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Multiattribute choice alternatives: Basic assumptions

For each attribute of the choice alternatives a different
accumulation process takes place.

Attention switches from attribute to another and attributes are
processed serially
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Multi-stage decision model

Example: Two choice alternatives with three attributes
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Schedules

Order schedule: specific order in which attributes are considered

Time schedule: specific times attention is switched from one
attribute to another one

Part of the model parameters
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Times

Attention switching times

T0 = Tstart = 0 < T1 < T2 < . . . < TL = Tend ≤ ∞

Time horizon: Tend maximum duration of the decision process

∆Tl = (Tl−1,Tl ] : the l-th attention time interval.
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Schedules

Finite number of attributes: k = 1, . . . ,K

Definition

A time and order schedule consists of a sequence {Tl}l=1,...,L of attention
switching times, and a sequence {kl ∈ {1, . . . ,K}}l=1,...,L of attribute
indices which specifies that during the attention time interval ∆Tl the
kl -th attribute is considered. At attention switching time Tl ,
l = 1, . . . , L− 1, attention switches from attribute kl to attribute kl+1.

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 7 / 65



Process assumptions

The sampling process X (t) is specified by a sequence of attention
switching times

T0 = Tstart = 0 < T1 < T2 < . . . < TL−1 < TL = Tend ≤ +∞

The process X (t) determined by such a schedule is a piecewise
OUP or Wiener process.

For t ∈ [Tl−1,Tl ] the process is determined by

dX (t) = (δkl − γklX (t))dt + σdW (t)

or
dX (t) = µkl − X (t)dt + σdW (t)
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Time and order schedule

Time schedule: deterministic or random

Order schedule: deterministic or random
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Example: Deterministic time and order schedule of length
L = 4
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Three different attributes (K = 3)

Attribute order (1, 2, 1, 3), i.e., k1 = 1, k2 = 2, k3 = 1, k4 = 3
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Random time and order schedule

Time: random variable T with a given distribution

Order: stochastic K × K matrices D(l) such that d
(l)
k ′k ≥ 0 describes

the probability with which attention switches from the k ′-th attribute
to the k-th attribute at switching time Tl , l = 1, . . . , L− 1
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Order schedule – Example: Two attributes

d
(l)
kk = 0 to avoid a no switching

For two attributes (K = 2), this leads to d
(l)
11 = d

(l)
22 = 0 and

d
(l)
12 = d

(l)
21 = 1

The attribute sequence is either (1, 2, 1, 2, . . .) or (2, 1, 2, 1, . . .),
depending on whether k1 = 1 or k1 = 2
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Order schedule – Example: Three attributes

For three attributes (K = 3) and L = 3, setting

D(1) =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 , D(2) =

 0 1 0
1 0 0

3/4 1/4 0

 ,
results for k1 = 1 in order sequences (1, 2, 1), (1, 3, 1), (1, 3, 2) with
probability 1/2, 3/8, 1/8, respectively.

Note, matrix D(1) models the situation when no preference or bias in
switching from any given to any other attribute is assumed.
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Order schedule – Example: Three attributes

For three attributes (K = 3) and L = 3, setting

D(1) =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 , D(2) =

 0 1 0
1 0 0

3/4 1/4 0

 ,
results for k1 = 1 in order sequence (1, 2, 1) with probability 1/2.
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Order schedule – Example: Three attributes

For three attributes (K = 3) and L = 3, setting

D(1) =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 , D(2) =

 0 1 0
1 0 0

3/4 1/4 0

 ,
results for k1 = 1 in order sequence (1, 3, 1) with probability 3/8.
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Order schedule – Example: Three attributes

For three attributes (K = 3) and L = 3, setting

D(1) =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 , D(2) =

 0 1 0
1 0 0

3/4 1/4 0

 ,
results for k1 = 1 in order sequence (1, 3, 2) with probability 1/8.
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Attention times

Attention time, i.e., attention spent on an attribute,
∆TL = [Tl−1 − Tl ]

