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Overview

e Part 1

o Motivation — 3 Examples
e Basic assumptions of sequential sampling models (as used here)
e Multi-stage sequential sampling models
e Part 2
e Time and order schedules
Implementation
Predictions
Impact of attention time distribution
Impact of attribute order
o Part 3 and 4

e Applications
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Example 2, revisited

Frames, Biases, and Rational Decision-Making in the Human
Brain

Benedetto De Martino, Dharshan Kumaran, Ben Seymour, and Raymond J. Dolan

Abstract

Human choices are remarkably susceptible to the manner in which options are presented. This so-
called “framing effect” represents a striking violation of standard economic accounts of human
rationality, although 1ts underlyimg neurobiology 1s not understood. We found that the framimng
effect was specifically associated with amygdala activity, suggesting a key role for an emotional
system in mediating decision biases. Moreover, across individuals, orbital and medial prefrontal
cortex activity predicted a reduced susceptibility to the framing effect. This finding highlights the
importance of mcorporating emotional processes within models of human choice and suggests
how the brain may modulate the effect of these biasing influences to approximate rationality.

Science, 2006
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Framing effect

Kahneman & Tversky, 1979
Tversky & Kahneman, 1981

Framing effect: cognitive bias, in which people react to a particular
choice in different ways depending on how it is presented; e.g. as a loss or
as a gain.

@ Preference reversal

@ Shift in preference

(cf. externality, description-invariance)
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Risky choice framing

Choice between two options
Lotteries

Options A is typically risk less

Option B is risky

Situation 1 Outcomes are framed as gains (positive frame)

Situation 2 Outcomes are framed as losses (negative frame)
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Gain frame

Given: 100 P

You are given 100 points @ | °

Keep
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Loss frame

Given: 100 P

You are given 100 points

Lose
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Dual process models

Applied to cognitive processes including reasoning and judgments

J.St.B.T. Evans (2008)

Adele Diederich

References System 1 System 2
Fodor (1983, 2001) Input modules Higher cognition
Schneider & Schiffrin (1977) Automatic Controlled
Epstein (1994), Epstein & Pacini (1999) Experiential Rational
Chaiken (1980), Chen & Chaiken (1999) Heuristic Systematic
Reber (1993), Evans & Over (1996) Implicit/tacit Explicit

Evans (1989, 2006) Heuristic Analytic

Sloman (1996), Smith & DeCoster (2000) | Associative Rule based
Hammond (1996) Intuitive Analytic
Stanovich (1999, 2004) System 1 (TASS) System 2 (Analytic)
Nisbett et al. (2001) Holistic Analytic

Wilson (2002) Adaptive unconscious | Conscious
Lieberman (2003) Reflexive Reflective

Toates (2006) Stimulus bound Higher order
Strack & Deustch (2004) Impulsive Reflective

(JUB)
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Dual process models

e System 1 Intuitive (fast, emotional, biased response, ... )

e System 2 Deliberate (slow, rational, normative response .. .)

Most popular since Kahneman (2011), Thinking, fast and slow
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Dual process models

Problems for most approaches:
@ Verbal — allows no quantitative predictions
@ Unclear about processing
@ Reverse inference
For the few formal models (Loewenstein et al. 2011, Mukherjee, 2010):
@ No time mechanism

@ (Unclear about processing)
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@ Consequences of choosing each option are compared continuously
over time — preferences are constructed

@ Preference accumulation process with preference update

@ Random fluctuation in accumulating preference strength
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Preference Process

Preference strength is updated from one moment, t, to the next, (t + h)
by an reflecting the momentary comparison of consequences produced by
imagining the choice of either option G or S with

P(t + h) = P(t) + Vi(t + h),
V(t) : input valence
V(t) = VO(t) — V(1)

VC(t) : momentary valence for the gamble

V3(t) : momentary valence for the sure option
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For the example

@ 6 trials
o E(Sure) = E(Gamble), risk neutral
e E(Sure) # E(Gamble), risk attitudes
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Gain and Loss frame

Gain frame Loss frame

System 1 System 2 0 System 1 System 2 0

@ Attention switches from system 1 to system 2 at time t;

@ Switching time may be deterministic or random (according to
distribution)

@ Solid lines indicate the drift rates
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Risk attitudes

Risk averse Risk seeking

System 1 System 2 S System 1 System 2 0

Gain
frame

Loss
frame

P(t)
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@ Prediction 1: The size of the framing effect is a function of the time
the DM operates in System 1.

