Multi-stage sequential sampling models:
 A framework for binary choice options Part 2

Adele Diederich

Jacobs University Bremen
Spring School SFB 1294
Dierhagen

March 18 - 22, 2019

Overview

- Part 1
- Motivation - 3 Examples
- Basic assumptions of sequential sampling models (as used here)
- Multi-stage sequential sampling models
- Part 2
- Time and order schedules
- Implementation
- Predictions
- Impact of attention time distribution
- Impact of attribute order
- Part 3
- Applications

Multiattribute choice alternatives: Basic assumptions

- For each attribute of the choice alternatives a different accumulation process takes place.
- Attention switches from attribute to another and attributes are processed serially

Multi-stage decision model

Example: Two choice alternatives with three attributes

μ_{k} drift rate for attribute k, direction of the process reflects strength of evidence
$t_{\text {l }}$ attention switching

Schedules

- Order schedule: specific order in which attributes are considered
- Time schedule: specific times attention is switched from one attribute to another one
- Part of the model parameters

Times

- Attention switching times

$$
T_{0}=T_{\text {start }}=0<T_{1}<T_{2}<\ldots<T_{L}=T_{\text {end }} \leq \infty
$$

- Time horizon: $T_{\text {end }}$ maximum duration of the decision process
- $\Delta T_{l}=\left(T_{l-1}, T_{l}\right]:$ the l-th attention time interval.

Schedules

- Finite number of attributes: $k=1, \ldots, K$

Definition

A time and order schedule consists of a sequence $\left\{T_{l}\right\}_{l=1, \ldots, L}$ of attention switching times, and a sequence $\left\{k_{/} \in\{1, \ldots, K\}\right\}_{/=1, \ldots, L}$ of attribute indices which specifies that during the attention time interval ΔT_{l} the k_{l}-th attribute is considered. At attention switching time T_{l}, $I=1, \ldots, L-1$, attention switches from attribute $k_{/}$to attribute k_{l+1}.

Process assumptions

- The sampling process $X(t)$ is specified by a sequence of attention switching times

$$
T_{0}=T_{\text {start }}=0<T_{1}<T_{2}<\ldots<T_{L-1}<T_{L}=T_{\text {end }} \leq+\infty
$$

- The process $X(t)$ determined by such a schedule is a piecewise OUP or Wiener process.
- For $t \in\left[T_{l-1}, T_{l}\right]$ the process is determined by

$$
d X(t)=\left(\delta_{k_{l}}-\gamma_{k_{l}} X(t)\right) d t+\sigma d W(t)
$$

or

$$
d X(t)=\mu_{k_{1}}-X(t) d t+\sigma d W(t)
$$

Time and order schedule

- Time schedule: deterministic or random
- Order schedule: deterministic or random

Example: Deterministic time and order schedule of length $L=4$

- Three different attributes $(K=3)$
- Attribute order (1, 2, 1, 3), i.e., $k_{1}=1, k_{2}=2, k_{3}=1, k_{4}=3$

Random time and order schedule

- Time: random variable T with a given distribution
- Order: stochastic $K \times K$ matrices $D^{(I)}$ such that $d_{k^{\prime} k}^{(I)} \geq 0$ describes the probability with which attention switches from the k^{\prime}-th attribute to the k-th attribute at switching time $T_{l}, I=1, \ldots, L-1$

Order schedule - Example: Two attributes

- $d_{k k}^{(I)}=0$ to avoid a no switching
- For two attributes $(K=2)$, this leads to $d_{11}^{(I)}=d_{22}^{(I)}=0$ and $d_{12}^{(I)}=d_{21}^{(I)}=1$
- The attribute sequence is either $(1,2,1,2, \ldots)$ or $(2,1,2,1, \ldots)$, depending on whether $k_{1}=1$ or $k_{1}=2$

Order schedule - Example: Three attributes

- For three attributes $(K=3)$ and $L=3$, setting

$$
D^{(1)}=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right], \quad D^{(2)}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
3 / 4 & 1 / 4 & 0
\end{array}\right]
$$

results for $k_{1}=1$ in order sequences $(1,2,1),(1,3,1),(1,3,2)$ with probability $1 / 2,3 / 8,1 / 8$, respectively.

- Note, matrix $D^{(1)}$ models the situation when no preference or bias in switching from any given to any other attribute is assumed.

