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Overview

Part 1

Motivation – 3 Examples
Basic assumptions of sequential sampling models (as used here)
Multi-stage sequential sampling models

Part 2

Time and order schedules
Implementation
Predictions
Impact of attention time distribution
Impact of attribute order

Part 3 and 4

Applications
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Example 2, revisited

Science, 2006
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Framing effect

Kahneman & Tversky, 1979
Tversky & Kahneman, 1981

Framing effect: cognitive bias, in which people react to a particular
choice in different ways depending on how it is presented; e.g. as a loss or
as a gain.

Preference reversal

Shift in preference

(cf. externality, description-invariance)
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Risky choice framing

Choice between two options

Lotteries

Options A is typically risk less

Option B is risky

Situation 1 Outcomes are framed as gains (positive frame)

Situation 2 Outcomes are framed as losses (negative frame)
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Gain frame

0 60100

Given: 100 P

Keep
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Loss frame

0 -40100

Given: 100 P

Lose
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Dual process models

Applied to cognitive processes including reasoning and judgments

J.St.B.T. Evans (2008)
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Dual process models

System 1 Intuitive (fast, emotional, biased response, . . . )

System 2 Deliberate (slow, rational, normative response . . .)

Most popular since Kahneman (2011), Thinking, fast and slow
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Dual process models

Problems for most approaches:

Verbal – allows no quantitative predictions

Unclear about processing

Reverse inference

For the few formal models (Loewenstein et al. 2011, Mukherjee, 2010):

No time mechanism

(Unclear about processing)
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Basic assumptions

Consequences of choosing each option are compared continuously
over time → preferences are constructed

Preference accumulation process with preference update

Random fluctuation in accumulating preference strength
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Preference Process

Preference strength is updated from one moment, t, to the next, (t + h)
by an reflecting the momentary comparison of consequences produced by
imagining the choice of either option G or S with

P(t + h) = P(t) + Vi (t + h),

V (t) : input valence

V (t) = V G (t)− V S(t)

V G (t) : momentary valence for the gamble

V S(t) : momentary valence for the sure option
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For the example

6 trials

E(Sure) = E(Gamble), risk neutral

E(Sure) 6= E(Gamble), risk attitudes
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Gain and Loss frame

Gain frame
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Attention switches from system 1 to system 2 at time t1

Switching time may be deterministic or random (according to
distribution)

Solid lines indicate the drift rates
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Risk attitudes

Gain
frame

Loss
frame

Risk averse Risk seeking
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Predictions

Prediction 1: The size of the framing effect is a function of the time
the DM operates in System 1.

Prediction 2: The size of the framing effect is a function of the time
(limit) the DM has for making a choice.
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Prediction 1: Attention times

The size of the framing effect is a function of the time the DM operates in
System 1.
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Gain frame
System 1: drift rate < 0→ Sure
System 2: drift rate = 0→ indifferent between Gamble and Sure
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Basic assumptions – Time limit
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Prediction 2: Deadlines

The size of the framing effect is a function of the time (limit) the DM has
for making a choice.
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System 1: drift rate < 0→ Sure
System 2: drift rate = 0→ indifferent between Gamble and Sure

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 19 / 61



Modeling the drift rates – Example 1

System 1
Preferences in System 1 are constructed according to prospect
theory

System 2
Preferences in System 2 are constructed according to expected
utility theory
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System 1: Prospect Theory

The value V of a simple prospect that pays x (here the starting
amount) with probability p (and nothing otherwise) is given by:

V(x , p) = w(p)v(x)

with probability weighting function

w(p) =
pγ

(pγ + (1− p)γ)1/γ

and value function

v(x) =

{
xα if x ≥ 0

−λ|x |β if x < 0
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System 1: Prospect Theorie

Weighting function for p

p

w
(p

)

p
w(p)

Value function for x

x

v
(x

)

Reference point

VG = w(p)vG (x)

VSgain = w(p)vSgain(x)

VSloss = w(p)vSloss (x)
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System 2: Expected Utility Theorie

Probability

p

p

p

Utility

x
u
(x

) 
=

 x

u(x) = x

EU(x , p) = p · u(x) = p · x
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Mean difference in valence (drift rate)

System 1 – gain frame

µ1gain = VG − VSgain

System 1 – loss frame

µ1loss = VG − VSloss

System 2
µ2 = EU(G )− EU(S) = 0
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For all predictions

0 60100

Given: 100 P

Amount given (reference point) r : 25, 50, 75, 100
Probability of keeping r : 0.2, 0.4, 0.6, 0.8
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Predictions – Example 1

Parameters (PT from Tversky & Kahneman, 1992)

System 1 System 2

α = .88 no parameters
β = .88
λ = 2.25
γ = .61

boundary: θ
attention time: t, E (T1)
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Predictions 1: The size of the framing effect is a function
of the time the DM operates in System 1.