@ Prediction 2: The size of the framing effect is a function of the time
(limit) the DM has for making a choice.
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Prediction 1: Attention times

The size of the framing effect is a function of the time the DM operates in

System 1.
System 1 System 2 SG System 1 System 2 SG
1
t
t 6,

Gain frame
System 1: drift rate < 0 — Sure
System 2: drift rate = 0 — indifferent between Gamble and Sure
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Basic assumptions — Time limit

"Gamble"
"Gamble"
al time (t) = o W N
o time (t)
YR v A
"Sure"
"Sure"
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Prediction 2: Deadlines

The size of the framing effect is a function of the time (limit) the DM has
for making a choice.

System 1 System 2 0

System 1 System 2 9

Gain frame
System 1: drift rate < 0 — Sure
System 2: drift rate = 0 — indifferent between Gamble and Sure
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Modeling the drift rates — Example 1

@ System 1
Preferences in System 1 are constructed according to prospect
theory

o System 2
Preferences in System 2 are constructed according to expected
utility theory
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System 1: Prospect Theory

@ The value V of a simple prospect that pays x (here the starting
amount) with probability p (and nothing otherwise) is given by:

V(x,p) = w(p)v(x)
with probability weighting function

pY
P+ (1= p))t

w(p) = (

and value function

x% if x>0
“Ax|? ifx<0
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System 1: Prospect Theorie

Weighting function for p Value function for x

—p
—w(p)

Reference point

p X
Ve w(p)ve(x)
nga[n - W(p) vsga[n (X)
Vsloss = W(p) vsloss (X)
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System 2: Expected Utility Theorie

Probability Utility
p X
p u(x) = x

EU(x,p) =p-u(x)=p-x

March 18 — 22, 2019 23/
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Mean difference in valence (drift rate)

@ System 1 — gain frame

Mg = V6 = Vi
@ System 1 — loss frame

Mliss = V6 = VSios,

@ System 2
w2 = EU(G) — EU(S) =0
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For all predictions

Given: 100 P

You are given 100 points @ | °

Amount given (reference point) r: 25, 50, 75, 100
Probability of keeping r: 0.2,0.4,0.6,0.8
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Predictions — Example 1

Parameters (PT from Tversky & Kahneman, 1992)

System 1 System 2
a = .88 no parameters

£ = .88
A=1225
v =.61
boundary: 6

attention time: t, E(T1)
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Predictions 1: The size of the framing effect is a function

of the time the DM operates in System 1.

0 = 15;
t; = 0, 100, 500, oo
Pr(keep)
0.2 4 0.6 0.8
1160098 6000 000 °
09t AA’A P s pg Loss frame
0% A o A SN (open)
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07} 4 0 Pd x ]
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3 oo ¢ & o ©
Eosl 644 2

05 - - - - .
S X ‘f P 3 e,
“osl “ \A‘A A\A Gain frame

° N :
\ ) A A filled
. . Aa (filled)
0.1 . .
ol ®-9 %o

255075100 255075100 2550 75100 25 50 75100
Amount given
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Predictions 1: Attention times

Pr(keep)
0.2 08
) 15- 300
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Predictions 2: The size of the framing effect is a function

of the time (limit) the DM has for making a choice.

Pr(keep)
0.2 0.6 0.8

. %W'\w ,,:,;,

Woiams:

255075100 255075100 255075100 255075100
Amount given

t; = 100;
6 =10, 15, 20

Loss frame

(open)

Gain frame
(filled)
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Predictions 2: Time limits

0.2 0.4 0.6 0.8
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Modeling the drift rates — Example 2

e System 1
Preferences in System 1 follow PT.
@ System 2
Preferences in System 2 are a weighted average of PT and EU.
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System 2: Weighted average of PT and EU

o = w-(Ve—Vs)+(1—-w) (EV(G)— EV(S))
= W-51+(1—W)-52.