Order schedule - Example: Three attributes

- For three attributes $(K=3)$ and $L=3$, setting

$$
D^{(1)}=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right], \quad D^{(2)}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
3 / 4 & 1 / 4 & 0
\end{array}\right]
$$

results for $k_{1}=1$ in order sequence $(1,2,1)$ with probability $1 / 2$.

Order schedule - Example: Three attributes

- For three attributes $(K=3)$ and $L=3$, setting

$$
D^{(1)}=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right], \quad D^{(2)}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
3 / 4 & 1 / 4 & 0
\end{array}\right]
$$

results for $k_{1}=1$ in order sequence $(1,3,1)$ with probability $3 / 8$.

Order schedule - Example: Three attributes

- For three attributes $(K=3)$ and $L=3$, setting

$$
D^{(1)}=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right], \quad D^{(2)}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
3 / 4 & 1 / 4 & 0
\end{array}\right]
$$

results for $k_{1}=1$ in order sequence $(1,3,2)$ with probability $1 / 8$.

Attention times

- Attention time, i.e., attention spent on an attribute, $\Delta T_{L}=\left[T_{I-1}-T_{l}\right]$
- Deterministic
- Geometric distribution $\left(\operatorname{Pr}\left(\Delta T_{L}=n\right)=(1-r)^{n-1} r, n=1,2, \ldots\right)$
- Poisson $\left(\operatorname{Pr}\left(\Delta T_{L}=n\right)=e^{-\lambda} \frac{\lambda^{n}}{n!}, \quad n=0,1,2, \ldots,\right)$
- Binomial $\operatorname{Pr}\left(\Delta T_{L}=n\right)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n}, \quad n=0,1, \ldots, N$,
- Uniform distribution $\left(\operatorname{Pr}\left(\Delta T_{L}=n\right)=\frac{1}{2 M+1}, n=N-M, \ldots, N+M\right)$
- Example
- $E\left(\Delta T_{L}\right)=300$
- Unif 1: $M=\sqrt{N} \approx 18$
-Unif 2: $M=N / 2=150$
- Unif 3: $M=N-1=299$

Attention time distributions ΔT_{L}

Implementation

- Stochastic process approximation by discrete time, finite state space Markov chain
- Markov chain - matrix form

Deriving the Wiener process

- Brownian bridge; Kolmogorov-Smirnov statistics
- Feynman-Kac formula
- Stochastic Fourier analysis
- Scaled random walk (RW)

Scaled random walk

- The continuous state space $S=\left[\theta_{A}, \theta_{A}\right]$ of the Wiener process (or OUP) is replace by a finite state space

$$
S=\left\{-m_{B} \Delta, \ldots,-2 \Delta,-\Delta, 0,+\Delta,+2 \Delta, \ldots,+m_{A} \Delta\right\}
$$

with $\theta_{A} \approx m_{A} \Delta$ and $\theta_{B} \approx-m_{B} \Delta$, written as

$$
S=\left\{x_{i}:=i \Delta: i \in \mathcal{I}\right\}, \quad \mathcal{I}=\left\{-m_{B}, \ldots, m_{A}\right\} \subset \mathbb{Z}
$$

and $m=m_{A} \Delta+m_{B} \Delta+1$ states.

- Δ : step-size of change in evidence

Scaled random walk

- The time space (parameter set) of a RW is $\{0,1,2,3, \ldots\}$.
- Given a time interval $[0, t]$: Divide this into subintervals of length τ $\rightarrow t / \tau$ such subintervals
- The process makes a step at times $\tau, 2 \tau, 3 \tau, \ldots$

Scaled random walk

- Let X_{n} denote the amount of information accumulated up to time unit $n \approx t / \tau$:

$$
X_{n}=\sum_{i=1}^{n} \xi_{i}
$$

- Assume that the distribution of the random variable ξ is i.i.d with

$$
\operatorname{Pr}\left[\xi_{i}=+\Delta\right]=\operatorname{Pr}\left[\xi_{i}=-\Delta\right]=0.5
$$

- Set $X_{0}=0$
- Set $\Delta=\sqrt{\tau}$

Standard Wiener process

- If $\tau \rightarrow 0$, then $X_{t / \tau}$ converges in distribution to a random variable W_{t} called standard Wiener process and has continuous time set and continuous state space.
- $W_{t} \sim \mathcal{N}(0, t)$

