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Plan of the talk:

I Principal Component Analysis

I Diffusion Maps

I Variable Bandwidth Diffusion Kernels

I Automatic estimation of manifold dimension and bandwidth
parameter.



What is manifold learning?

Given data {xi}i=1,...,N , the central task of unsupervised learning
algorithm is to be able to characterize this data set.

Under an assumption that these data lie on (or close to) a
manifold M⊆ Rn, manifold learning algorithm seeks for a set of
(basis) functions, Φk :M→ R to describe the data.



Principal Component Analysis (a linear manifold learning)

Given xi ∈ Rn with zero empirical mean, define

X = [x1, x2, . . . , xN ] ∈ Rn×N .

Let (λk ,wk) be defined as,

1

N
XX>wk = λkwk

The kth principal component is defined as Φk(x) = w>k x .



Principal Component Analysis (a linear manifold learning)

Example: Uniformly distributed data on a unit circle.
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Figure : The principal components (color) as functions of the data.



Principal Component Analysis (a linear manifold learning)

Example: Gaussian invariant density of a two-dimensional SDE’s
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Figure : Principal components of the Gaussian data.



Diffusion maps (a nonlinear manifold learning)1

Given {xi} ∈ M ⊆ Rn with a sampling density q, the diffusion
maps algorithm is a kernel based method that produces
orthonormal basis functions ϕk ∈ L2(M, q).

These basis functions are solutions of an eigenvalue problem,

Lϕk(x) = q−1div
(

q∇ϕk(x)
)

= λkϕk(x),

with Neumann BC (if the manifold has a boundary).

Remarks:

I If q = 1, then L = ∆.

I Diffusion maps approximates L with an exponentially decaying

function function Kε(x , y) = h
(‖x−y‖2

4ε

)
.

1Coifman & Lafon, Appl. Comp. Harmon. Anal. 2006
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A review on diffusion maps algorithm

The key idea of diffusion maps stimulated by the following
asymptotic expansion2. For x ∈M ⊆ Rn away from the boundary
and f ∈ C 3(M)

Gεf (x) := ε−d/2

∫
M

Kε(x , y)f (y)dV (y)

= m0f (x) + εm2(ω(x)f (x) + ∆f (x)) +O(ε2).

where m0 =
∫
Rd h(||z ||2)dz and m2 = 1

2

∫
Rd y 2

1 h(||z ||2)dz are
constants determined by h, and ω depends on the induced
geometry of M.

Diffusion maps is a discretization of the following algebraic
manipulation:

Lεf (x) :=
1

εm2m−1
0

(Gε1(x))−1Gεf (x)− f (x) = ∆f (x) +O(ε)

2Coifman & Lafon, Appl. Comp. Harmon. Anal. 2006
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Examples: Uniformly distributed data on a circle

Analytically, DM solves ∆ϕk(x) = λkϕk(x), which solutions are:

λk = −k2, ϕk(x) = e ikx .
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Example: Gaussian invariant density of a two-dimensional SDE’s
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Essentially, we view the DM as a method to construct generalized
Fourier basis on the manifold.



Diffusion Maps Algorithm

Using this asymptotic expansion,

Gεf (x) = m0f (x) + εm2(ω(x)f (x) + ∆f (x)) +O(ε2),

given data xi ∈M with sampling density q(x), we can estimate the
Laplacian through the following procedure:

I Compute qε = Gε(q).

I Compute Ĝε,α,q(f ) := Gε
(

fq
qα
ε

)
for some parameter α.

Ĝε,α,q(f ) = m1−α
0 fq1−α

(
1 + εmω(1− α)− εmα∆q

q
+ εm

∆(fq1−α)

fq1−α +O(ε2)
)
,

where m = m2/m0.

I Compute q̂ε := Ĝε,α,q(1).

I Finally,

Lε,αf :=
q̂−1
ε Ĝε,α,q(f )− f

mε
= (2− 2α)∇ log q · ∇f + ∆f +O(ε).
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ε Ĝε,α,q(f )− f

mε
= (2− 2α)∇ log q · ∇f + ∆f +O(ε).



Diffusion Maps Algorithm

Using this asymptotic expansion,

Gεf (x) = m0f (x) + εm2(ω(x)f (x) + ∆f (x)) +O(ε2),

given data xi ∈M with sampling density q(x), we can estimate the
Laplacian through the following procedure:

I Compute qε = Gε(q).
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Diffusion Maps Algorithm

Numerically, we can repeat this procedure as follows.
Given {xi}Ni=1 ∼ q(x) that lie on M∈ Rn, choose a Gaussian
kernel,

Kε(x , y) = exp
(
− ‖x − y‖2

4ε

)
,

such that m = m2/m0 = 1.

