$$
y_{i}=\boldsymbol{\beta}^{T} \mathbf{x}_{i}+\sigma z_{i}, \quad y_{i} \in \mathbb{R} ; \boldsymbol{\beta}, \mathbf{x}_{i} \in \mathbb{R}^{d} ; z_{i} \sim N(0,1)
$$

- This problem has a non-Gaussian posterior but is amenable to block Gibbs sampling
- Let the data consist of n observations $\mathcal{D}_{n} \equiv\left\{\left(y_{i}, \mathbf{x}_{i}\right)\right\}_{i=1}^{n}$
- Bayesian hierarchical model, likelihood and priors:

$$
\begin{aligned}
\mathbf{y} \mid \boldsymbol{\beta}, \sigma^{2} & \sim N\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right) \\
\boldsymbol{\beta} \mid \sigma^{2} & \sim N\left(0, \tau^{2} \sigma^{2} \mathbf{I}_{d}\right) \\
1 / \sigma^{2} & \sim \Gamma(\alpha, \gamma)
\end{aligned}
$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rows \mathbf{x}_{i} and $\mathbf{y} \in \mathbb{R}^{n}$ is a vector of $y_{1} \ldots y_{n}$.

Gibbs sampling example \#2 (cont.)

- Posterior density:

$$
\begin{aligned}
\pi\left(\boldsymbol{\beta}, \sigma^{2}\right) \equiv & p\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathcal{D}_{n}\right) \\
\propto & \frac{1}{\sigma^{n}} \exp \left(-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right) \\
& \frac{1}{(\tau \sigma)^{d}} \exp \left(-\frac{1}{2 \tau^{2} \sigma^{2}} \boldsymbol{\beta}^{T} \boldsymbol{\beta}\right) \\
& \left(\frac{1}{\sigma^{2}}\right)^{\alpha-1} \exp \left(-\gamma / \sigma^{2}\right)
\end{aligned}
$$

- Full conditionals $\boldsymbol{\beta} \mid \sigma^{2}, \mathcal{D}_{n}$ and $\sigma^{2} \mid \boldsymbol{\beta}, \mathcal{D}_{n}$ have a closed form! Try to obtain by inspecting the joint density above. (See next page for answer.)

Gibbs sampling example \#2 (cont.)

- Full conditional for $\boldsymbol{\beta}$ is Gaussian:

$$
\boldsymbol{\beta} \mid \sigma^{2}, \mathcal{D}_{n} \sim N\left(\boldsymbol{\mu}, \sigma^{2} \boldsymbol{\Sigma}\right)
$$

where

$$
\boldsymbol{\Sigma}^{-1}=\left(\frac{1}{\tau^{2}} \mathbf{I}_{d}+\mathbf{X}^{T} \mathbf{X}\right) \text { and } \boldsymbol{\mu}=\boldsymbol{\Sigma} \mathbf{X}^{T} \mathbf{y}
$$

- Full conditional for $1 / \sigma^{2}$ is Gamma:

$$
1 / \sigma^{2} \mid \boldsymbol{\beta}, \mathcal{D}_{n} \sim \Gamma(\hat{\alpha}, \hat{\gamma})
$$

where

$$
\hat{a}=a+n / 2+d / 2 \text { and } \hat{\gamma}=\gamma+\frac{1}{2 \tau^{2}} \boldsymbol{\beta}^{\top} \boldsymbol{\beta}+\frac{1}{2}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) .
$$

- Alternately sample from these FCs in order to simulate the joint posterior.
- Also, this is an example of the use of conjugate priors.

Metropolis-within-Gibbs

What if we cannot sample from the full conditionals?

- Solution: "Metropolis-within-Gibbs"
- This is just componentwise Metropolis-Hastings (which is where we started)

Metropolis-within-Gibbs

What if we cannot sample from the full conditionals?

- Solution: "Metropolis-within-Gibbs"
- This is just componentwise Metropolis-Hastings (which is where we started)

Adaptive Metropolis

- Intuitive idea: learn a better proposal $q(y \mid x)$ from past samples.
- Learn an appropriate proposal scale.
- Learn an appropriate proposal orientation and anisotropy; this is essential in problems with strong correlation in π
- Adaptive Metropolis scheme of [Haario et al. 2001]:
- Covariance matrix at step n

$$
C_{n}^{*}=s_{d} \operatorname{Cov}\left(x_{0}, \ldots, x_{n}\right)+s_{d} \epsilon I_{d}
$$

where $\epsilon>0, d$ is the dimension of the state, and $s_{d}=2.4^{2} / d$ (scaling rule-of-thumb).