Wiener process with drift

- The random variable W_{t} is multiplied by a constant, $\sigma, \sigma>0$, and a linear function of time, μt, is added, where μ, can be positive, negative or zero, and giving a particular initial value $X_{0}=z$ results in

$$
X_{t}=z+\mu t+\sigma W_{t}
$$

- $X_{t} \sim \mathcal{N}\left(z+\mu t, \sigma^{2} t\right)$

OUP and birth-death chain

- Similar procedures work for the OUP approximation

MC matrix approach

- Wiener

Probabilities to move up or down by Δ in small time interval τ, $\Delta=\sigma \sqrt{\tau}$

$$
p_{i, i-1}^{(k)}=\frac{1}{2}\left(1-\mu_{k} \frac{\sqrt{\tau}}{\sigma}\right), \quad p_{i, i+1}^{(k)}=\frac{1}{2}\left(1+\mu_{k} \frac{\sqrt{\tau}}{\sigma}\right)
$$

- OUP

Probabilities to move up or down by Δ in small time interval τ, $\Delta=\sigma \sqrt{\alpha \tau}$

$$
p_{j, i}= \begin{cases}\frac{1}{2 \alpha}\left(1+\left(\delta_{k}-\gamma_{k} x_{j}\right) \frac{\sqrt{\tau}}{\sigma}\right), & j=i+1 \\ \frac{1}{2 \alpha}\left(1-\left(\delta_{k}-\gamma_{k} x_{j}\right) \frac{\sqrt{\tau}}{\sigma}\right), & j=i-1, \\ 1-p_{i, i+1}-p_{i, i-1}, & j=i, \\ 0, & |j-i|>1\end{cases}
$$

- kth attribute

MC matrix approach

$$
\begin{aligned}
P_{k} & =\left[\begin{array}{cc|ccccc}
I & 0 \\
\hline R_{k} & Q_{k}
\end{array}\right] \\
& =\left|\begin{array}{cc|ccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
\hline p_{21}^{(k)} & 0 & p_{22}^{(k)} & p_{23} & \cdots & 0 & 0 \\
0 & 0 & p_{32}^{(k)} & p_{33}^{(k)} & \cdots & 0 & 0 \\
0 & 0 & 0 & p_{43}^{(k)} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & p_{m-3, m-2}^{(k)} & 0 \\
0 & 0 & 0 & 0 & \cdots & p_{m-2, m-2}^{(k)} & p_{m-2, m-1}^{(k)} \\
0 & p_{m-1, m}^{(k)} & 0 & 0 & \cdots & p_{m-1, m-2}^{(k)} & p_{m-1, m-1}^{(k)}
\end{array}\right|
\end{aligned}
$$

Submatrix and States

- I: Identity matrix, corresponds to the absorbing states associated with the two decision thresholds
- \mathbf{Q}_{k} : contains the transient probabilities, corresponding to the updating evidence process
- \mathbf{R}_{k} : contains the one-step transition probabilities from the transient to the absorbing states
- The first column vector of the matrix R_{k} (denoted by $R_{B, k}$) contains the transient probabilities for reaching alternative B, whereas the second $R_{A, k}$ contains the ones for alternative A

Initial distribution

- Z: starting position of the process over the transient states, S^{*}, before the decision process begins.
- Fixed state i_{0}, - the initial state, $Z_{j}=1$ if $j=i_{0}, Z_{j}=0$ if $j \neq i_{0}$.
- Biases: $X_{0}>0$ or $X_{0}<0$
- Unbiased: $X_{0}=0$
- Randomly located in in the state space according to a probability distribution \mathbf{Z} on S^{*}, - initial distribution, $0 \leq z_{i} \leq 1$ and $\sum_{i} z_{i}=1$
- Biased: Probability mass on positions $j>(m-1) / 2$ or on positions $j<(m-1) / 2$
- Unbiased: on position $j=(m-1) / 2$

Distribution and moments for one attribute

$n=t / \tau$

- Probability distribution

$$
\operatorname{Pr}[T=n \cap \text { choose } A]=\mathbf{Z}^{\prime} \mathbf{Q}^{n-1} \mathbf{R}_{A}, \quad n=1,2, \ldots, \infty
$$

- Probability of choosing A

$$
\operatorname{Pr}\left(T_{A}<\infty\right) \approx p_{A}=\mathbf{Z}^{\prime} \sum_{n=1}^{\infty} \mathbf{Q}^{n-1} \mathbf{R}_{\mathbf{A}}=\mathbf{Z}^{\prime}(\mathbf{I}-\mathbf{Q})^{-1} \mathbf{R}_{A}
$$