Deterministic
Geometric distribution (Pr(∆TL = n) = (1− r)n−1r , n = 1, 2, . . .)
Poisson (Pr(∆TL = n) = e−λ λn

n! , n = 0, 1, 2, . . . ,)

Binomial Pr(∆TL = n) = N!
n!(N−n)!p

n(1− p)N−n, n = 0, 1, . . . ,N,

Uniform distribution (Pr(∆TL = n) = 1
2M+1 , n = N −M, . . . ,N + M)

Example

E (∆TL) = 300
Unif 1: M =

√
N ≈ 18

Unif 2: M = N/2 = 150
Unif 3: M = N − 1 = 299
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Attention time distributions ∆TL
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Implementation

Stochastic process approximation by discrete time, finite state space
Markov chain

Markov chain – matrix form
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Deriving the Wiener process

Brownian bridge; Kolmogorov-Smirnov statistics

Feynman-Kac formula

Stochastic Fourier analysis

...

Scaled random walk (RW)
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Scaled random walk

The continuous state space S = [θA, θA] of the Wiener process (or
OUP) is replace by a finite state space

S = {−mB∆, . . . ,−2∆,−∆, 0,+∆,+2∆, . . . ,+mA∆},

with θA ≈ mA∆ and θB ≈ −mB∆, written as

S = {xi := i∆ : i ∈ I}, I = {−mB , . . . ,mA} ⊂ Z,

and m = mA∆ + mB∆ + 1 states.

∆: step-size of change in evidence
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Scaled random walk

The time space (parameter set) of a RW is {0, 1, 2, 3, . . .}.
Given a time interval [0, t]: Divide this into subintervals of length τ
→ t/τ such subintervals

The process makes a step at times τ, 2τ, 3τ, . . ..
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Scaled random walk

Let Xn denote the amount of information accumulated up to time
unit n ≈ t/τ :

Xn =
n∑

i=1

ξi

Assume that the distribution of the random variable ξ is i.i.d with

Pr [ξi = +∆] = Pr [ξi = −∆] = 0.5.

Set X0 = 0

Set ∆ =
√
τ
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Standard Wiener process

If τ → 0, then Xt/τ converges in distribution to a random variable Wt

called standard Wiener process and has continuous time set and
continuous state space.

Wt ∼ N (0, t)
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Wiener process with drift

The random variable Wt is multiplied by a constant, σ, σ > 0, and a
linear function of time, µt, is added, where µ, can be positive,
negative or zero, and giving a particular initial value X0 = z results in

Xt = z + µt + σWt .

Xt ∼ N (z + µt, σ2t)
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OUP and birth-death chain

Similar procedures work for the OUP approximation
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MC matrix approach

Wiener
Probabilities to move up or down by ∆ in small time interval τ ,
∆ = σ

√
τ

p
(k)
i ,i−1 =

1

2

(
1− µk

√
τ

σ

)
, p

(k)
i ,i+1 =

1

2

(
1 + µk

√
τ

σ

)
,

OUP
Probabilities to move up or down by ∆ in small time interval τ ,
∆ = σ

√
ατ

pj ,i =


1
2α

(
1 + (δk − γkxj)

√
τ
σ

)
, j = i + 1,

1
2α

(
1− (δk − γkxj)

√
τ
σ

)
, j = i − 1,

1− pi ,i+1 − pi ,i−1, j = i ,
0, |j − i | > 1.

kth attribute
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MC matrix approach

Pk =

[
I 0

Rk Qk

]

=

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0

p
(k)
21 0 p

(k)
22 p23 · · · 0 0

0 0 p
(k)
32 p

(k)
33 · · · 0 0

0 0 0 p
(k)
43 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · p
(k)
m−3,m−2 0

0 0 0 0 · · · p
(k)
m−2,m−2 p

(k)
m−2,m−1

0 p
(k)
m−1,m 0 0 · · · p

(k)
m−1,m−2 p

(k)
m−1,m−1
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Submatrix and States

I: Identity matrix, corresponds to the absorbing states associated with
the two decision thresholds

Qk : contains the transient probabilities, corresponding to the
updating evidence process

Rk : contains the one-step transition probabilities from the transient
to the absorbing states

The first column vector of the matrix Rk (denoted by RB,k) contains
the transient probabilities for reaching alternative B, whereas the
second RA,k contains the ones for alternative A
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Initial distribution

Z: starting position of the process over the transient states, S∗,
before the decision process begins.