- Proposals are Gaussians centered at x_{n}. Use a fixed covariance C_{0} for the first n_{0} steps, then use C_{n}^{*}.
- Chain is not Markov, and previous convergence proofs do not apply. Nonetheless, one can prove that the chain converges to π. See paper in references.
- Many other adaptive MCMC ideas have been developed in recent years

Adaptive Metropolized independence samplers

- Independence proposal: does not depend on current state
- Consider a proposal $q(x ; \psi)$ with parameter ψ.
- Key idea: minimize Kullback-Leibler divergence between this proposal and the target distribution:

$$
\min _{\psi} D_{K L}(\pi(x) \| q(x ; \psi))
$$

- Equivalently, maximize $\int \pi(x) \log q(x ; \psi) d x$
- Solve this optimization problem with successive steps of stochastic approximation (e.g., Robbins-Monro), while approximating the integral via MCMC samples
- Common choice: let q be a mixture of Gaussians or other exponential-family distributions

Online MCMC demo

Very cool demo, thanks to Chi Feng (MIT): https://chi-feng.github.io/mcmc-demo

Let's look at RWM and AM on various targets

Langevin MCMC

- Intuitive idea: use gradient of the posterior to steer samples towards higher density regions
- Consider the SDE

$$
d X_{t}=\frac{1}{2} \nabla \log \pi\left(X_{t}\right) d t+d W_{t}
$$

This SDE has π as its stationary distribution

- Discretize the SDE (e.g., Euler-Maruyama)

$$
X^{t+1}=X^{t}+\frac{\sigma^{2}}{2} \nabla \log \pi\left(X^{t}\right)+\sigma \epsilon^{t}, \epsilon^{t} \sim N(0, I)
$$

- Discretized process X^{t} no longer has π as its stationary distribution!

But we can use X^{t+1} as a proposal in the regular
Metropolis-Hastings framework, and accept or reject it accordingly.

- σ^{2} (discretization time step) is an adjustable free parameter.
- Langevin schemes require access to the gradient of the posterior.

Preconditioned Langevin

- Introduce a positive definite matrix \mathbf{A} to the Langevin SDE:

$$
d X_{t}=\frac{1}{2} \mathbf{A} \nabla \log \pi\left(X_{t}\right) d t+\mathbf{A}^{1 / 2} d W_{t}
$$

- Let \mathbf{A} reflect covariance structure of target
- For example: let \mathbf{A} be the local inverse Hessian of the log-posterior, or the inverse Hessian at the posterior mode, or posterior-averaged Hessian information, or some other estimate of the posterior covariance
- Key idea for inverse problems: use low-rank approximations of the posterior covariance/precision developed for the linear-Gaussian case

Preconditioned Langevin

- Introduce a positive definite matrix \mathbf{A} to the Langevin SDE:

$$
d X_{t}=\frac{1}{2} \mathbf{A} \nabla \log \pi\left(X_{t}\right) d t+\mathbf{A}^{1 / 2} d W_{t}
$$

- Let \mathbf{A} reflect covariance structure of target
- For example: let \mathbf{A} be the local inverse Hessian of the log-posterior, or the inverse Hessian at the posterior mode, or posterior-averaged Hessian information, or some other estimate of the posterior covariance
- Key idea for inverse problems: use low-rank approximations of the posterior covariance/precision developed for the linear-Gaussian case

Hamiltonian MCMC

- Let x be "position" variables; introduce auxiliary "momentum" variables w
- Consider a separable Hamiltonian, $H(x, w)=U(x)+w^{\top} M^{-1} w / 2$. Put $U(x)=-\log \pi(x)$.
- Hamiltonian dynamics are reversible and conserve H. Use them to propose new states x !
- In particular, sample from $p(x, w)=\frac{1}{Z} \exp (-H(x, w))$:
- First, sample the momentum variables w from their Gaussian distribution
- Second, integrate Hamilton's equations to propose a new state (x, w); then apply Metropolis accept/reject
- Features:
- Enables faraway moves in x-space while leaving the value of the density (essentially) unchanged. Good mixing!
- Requires good symplectic integrators and access to derivatives
- Recent extension: Riemannian manifold HMC [Girolami \& Calderhead JRSSB 2011]