- r-th moment for the distribution T to choose alternative A

$$
E\left[T^{r} \mid A\right] \approx \frac{\tau}{\operatorname{Pr}(A)} \mathbf{Z}^{\prime} \sum_{n=1}^{\infty} n^{r} \mathbf{Q}^{n-1} \mathbf{R}_{A}
$$

- Mean RT

$$
E[T \mid A] \approx E T_{A}:=\frac{\tau}{\operatorname{Pr}(A)} \mathbf{Z}^{\prime}(\mathbf{I}-\mathbf{Q})^{-2} \mathbf{R}_{A}
$$

Multiple attributes - Deterministic time and order schedule

k attributes, L attention times

- Probability to choose A

$$
\begin{aligned}
& p_{A}= Z^{\prime} \\
& \sum_{i=1}^{n_{1}} Q_{k_{1}}^{i-1} R_{A, k_{1}}+Z^{\prime} Q_{k_{1}}^{n_{1}} \sum_{i=n_{1}+1}^{n_{2}} Q_{k_{2}}^{i-\left(n_{1}+1\right)} R_{A, k_{2}}+\ldots \\
& \ldots+Z^{\prime} Q_{k_{1}}^{n_{1}} \ldots Q_{k_{L-1}}^{n_{L-1}-n_{L-2}} \sum_{i=n_{L-1}+1}^{n_{L}} Q_{n_{L}}^{i-\left(n_{L-1}+1\right)} R_{A, k_{L}}
\end{aligned}
$$

Multiple attributes - Deterministic time and order schedule

k attributes, L attention times

- Mean RT to choose A

$$
\begin{aligned}
E T_{A}=\frac{\tau}{p_{A}}[& Z^{\prime} \sum_{i=1}^{n_{1}} i Q_{k_{1}}^{i-1} R_{A, k_{1}}+Z^{\prime} Q_{k_{1}}^{n_{1}} \sum_{i=n_{1}+1}^{n_{2}} i Q_{k_{2}}^{i-\left(n_{1}+1\right)} R_{A, k_{2}}+\ldots \\
& \left.\ldots+Z^{\prime} Q_{k_{1}}^{n_{1}} \ldots Q_{k_{L-1}}^{n_{L-1}-n_{L-2}} \sum_{i=n_{L-1}+1}^{n_{L}} i Q_{n_{L}}^{i-\left(n_{L-1}+1\right)} R_{A, k_{L}}\right] .
\end{aligned}
$$

Multiple attributes - Random time schedule

- Probability mass distribution (pdf)

$$
\operatorname{Pr}\left(T_{a t}=n\right)=p_{n, k}
$$

- Cumulative distribution function (cdf)

$$
\operatorname{Pr}\left(T_{a t} \leq n\right)=f_{n, k}:=\sum_{i=0}^{n} p_{i, k}, \quad n=0,1, \ldots
$$

$L=1:$ Random time schedule - Probability

- $L=1$, attribute k

$$
\begin{aligned}
p_{A, k} & =\sum_{n=1}^{\infty} p_{n, k} Z^{\prime}\left(\sum_{i=1}^{n} Q_{k}^{i-1}\right) R_{A, k} \\
& =Z^{\prime}\left[\sum_{i=1}^{\infty}\left(\sum_{n=i}^{\infty} p_{n, k}\right) Q_{k}^{i-1}\right] R_{A, k} \\
& =Z^{\prime}\left[\sum_{i=0}^{\infty}\left(1-f_{i, k}\right) Q_{k}^{i}\right] R_{A, k}
\end{aligned}
$$

Notation

- $p_{A B, k}:=\left[p_{B, k}, p_{A, k}\right]$

$$
p_{A B, k}=Z^{\prime} V_{k}, \quad V_{k}:=\left[\sum_{i=0}^{\infty}\left(1-f_{i, k}\right) Q_{k}^{i}\right] R_{k} .
$$

Example: Geometrically distributed attention time

- Geometric distribution

$$
\begin{aligned}
\operatorname{Pr}\left(T_{a t}\right. & =n)=(1-r)^{n-1} r, \quad n=1,2, \ldots \\
V_{k} & =\sum_{i=0}^{\infty}\left(\sum_{j=i+1}^{\infty} r_{k}\left(1-r_{k}\right)^{j-1}\right) Q_{k}^{i} R_{k} \\
& =\sum_{i=0}^{\infty}\left(1-r_{k}\right)^{i} Q_{k}^{i} R_{k} \\
& =\left(I-\left(1-r_{k}\right) Q_{k}\right)^{-1} R_{k}
\end{aligned}
$$