θ = 15;
t1 = 0, 100, 500, ∞

Amount given
25 50 75100  25 50 75100  25 50 75100  25 50 75100

P
r(

G
a
m

b
le

)

0

0.1

0.3

0.5

0.7

0.9

1

Pr(keep)
0.2 0.4 0.6 0.8

Loss frame
(open)

Gain frame
(filled)

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 27 / 61



Predictions 1: Attention times

θ = 15;
t1 = 0, 100, 500, ∞
open: loss; filled: gain
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Predictions 2: The size of the framing effect is a function
of the time (limit) the DM has for making a choice.

t1 = 100;
θ = 10, 15, 20
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Predictions 2: Time limits

t1 = 100;
θ = 10, 15, 20
open: loss; filled: gain
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Modeling the drift rates – Example 2

System 1
Preferences in System 1 follow PT.

System 2
Preferences in System 2 are a weighted average of PT and EU.
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System 2: Weighted average of PT and EU

δ∗2 = w · (VG − VS) + (1− w) · (EV (G )− EV (S))

= w · δ1 + (1− w) · δ2.

Qualitative predictions remain as before.
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Modeling the drift rates – Example 3

System 1
Preferences in System 1 are modeled according to a Motivational
function weighted by Willpower strength and Cognitive demand
(MWC). (Loewenstein et al.,2015)

System 2
Preferences in System 2 are modeled according to EU.
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System 1: MWC

Motivational function M(x , a); a captures the intensity of affective
motivations

Function h(W , σ) reflects the willpower strength W and cognitive
demands σ.
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MWC

M(x , a) =
∑

w(pi )v(xi , a)

w(p) is a probability-weighting function

w(p) = c + bp with w(0) = 1,w(1) = 1, and 0 < c < 1− b

v(x , a) is a value function that incorporates loss aversion

v(x , a) =

{
a u(x) if x ≥ 0

aλ u(x) if x < 0

h(W , σ) is not specified but meant to be decreasing in W and
increasing in σ.

V(x) =
∑

u(xi ) + h(W , σ) ·
∑

w(pi )v(xi , a)
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Note

WMC: static-deterministic model

For predicting choice probabilities and choice responses time

→ dynamic-stochastic framework
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System 1 and System 2

MWC model assumes that both processes operate simultaneously.

Therefore, System 1 and System 2 merge into a single drift rate and
the two stages basically collapse into one single stochastic process.

With VG and VS indicating the subjective value of the gamble and
the sure option, respectively, the mean difference in valences (drift
rates) in a gain and loss frame become

δgain = VG − VSgain

δloss = VG − VSloss ,

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 37 / 61



Predictions
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Experiment

Guo, Trueblood, Diederich (2017), Psychological Science

2 × (time limits: no, 1 sec) × 2 (frames: gain, loss)

72 gambles per condition, collapsed to 9 ”gambles” per condition

8 catch trials per condition

195 participants
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Models tested

Number of
Model parameters RMSEA

PTk 8 1.43
PT with additional scaling factor 9 .44
Dual with PT and EU 10 .282
Dual with PT and weighted PT and EU 11 .283
MWCk 10 1.40
MWC with additional scaling factor 11 .54
MWC2stages 12 .49
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Model acccounts: Probabilities
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Model acccounts: RT – no TP
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Model acccounts: RT – TP

Gain
frame

PT
Dual
MWC
MWC2

Loss
frame

Pr(keep)
 0.27    0.42     0.57  

 m
e

a
n

 R
T

 G
a

m
b

le
 [

s
e

c
]

0.4

0.5

0.6

Pr(keep)
 0.27    0.42     0.57  

m
e

a
n

 R
T

 S
u

re
 [

s
e

c
]