Fixed state i0, – the initial state, Zj = 1 if j = i0, Zj = 0 if j 6= i0.

Biases: X0 > 0 or X0 < 0
Unbiased: X0 = 0

Randomly located in in the state space according to a probability
distribution Z on S∗, – initial distribution, 0 ≤ zi ≤ 1 and

∑
i zi = 1

Biased: Probability mass on positions j > (m − 1)/2 or on positions
j < (m − 1)/2
Unbiased: on position j = (m − 1)/2
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Distribution and moments for one attribute

n = t/τ

Probability distribution

Pr [T = n ∩ choose A] = Z′Qn−1RA, n = 1, 2, . . . ,∞,

Probability of choosing A

Pr(TA <∞) ≈ pA = Z′
∞∑
n=1

Qn−1RA = Z′(I−Q)−1RA

r -th moment for the distribution T to choose alternative A

E [T r | A] ≈ τ

Pr(A)
Z′
∞∑
n=1

nrQn−1RA

Mean RT

E [T | A] ≈ ETA :=
τ

Pr(A)
Z′(I−Q)−2RA
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Multiple attributes – Deterministic time and order schedule

k attributes, L attention times

Probability to choose A

pA = Z ′
n1∑
i=1

Q i−1
k1

RA,k1 + Z ′Qn1
k1

n2∑
i=n1+1

Q
i−(n1+1)
k2

RA,k2 + . . .

. . .+ Z ′Qn1
k1
. . .Q

nL−1−nL−2

kL−1

nL∑
i=nL−1+1

Q
i−(nL−1+1)
nL RA,kL ,
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Multiple attributes – Deterministic time and order schedule

k attributes, L attention times

Mean RT to choose A

ETA =
τ

pA

Z ′ n1∑
i=1

iQ i−1
k1

RA,k1 + Z ′Qn1
k1

n2∑
i=n1+1

iQ
i−(n1+1)
k2

RA,k2 + . . .

. . .+ Z ′Qn1
k1
. . .Q

nL−1−nL−2

kL−1

nL∑
i=nL−1+1

iQ
i−(nL−1+1)
nL RA,kL

 .
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Multiple attributes – Random time schedule

Probability mass distribution (pdf)

Pr(Tat = n) = pn,k

Cumulative distribution function (cdf)

Pr(Tat ≤ n) = fn,k :=
n∑

i=0

pi ,k , n = 0, 1, . . .

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 34 / 65



L = 1 : Random time schedule – Probability

L = 1, attribute k

pA,k =
∞∑
n=1

pn,kZ
′

(
n∑

i=1

Q i−1
k

)
RA,k

= Z ′

[ ∞∑
i=1

( ∞∑
n=i

pn,k

)
Q i−1

k

]
RA,k

= Z ′

[ ∞∑
i=0

(1− fi ,k)Q i
k

]
RA,k
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Notation

pAB,k := [pB,k , pA,k ]

pAB,k = Z ′Vk , Vk :=

[ ∞∑
i=0

(1− fi ,k)Q i
k

]
Rk .
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Example: Geometrically distributed attention time

Geometric distribution

Pr(Tat = n) = (1− r)n−1r , n = 1, 2, . . . ,

Vk =
∞∑
i=0

 ∞∑
j=i+1

rk(1− rk)j−1

Q i
kRk

=
∞∑
i=0

(1− rk)iQ i
kRk

= (I − (1− rk)Qk)−1Rk
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Example: Uniform distribution

Uniformly distributed attention time

fi ,k =
i − N + M + 1

2M + 1
and (1− fi ,k) =

M + N − i

2M + 1

(the surviver function).