Example: Uniform distribution

- Uniformly distributed attention time

$$
f_{i, k}=\frac{i-N+M+1}{2 M+1} \text { and }\left(1-f_{i, k}\right)=\frac{M+N-i}{2 M+1}
$$

(the surviver function).

$$
V_{k}=\left(\sum_{i=0}^{N-M-1} Q_{k}^{i}+\sum_{i=N-M}^{N+M-1} \frac{N+M-i}{2 M+1} Q_{k}^{i}\right) R_{k}
$$

$L=1:$ Random time schedule - Expected time

- $L=1$, attribute k

$$
\begin{aligned}
e t_{A, k}= & \sum_{n=1}^{\infty} p_{n, k}\left(\sum_{i=0}^{n-1}(i+1) Z^{\prime} Q_{k}^{i}\right) R_{A, k} \\
& =Z^{\prime}\left[\sum_{i=0}^{\infty}\left(\sum_{n=i+1}^{\infty} p_{n, k}\right)(i+1) Q_{k}^{i}\right] R_{A, k} \\
= & Z^{\prime}\left[\sum_{i=0}^{\infty}\left(1-f_{i, k}\right)(i+1) Q_{k}^{i}\right] R_{A, k} \\
& e t_{A B, k}:=\left[e t_{B, k}, e t_{A, k}\right]=Z^{\prime} W_{k} \\
& W_{k}:=\left[\sum_{i=0}^{\infty}\left(1-f_{i, k}\right)(i+1) Q_{k}^{i}\right] R_{k}
\end{aligned}
$$

$L=2$: Distribuitons

- For each fixed $k_{1}=k^{\prime}$ and $n_{1}=T_{a t}^{\prime}$ probabilities for reaching a decision after n_{1} are given by

$$
\begin{aligned}
& {\left[\operatorname{Pr}\left(T_{a t}^{\prime}<\frac{T_{B}}{\tau}<\infty\right), \operatorname{Pr}\left(T_{a t}^{\prime}<\frac{T_{A}}{\tau}<\infty\right)\right]_{n_{1}=T_{a t}^{\prime}, k_{1}=k^{\prime}}} \\
& \approx \sum_{k=1}^{K} d_{k^{\prime} k} Z^{\prime} Q_{k^{\prime}}^{n_{1}} V_{k}=Z^{\prime} Q_{k^{\prime}}^{T_{a t}^{\prime}}\left(\sum_{k=1}^{K} d_{k^{\prime} k} V_{k}\right)
\end{aligned}
$$

$L=2$: Probabilities

$$
\begin{aligned}
{\left[p_{B}, p_{A}\right]_{k_{1}=k^{\prime}} } & =Z^{\prime} V_{k^{\prime}}+\sum_{n \geq 0} p_{n, k^{\prime}} Z^{\prime} Q_{k^{\prime}}^{n}\left(\sum_{k=1}^{K} d_{k^{\prime} k} V_{k}\right) \\
& =Z^{\prime}\left[V_{k^{\prime}}+\left(\sum_{n \geq 0} p_{n, k^{\prime}} Q_{k^{\prime}}^{n}\right)\left(\sum_{k=1}^{K} d_{k^{\prime} k} V_{k}\right)\right] \\
& =Z^{\prime}\left[V_{k^{\prime}}+B_{k^{\prime}}\left(\sum_{k=1}^{K} d_{k^{\prime} k} V_{k}\right)\right], \quad k^{\prime}=1, \ldots, K
\end{aligned}
$$