@ Qualitative predictions remain as before.
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Modeling the drift rates — Example 3

@ System 1
Preferences in System 1 are modeled according to a Motivational
function weighted by Willpower strength and Cognitive demand
(MWOC). (Loewenstein et al.,2015)

o System 2
Preferences in System 2 are modeled according to EU.
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System 1. MWC

e Motivational function M(x, a); a captures the intensity of affective
motivations

@ Function h(W, o) reflects the willpower strength W and cognitive
demands o.
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° M(x,a) =3 w(pi)v(xa)

e w(p) is a probability-weighting function

w(p) = c+ bp with w(0) =1,w(l) =1, and0<c<1-b

o v(x,a) is a value function that incorporates loss aversion

~Jau(x) ifx>0
V(X7a)_{a)\u(x) if x<0

e h(W,o) is not specified but meant to be decreasing in W and
increasing in o.

V(x) =) u(xi) +h(W,0) -y wipi)v(xi,a)
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WMC: static-deterministic model

For predicting choice probabilities and choice responses time

— dynamic-stochastic framework
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System 1 and System 2

o MWC model assumes that both processes operate simultaneously.
@ Therefore, System 1 and System 2 merge into a single drift rate and
the two stages basically collapse into one single stochastic process.
@ With V¢ and Vg indicating the subjective value of the gamble and
the sure option, respectively, the mean difference in valences (drift
rates) in a gain and loss frame become
5gain = VG - VS

gain

6/055 - VG _VS/ossv
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Guo, Trueblood, Diederich (2017), Psychological Science
@ 2 x (time limits: no, 1 sec) x 2 (frames: gain, loss)
@ 72 gambles per condition, collapsed to 9 "gambles” per condition
@ 8 catch trials per condition

@ 195 participants
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Models tested

Number of
Model parameters RMSEA
PTx 8 1.43
PT with additional scaling factor 9 44
Dual with PT and EU 10 282
Dual with PT and weighted PT and EU 11 .283
MWCj 10 1.40
MWC with additional scaling factor 11 .54
MWCostages 12 49
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Model acccounts: Probabilities

no TP TP
Pr(keep) Pr(keep)
027 0.42 057 027 0.42 057
075
Gain R
%
frame 5os
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o o
Mwe Rz A
MWC, - £ ;-_’ oA
_ -7 P
g | g bt
Loss 8
o
frame
025
32 56 79 82 56 79 32 56 79 32 56 79 32 56 79 32 56 79
Amount given Amount given
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Model acccounts: RT —no TP

Pr(keep) Pr(keep)
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Model acccounts:

Pr(keep) Pr(keep)
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Further directions

Baron & Giircay (2017) for moral judgments
RT = by + b1AD + byU + b3AD - U

Reflective strength

Intuitive strength
Reflactive response boundary

RAesporee srength
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Example 1, revisited

Influence of payoffs and discrimination with manipulated processing
orders
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Payoffs and discrimination

@ o © O @ ©
Q@0 00 -
= =z = |z = ¢

160 pixels i
100 pixels 100 pixels

(+ 6 pixels)

Diederich & Busemeyer (2006); Diederich (2008), with time constraints
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Attributes and task

o Attribute 1: Payoffs (Same, Different, Neutral)
o Attribute 2: Lines (same, different)

e Task: "same" /"different” judgment
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Presentation orders

@ O
Condition PL + e 6 —_— —

= #
Condition LP + —_— — e a
= #
Condition C + ® ©O
= %
I 7 T T T 7 I
1500 ms 500 ms 500 ms 1500 ms
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All conditions

Lines stimulus Payoff matrix Presentation order

different Different (D) Payoff-Lines (PL)

same Same (S) Lines—Payoff (LP)
Neutral (N)  Payoff/Lines (C)