Vk =

(
N−M−1∑

i=0

Q i
k +

N+M−1∑
i=N−M

N + M − i

2M + 1
Q i

k

)
Rk .
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L = 1 : Random time schedule – Expected time

L = 1, attribute k

etA,k =
∞∑
n=1

pn,k

(
n−1∑
i=0

(i + 1)Z ′Q i
k

)
RA,k

= Z ′

[ ∞∑
i=0

( ∞∑
n=i+1

pn,k

)
(i + 1)Q i

k

]
RA,k

= Z ′

[ ∞∑
i=0

(1− fi ,k)(i + 1)Q i
k

]
RA,k .

etAB,k := [etB,k , etA,k ] = Z ′Wk

Wk :=

[ ∞∑
i=0

(1− fi ,k)(i + 1)Q i
k

]
Rk
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L = 2 : Distribuitons

For each fixed k1 = k ′ and n1 = T ′at probabilities for reaching a
decision after n1 are given by[

Pr(T ′at <
TB

τ
<∞),Pr(T ′at <

TA

τ
<∞)

]
n1=T ′at ,k1=k ′

≈
K∑

k=1

dk ′kZ
′Qn1

k ′ Vk = Z ′Q
T ′at
k ′ (

K∑
k=1

dk ′kVk)
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L = 2 : Probabilities

[pB , pA]k1=k ′ = Z ′Vk ′ +
∑
n≥0

pn,k ′Z
′Qn

k ′

(
K∑

k=1

dk ′kVk

)

= Z ′

Vk ′ +

∑
n≥0

pn,k ′Q
n
k ′

( K∑
k=1

dk ′kVk

)
= Z ′

[
Vk ′ + Bk ′

(
K∑

k=1

dk ′kVk

)]
, k ′ = 1, . . . ,K ,

where
Bk =

∑
n≥0

pn,kQ
n
k , k = 1, . . . ,K ,
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L = 2 : Expected times

etAB |k1=k ′ = Z ′Wk ′ +
∞∑
n=0

pn,kZ
′Qn

k ′

(
K∑

k=1

dk ′k(nVk + Wk)

)

= Z ′

[
Wk ′ +

( ∞∑
i=0

pi ,k ′ iQ
i
k ′

)(
K∑

k=1

dk ′kVk

)

+

( ∞∑
i=0

pi ,k ′Q
i
k ′

)(
K∑

k=1

dk ′kWk

)]

= Z ′

[
Wk ′ + Ck ′

(
K∑

k=1

dk ′kVk

)
+ Bk ′

(
K∑

k=1

dk ′kWk

)]
,

where
Ck =

∑
n≥0

pn,knQ
n
k , k = 1, . . . ,K .
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Notation summary

Vk :=

[ ∞∑
i=0

(1− fi ,k)Q i
k

]
Rk

Wk :=

[ ∞∑
i=0

(1− fi ,k)(i + 1)Q i
k

]
Rk

Bk :=
∑
n≥0

pn,kQ
n
k

Ck =
∑
n≥0

pn,knQ
n
k
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Order schedule of arbritary lenght L

For arbitrary L, it is more convenient to write the resulting recursion in
terms of block-matrix-vector operations.

Z the K × 1 array with each entry equal to the initial distribution Z for
each of the K attributes(think of Z′ as its transpose, a 1× K array
with entries Z ′).

B the K × K diagonal array with the Bk on the diagonal.

C the K × K diagonal array with the Ck on the diagonal with the same
attention time distributions corresponding to B.

I the K × K diagonal array, with identity matrices I of the appropriate
size on the diagonal.

V the K × 1 array with the Vk as entries according.

W the K × 1 array with the Wk as entries according.