where

$$
B_{k}=\sum_{n \geq 0} p_{n, k} Q_{k}^{n}, \quad k=1, \ldots, K
$$

$L=2$: Expected times

$$
\begin{aligned}
\left.e t_{A B}\right|_{k_{1}=k^{\prime}}= & Z^{\prime} W_{k^{\prime}}+\sum_{n=0}^{\infty} p_{n, k} Z^{\prime} Q_{k^{\prime}}^{n}\left(\sum_{k=1}^{K} d_{k^{\prime} k}\left(n V_{k}+W_{k}\right)\right) \\
= & Z^{\prime}\left[W_{k^{\prime}}+\left(\sum_{i=0}^{\infty} p_{i, k^{\prime}} i Q_{k^{\prime}}^{i}\right)\left(\sum_{k=1}^{K} d_{k^{\prime} k} V_{k}\right)\right. \\
& \left.+\left(\sum_{i=0}^{\infty} p_{i, k^{\prime}} Q_{k^{\prime}}^{i}\right)\left(\sum_{k=1}^{K} d_{k^{\prime} k} W_{k}\right)\right] \\
= & Z^{\prime}\left[W_{k^{\prime}}+C_{k^{\prime}}\left(\sum_{k=1}^{K} d_{k^{\prime} k} V_{k}\right)+B_{k^{\prime}}\left(\sum_{k=1}^{K} d_{k^{\prime} k} W_{k}\right)\right]
\end{aligned}
$$

where

$$
C_{k}=\sum_{n \geq 0} p_{n, k} n Q_{k}^{n}, \quad k=1, \ldots, K
$$

Notation summary

$$
\begin{gathered}
V_{k}:=\left[\sum_{i=0}^{\infty}\left(1-f_{i, k}\right) Q_{k}^{i}\right] R_{k} \\
W_{k}:=\left[\sum_{i=0}^{\infty}\left(1-f_{i, k}\right)(i+1) Q_{k}^{i}\right] R_{k} \\
B_{k}:=\sum_{n \geq 0} p_{n, k} Q_{k}^{n} \\
C_{k}=\sum_{n \geq 0} p_{n, k} n Q_{k}^{n}
\end{gathered}
$$

Order schedule of arbritary lenght L

For arbitrary L, it is more convenient to write the resulting recursion in terms of block-matrix-vector operations.
\mathbf{Z} the $K \times 1$ array with each entry equal to the initial distribution Z for each of the K attributes(think of \mathbf{Z}^{\prime} as its transpose, a $1 \times K$ array with entries Z^{\prime}).
B the $K \times K$ diagonal array with the B_{k} on the diagonal.
C the $K \times K$ diagonal array with the C_{k} on the diagonal with the same attention time distributions corresponding to \mathbf{B}.
I the $K \times K$ diagonal array, with identity matrices I of the appropriate size on the diagonal.
V the $K \times 1$ array with the V_{k} as entries according.
W the $K \times 1$ array with the W_{k} as entries according.

Choice probabilities and mean choice response times for arbitrary L

$$
\begin{gathered}
\mathbf{p}_{A B}=\mathbf{Z}^{\prime}\left(\left(\mathbf{I}+\mathbf{B} D^{(1)}\right) \ldots\left(\mathbf{I}+\mathbf{B} D^{(1-1)}\right)\right) \mathbf{v} \\
\text { et }_{A B}=\mathbf{Z}^{\prime}\left[\left(\left(\mathbf{C} D^{(1)}\right) \ldots\left(\mathbf{C} D^{(l-1)}\right)\right) \mathbf{v}+((\mathbf{I}+\mathbf{B} D) \ldots(\mathbf{I}+\mathbf{B} D)) \mathbf{W}\right]
\end{gathered}
$$

Notice

For the geometric distribution

- $B_{k}=r_{k} Q_{k}\left(I-\left(1-r_{k}\right) Q_{k}\right)^{-1}$
- Closed form expressions also for: Poisson, binomial, uniform

Predictions

- Parameters fixed
- $\sigma=1 ; \theta_{A}=-\theta_{B}=10$
- $\Delta=1 / 4, \tau=1 / 16 \rightarrow m=81$ (matrix size)
- $X(t)=0$
- Expected value of attention time: $E\left(\Delta T_{L}\right)=300$

Choice probabilities and choice response time

- Impact of attention time distributions
- Impact of attribute order

Case 1

- Both attributes favor choosing alternative A
- Attribute 1 with μ_{1} is considered first
- Attribute 2 with μ_{2} is considered second
- $\mu_{1}>\mu_{2}$

Example 1: $\mu_{1}=.1 ; \mu_{2}=0.01 ; k_{1}=1 ; k_{2}=2$; infinite

Det Geom Unif 1 Unif 2

Example 1: Predicted choice pattern

$\mu_{1}=.1>\mu_{2}=0.01 ; k_{1}=1 ; k_{2}=2 ;$

The more frequently chosen alternative has shorter response times than the less frequently chosen alternative, regardless of the specific parameter values, and regardless of the underlying distribution for the attention time ΔT_{L}.