Online MCMC demo

Back to the demo:
https://chi-feng.github.io/mcmc-demo

Now look at MALA and HMC/NUTS on various targets

MCMC in infinite dimensions

- Would like to construct a well-defined MCMC sampler for functions $u \in \mathcal{H}$.
- First, the posterior measure μ_{y} should be a well-defined probability measure on \mathcal{H} (see Stuart Acta Numerica 2010). For simplicity, let the prior μ_{0} be $\mathcal{N}(0, C)$.
- Now let q be the proposal distribution, and consider pair of measures
- Then the MCMC acceptance probability is

- To define a valid transition kernel, we need absolute continuity $v^{\perp} \ll \nu$ in turn, this places requirements on the proposal a

MCMC in infinite dimensions

- Would like to construct a well-defined MCMC sampler for functions $u \in \mathcal{H}$.
- First, the posterior measure μ_{y} should be a well-defined probability measure on \mathcal{H} (see Stuart Acta Numerica 2010). For simplicity, let the prior μ_{0} be $\mathcal{N}(0, C)$.
- Now let q be the proposal distribution, and consider pair of measures

$$
\nu\left(d u, d u^{\prime}\right)=q\left(u, d u^{\prime}\right) \mu_{y}(d u), \nu^{\perp}\left(d u, d u^{\prime}\right)=q\left(u^{\prime}, d u\right) \mu_{y}\left(d u^{\prime}\right)
$$

- Then the MCMC acceptance probability is

$$
\alpha\left(u_{k}, u^{\prime}\right)=\min \left\{1, \frac{d \nu^{\perp}}{d \nu}\left(u_{k}, u^{\prime}\right)\right\}
$$

- To define a valid transition kernel, we need absolute continuity $\nu^{\perp} \ll \nu$; in turn, this places requirements on the proposal q

MCMC in infinite dimensions (cont.)

- One way to produce a valid transition kernel is the preconditioned Crank-Nicolson (pCN) proposal (Cotter et al. 2013):

$$
u^{\prime}=\left(1-\beta^{2}\right)^{1 / 2} u_{k}+\beta \xi_{k}, \xi_{k} \sim \mathcal{N}(0, C), \beta \in(0,1)
$$

- Practical impact: sampling efficiency does not degenerate as discretization of u is refined
- More sophisticated versions: combine pCN with Hessian/geometry information, e.g., DILI (dimension-independent likelihood-informed) proposals (Cui, Law, M 2016)

MCMC practicalities

Effective use of MCMC still requires some (problem-specific) experience. Some useful rules of thumb:

- Adaptive schemes are not a panacea.
- Whenever possible, (re-)parameterize the problem in order to minimize posterior correlations.
- What to do, if anything, about "burn-in?"
- Visual inspection of chain components is often the first and best convergence diagnostic.
- Also look at autocorrelation plots. Run multiple chains from different starting points. Evaluate MPSRF or other diagnostics.

MCMC practicalities

Additional advice:

- "The best Monte Carlo is a dead Monte Carlo": If you can tackle any part of the problem analytically, do it!
- Example: Rao-Blackwellization in Cui et al., "Likelihood-informed dimension reduction for nonlinear inverse problems," Inverse Problems 30: 114015 (2014).

MCMC references

A small selection of useful "general" MCMC references.

- C. Andrieu, N. de Freitas, A. Doucet, M. I. Jordan, "An introduction to MCMC for machine learning," Machine Learning 50 (2003) 5-43.
- S. Brooks, A. Gelman, G. Jones and X. Meng, editors. Handbook of MCMC. Chapman \& Hall/CRC, 2011.
- A. Gelman, J. B. Carlin, H. S. Stern, D. Dunson, A. Vehtari, D. B. Rubin. Bayesian Data Analysis. Chapman \& Hall CRC, 3rd edition, 2013.
- P. J. Green. "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination." Biometrika, 82: 711-732, 1995.
- H. Haario, M. Laine, A. Mira, and E. Saksman. "DRAM: Efficient adaptive MCMC." Statistics and Computing, 16(4): 339-354, 2006.
- C. P. Robert, G. Casella, Monte Carlo Statistical Methods, 2nd Edition, Springer, 2004.
- G. Roberts, J. Rosenthal. "General state space Markov chains and MCMC algorithms." Probability Surveys, 1: 20-71, 2004.

[^0]: from Sivia \& Skilling, Data Analysis: a Bayesian Tutorial, Oxford UP (2006).