2 x 3 x 3 factorial design
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Predictions for Payoff-Line example

u1 = .1,—.1,0 for payoffs D, S, N; up = —.05 for line same

Payoff - Lines Lines - Payoff
1 1
0.8 0.8
> 2
% 0.6 Z 06
< [}
Q
S 04 S 04
o o
0.2 0.2
0- 0~
Different Same Neutral Different Same Neutral
120 120
E 100 £ 100
= 80 = 80
60 60
Different Same Neutral Different Same Neutral
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Model specification

@ Order schedule: The attribute sequence is either (1,2,1,2,...) or
(2,1,2,1,...), depending on whether k1 = 1 or k; =2

o Time schedule: Geometric distribution
Pr(T=n)=(1-r)""tr, n=1,2,...
Expected value: E(T)=1/r
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Payoffs and Lines: Parameter estimation

Two stages
@ Parameter estimated simultaneously for conditions PL and LP

e Cross validation for condition C (some of the parameters same as for
PL and LP)
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Payoffs and Lines: Models tested

e M1: Payoffs processed first and then switch to the lines (PL and C).
@ M2: Lines processed first and then switch to the payoffs (LP and C).

@ M3: Payoffs processed first, switch to the lines and then switch back
and forth between attributes (C).

@ M4: Lines processed first, switch to the payoffs and then switch back
and forth between attributes (C).

@ M5: Start with any attribute and switch back and forth between
them (C).
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Payoffs and Lines: Parameters estimated for PL and LP

Payoffs KPD, KPS
Lines PLs, HLd
Attention switching ri2, 1

Decision bound OpL, O1p
Residual RPLv RLP

from 36 data points
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Payoffs and Lines: Parameters estimated for C

Cross validation

Attention switching ri» or/and ry
Decision bound Oc
Residual Rc

from 18 data points
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Results — Group 1

Lines different same

Choice probability (incorrect)

Mean RT (correct) [s]

Mean RT (incorrect) [s]

Payoff-Lines ~ Lines-Payoff  Combined Payoff-Lines  Lines-Payoff Combined Payof-Lines  Lines-Payoff Combined
0.8 - 13 J
06 R ¢ 14
0.4 -
0.9 0.9 /” v -
02 | $
0.7 0.7 +
0
D S N D S N D S N D S N D S N D S N D S ND S N D S N
Payoff-Lines ~ Lines-Payoff  Combined Payof-Lines  Lines-Payoff Combined Payof-Lines  Lines-Payoff ~Combined
0.8 - 13 - 13
06 T4 1.1
0.4 J
0.9 - 0.9 m
02 - /ﬂd
0.7 - 07
0
D S D S N S N D 8§ N D S N D S N D 8 N D S N D S N
Payoff conditions Payoff conditions Payoff conditions
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Results — Group 3

Lines different same

Choice probability (incorrect)

Mean RT (correct) [s]

Mean RT (incorrect) [s]

Payoff-Lines  Lines-Payoff Combined Payoff-Lines  Lines-Payoff Combined Payof-Lines  Lines-Payoff Combined
08 13 /\# 13
0.6
+ 11 11 -
0.9 L m 1
0.2
0.7 0.7
0
D S N D S N D S N D S N D S N D S N D S ND S N D S N
Payoff-Lines  Lines-Payoff Combined Payof-Lines  Lines-Payoff Combined Payof-Lines  Lines-Payoff Combined
08 13 13 /\"i
0.6
1.1 11
0.4 \/1' oA N/# K#/#
v #\/’ 09 - 09
0.2
0.7 -07
0
D S S S N D S D S N S N D s D S N S N
Payoff conditions Payoff conditions Payoff conditions
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For all groups:

@ M3: Payoffs processed first, switch to the lines and then switch back
and forth between attributes (C).
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Response patterns

Group  Stimuli Presentation
PL LP C

obs pred obs pred obs pred

PDLd f + s + f +

PS Ld f + s + f +

1 PN Ld f — s — f —
PDLs f + s + f +

PS Ls f + s + f +
PNLs s + f + s +
PDLd f + s + f +

PS Ld s + f + f -

3 PNLd f — s - f -
PD Ls s + f + s +

PS Ls f + s + f +

PN Ls s + f + s +
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