Case 2

- Both attributes favor choosing alternative A
- Attribute 2 with μ_{2} is considered first
- Attribute 1 with μ_{1} is considered second
- $\mu_{1}>\mu_{2}$

Example 2: $\mu_{1}=.1 ; \mu_{2}=0.01 ; k_{1}=2 ; k_{2}=1 ;$ infinite

Det Geom Unif 1 Unif 2

Example 2: Predicted choice pattern

$\mu_{1}=.1>\mu_{2}=0.01 ; k_{1}=2 ; k_{2}=1$;
The more frequently chosen alternative has longer response times than the less frequently chosen alternative, regardless of the specific parameter values, and regardless of the underlying distribution for the attention time T.
(fast error)

Case 3

- Attribute 1 with $\mu_{1}>0$ favors choosing alternative A
- Attribute 2 with $\mu_{2}<0$ favors choosing alternative B

Example 3: $\mu_{1}=.1 ; \mu_{2}=-0.2 ; k_{1}=1 ; k_{2}=2$; infinite

Det Geom Unif 1 Unif 2

Example 4: $\mu_{1}=.1 ; \mu_{2}=-0.2 ; k_{1}=2 ; k_{2}=1$; infinite

Det Geom Unif 1 Unif 2

Examples 3 and 4: Predicted choice pattern

The model predicts preference reversals, regardless of the specific parameter values, and regardless of the underlying distribution for the attention time ΔT_{L}.
(and a rich choice response time/probability pattern)

Finite time horizon

- Examples 5, 6, and 7: similar to Examples 1, 2, and 3 but with finite time horizon

Example 5: $\mu_{1}=.1 ; \mu_{2}=0.01 ; k_{1}=1 ; k_{2}=2$; finite

Det Geom Unif 1 Unif 2

Example 6: $\mu_{1}=.1 ; \mu_{2}=0.01 ; k_{1}=2 ; k_{2}=1$; finite

Det Geom Unif 1 Unif 2

Example 7: $\mu_{1}=.1 ; \mu_{2}=-.2 ; k_{1}=1 ; k_{2}=2$; finite

Det Geom Unif 1 Unif 2

Conclusion

- If $\mu_{1}>\mu_{2}>0$ the model always predicts shorter response times for the more frequently chosen alternative, regardless of the assumed underlying attention time distribution.

Conclusion

- If $\mu_{1}>\mu_{2}>0$ the model always predicts shorter response times for the more frequently chosen alternative, regardless of the assumed underlying attention time distribution.
- If $0<\mu_{1}<\mu_{2}$ the model always predicts faster responses for the less frequently chosen alternative, regardless of the assumed underlying attention time distribution.

Conclusion

- If $\mu_{1}>\mu_{2}>0$ the model always predicts shorter response times for the more frequently chosen alternative, regardless of the assumed underlying attention time distribution.
- If $0<\mu_{1}<\mu_{2}$ the model always predicts faster responses for the less frequently chosen alternative, regardless of the assumed underlying attention time distribution.
- If $\mu_{1}<0<\mu_{2}$ the model predicts preference reversals, regardless of the assumed underlying attention time distribution.

Conclusion

- With finite decision horizon, the model predicts a probability $p_{0}>0$ of not deciding, regardless of the assumed underlying attention time distribution.

Conclusion

- With finite decision horizon, the model predicts a probability $p_{0}>0$ of not deciding, regardless of the assumed underlying attention time distribution.
- The specific attention time distribution may be related to the experimental paradigm.
- E.g., tracking eye movements: the sequence of attribute consideration and the switching times are directly observable \longrightarrow deterministic or a uniform distribution with a small variance
- E.g., all attributes are shown simultaneously (complex objects) and attention may shift at any moment in time \longrightarrow a geometric distribution or a uniform distribution with a large variance

References

- Diederich, A. \& Mallahi-Karai, K. (2018). Stochastic Methods for Modeling Decision-Making. In: Batchelder, W., Colonius, H., and E. N. Dzhafarov (Eds). New Handbook of Mathematical Psychology Vol. II Modeling and Measurement. Cambridge University Press.
- Diederich, A. \& Oswald, P. (2014). Sequential sampling model for multiattribute choice alternatives with random attention time and processing order. Frontiers in Human Neuroscience, doi: 10.3389/fnhum. 2014.00697