0.4

0.5

0.6

Amount given
32 56 79  32 56 79  32 56 79

m
e

a
n

 R
T

 G
a

m
b

le
 [

s
e

c
]

0.4

0.5

0.6

Amount given
32 56 79  32 56 79  32 56 79

m
e

a
n

 R
T

 S
u

re
 [

s
e

c
]

0.4

0.5

0.6

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 43 / 61



Further directions

Baron & Gürcay (2017) for moral judgments
RT = b0 + b1AD + b2U + b3AD · U
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Example 1, revisited

Influence of payoffs and discrimination with manipulated processing
orders
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Payoffs and discrimination
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Diederich & Busemeyer (2006); Diederich (2008), with time constraints
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Attributes and task

Attribute 1: Payoffs (Same, Different, Neutral)

Attribute 2: Lines (same, different)

Task: ”same”/”different” judgment
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Presentation orders
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All conditions

Lines stimulus Payoff matrix Presentation order

different Different (D) Payoff–Lines (PL)
same Same (S) Lines–Payoff (LP)

Neutral (N) Payoff/Lines (C)

2× 3× 3 factorial design
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Predictions for Payoff–Line example

µ1 = .1,−.1, 0 for payoffs D, S, N; µ2 = −.05 for line same
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Model specification

Order schedule: The attribute sequence is either (1, 2, 1, 2, . . .) or
(2, 1, 2, 1, . . .), depending on whether k1 = 1 or k1 = 2

Time schedule: Geometric distribution
Pr(T = n) = (1− r)n−1r , n = 1, 2, . . .
Expected value: E (T ) = 1/r
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Payoffs and Lines: Parameter estimation

Two stages

Parameter estimated simultaneously for conditions PL and LP

Cross validation for condition C (some of the parameters same as for
PL and LP)
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Payoffs and Lines: Models tested

M1: Payoffs processed first and then switch to the lines (PL and C).

M2: Lines processed first and then switch to the payoffs (LP and C).

M3: Payoffs processed first, switch to the lines and then switch back
and forth between attributes (C).

M4: Lines processed first, switch to the payoffs and then switch back
and forth between attributes (C).

M5: Start with any attribute and switch back and forth between
them (C).
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Payoffs and Lines: Parameters estimated for PL and LP

Payoffs µPD , µPS
Lines µLs , µLd
Attention switching r12, r21
Decision bound θPL, θLP
Residual RPL, RLP

from 36 data points

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 54 / 61



Payoffs and Lines: Parameters estimated for C

Cross validation

Attention switching r12 or/and r21
Decision bound θC
Residual RC

from 18 data points
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Results – Group 1
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D S N D S N D S N
0  

0.2

0.4

0.6

0.8

Payoff-Lines Lines-Payoff Combined

Choice probability (incorrect)

D S N D S N D S N

0.7

0.9

1.1

1.3
Payoff-Lines Lines-Payoff Combined

Mean RT (correct) [s]

D S N D S N D S N

0.7

0.9

1.1

1.3
Payof-Lines Lines-Payoff Combined

Mean RT (incorrect) [s]

Payoff conditions
D S N D S N D S N

0  

0.2

0.4

0.6

0.8

Payoff-Lines Lines-Payoff Combined

Payoff conditions
D S N D S N D S N

0.7

0.9

1.1

1.3
Payof-Lines Lines-Payoff Combined

Payoff conditions
D S N D S N D S N

0.7

0.9

1.1

1.3
Payof-Lines Lines-Payoff Combined

Adele Diederich (JUB) Multi-stage models March 18 – 22, 2019 56 / 61



Results – Group 3

Lines different same
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Best fit

For all groups:

M3: Payoffs processed first, switch to the lines and then switch back
and forth between attributes (C).
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Response patterns

Group Stimuli Presentation
PL LP C

obs pred obs pred obs pred

PD Ld f + s + f +
PS Ld f + s + f +

1 PN Ld f − s − f −
PD Ls f + s + f +
PS Ls f + s + f +
PN Ls s + f + s +
PD Ld f + s + f +
PS Ld s + f + f −

3 PN Ld f − s − f −
PD Ls s + f + s +
PS Ls f + s + f +
PN Ls s + f + s +
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