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 44 / 65



Choice probabilities and mean choice response times for
arbitrary L

pAB = Z′
(

(I + BD(1)) . . . (I + BD(l−1))
)

V

etAB = Z′
[(

(CD(1)) . . . (CD(l−1))
)

V + ((I + BD) . . . (I + BD)) W
]

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 45 / 65



Notice

For the geometric distribution

Bk = rkQk(I − (1− rk)Qk)−1

Closed form expressions also for: Poisson, binomial, uniform
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Predictions

Parameters fixed

σ = 1; θA = −θB = 10
∆ = 1/4, τ = 1/16→ m = 81 (matrix size)
X (t) = 0

Expected value of attention time: E (∆TL) = 300
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Choice probabilities and choice response time

Impact of attention time distributions

Impact of attribute order
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Case 1

0

Boundary for "B" 

Boundary for "A" 

 t

 t
1

Attribute 1 Attribute 2

 µ
1
 > 0  0 < µ

2
 < µ

1

X
(t

)

Both attributes favor
choosing alternative A

Attribute 1 with µ1 is
considered first

Attribute 2 with µ2 is
considered second

µ1 > µ2
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Example 1: µ1 = .1; µ2 = 0.01; k1 = 1; k2 = 2; infinite
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Example 1: Predicted choice pattern

µ1 = .1 > µ2 = 0.01; k1 = 1; k2 = 2;

The more frequently chosen alternative has shorter response times than
the less frequently chosen alternative, regardless of the specific parameter
values, and regardless of the underlying distribution for the attention time
∆TL.
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Case 2

0

Boundary for "B" 

Boundary for "A" 

 t
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X
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Both attributes favor
choosing alternative A

Attribute 2 with µ2 is
considered first

Attribute 1 with µ1 is
considered second

µ1 > µ2
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Example 2: µ1 = .1; µ2 = 0.01; k1 = 2; k2 = 1; infinite
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Example 2: Predicted choice pattern

µ1 = .1 > µ2 = 0.01; k1 = 2; k2 = 1;

The more frequently chosen alternative has longer response times than
the less frequently chosen alternative, regardless of the specific parameter
values, and regardless of the underlying distribution for the attention time
T .

(fast error)
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Case 3

0

Boundary for "B" 

Boundary for "A" 

 t

 t
1

Attribute 1 Attribute 2

 µ
1
 > 0  µ
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 < 0

X
(t

)

Attribute 1 with µ1 > 0
favors choosing alternative A

Attribute 2 with µ2 < 0
favors choosing alternative B
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Example 3: µ1 = .1; µ2 = −0.2; k1 = 1; k2 = 2; infinite
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Example 4: µ1 = .1; µ2 = −0.2; k1 = 2; k2 = 1; infinite
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Examples 3 and 4: Predicted choice pattern

The model predicts preference reversals, regardless of the specific
parameter values, and regardless of the underlying distribution for the
attention time ∆TL.
(and a rich choice response time/probability pattern)
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Finite time horizon

Examples 5, 6, and 7: similar to Examples 1, 2, and 3 but with finite
time horizon
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Example 5: µ1 = .1; µ2 = 0.01; k1 = 1; k2 = 2; finite
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Example 6: µ1 = .1; µ2 = 0.01; k1 = 2; k2 = 1; finite
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Example 7: µ1 = .1; µ2 = −.2; k1 = 1; k2 = 2; finite
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Conclusion

If µ1 > µ2 > 0 the model always predicts shorter response times for
the more frequently chosen alternative, regardless of the assumed
underlying attention time distribution.

If 0 < µ1 < µ2 the model always predicts faster responses for the less
frequently chosen alternative, regardless of the assumed underlying
attention time distribution.

If µ1 < 0 < µ2 the model predicts preference reversals, regardless of
the assumed underlying attention time distribution.
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Conclusion

With finite decision horizon, the model predicts a probability p0 > 0
of not deciding, regardless of the assumed underlying attention time
distribution.

The specific attention time distribution may be related to the
experimental paradigm.

E.g., tracking eye movements: the sequence of attribute consideration
and the switching times are directly observable −→ deterministic or a
uniform distribution with a small variance
E.g., all attributes are shown simultaneously (complex objects) and
attention may shift at any moment in time −→ a geometric
distribution or a uniform distribution with a large variance
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