We can approximate the operator Gεf as a discrete sum,

εd/2Gε(fq)(x) =

∫
M

Kε(x , y)f (y)q(y)dV (y)

= lim
N→∞

1

N

N∑
i=1

Kε(x , xi )f (xi ).



Diffusion Maps Algorithm

With the Monte-Carlo discretization, the numerical approximation
of operator Lε,α is given as:

I Compute qε(xi ) = 1
N

∑N
j=1 Kε(xi , xj).

I Construct the kernel of Ĝε,α,q(f ) := Gε
(

fq
qαε

)
:

K̂ε(xi , xj) =
Kε(xi , xj)

qε(xi )αqε(xj)α
.

This is called “right” normalization

I Compute q̂ε(xi ) = 1
N

∑N
j=1 K̂ε(xi , xj).

I Then matrix representation of Lε,α is given as,

[
Lε,α

]
i ,j

=
1

ε

( K̂ε(xi , xj)

q̂ε(xi )
− δi ,j

)
.

The first term on the RHS is called ”left” normalization.
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Remarks:

Recall that Lε,αf = (2− 2α)∇ log q · ∇f + ∆f +O(ε).

I If α = 0 and q(x) = 1/Vol(M) is uniform, then we
approximate the Laplace-Beltrami on M; this is the
”Laplacian eigenmaps” introduced by Belkin and Niyogi 2003.

I If α = 1, we also get Laplace-Beltrami on M even if the
sampling measure is non-uniform.

I If α = 1/2, we approximate,

Lε,1/2 = ∇ log q · ∇+ ∆ +O(ε) = q−1div
(

q∇
)

+O(ε),

which is the generator of a gradient system with an isotropic
diffusion:

dx = −∇U(x)dt +
√

2 dWt ,

where x ∈M and the equilibrium measure is q(x) = e−U(x).



Remarks:

For the estimation of ∆, the eigenfunctions ϕk form an
orthonormal basis of L2(M) correspond to eigenvalues λk ≥ 0.

Definition
Let Sε(x , y) = eε∆δy (x) be the heat kernel of ∆. The diffusion
distance is defined as,

Dε(x , y)2 := ‖Sε(x , ·)− Sε(y , ·)‖2
L2(M).

Representing the heat kernel with the basis functions, we have

Dε(x , y)2 =
∞∑
k=1

e2λkε
(
ϕk(x)− ϕk(y)

)2
.



Remarks:

Diffusion Maps3 is defined as a map, Φε,M :M→ RM , as

Φε,M(x) := (eλ1εϕ1(x), . . . , eλMεϕM(x)).

Then for appropriate choices of ε and M, the map Φε,M is an
isometric embedding, in the sense of:

Dε(x , y)2 ≈ ‖Φε,M(x)− Φε,M(y)‖RM

preserving the diffusion distance.

Compare to PCA, Φk(x) = w>k x .

3Coifman & Lafon, Appl. Comp. Harmon. Anal. 2006
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Restriction on compact manifold

Consider estimating generator of Ornstein-Uhlenbeck process on a
line M = R, which is a gradient flow with potential U(x) = x2/2.
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Figure : Left: Estimation of the third eigenfunction of the generator of
the OU process with 2000 data points. Right: Various number of data
points where

√
N outliers are removed.



Variable bandwidth diffusion kernels4

I We consider variable bandwidth diffusion kernels for data lie
on non-compact domain without boundary of the following
form,

KS
ε (x , y) = exp

(
− ‖x − y‖2

4ερ(x)ρ(y)

)
.

I If we choose ρ(x) = q(x)β +O(ε) and β = −1/2, and apply
DM with α = −d/4, where d = dim(M), then we can
approximate the generator Lε,1/2 that takes functions on
L2(M, q) ∩ C 3(M).

4Berry and H, Appl. Comput. Harmon. Anal. 2016.



Back to the OU example

With the variable bandwidth kernel.
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Variable Bandwidth

Fixed Bandwidth

Figure : Left: VB estimation of the fourth eigenfunction of the generator
of the OU process with 2000 data points. Right: The mean squared error
between the analytic fourth eigenfunction and the kernel based
approximations as a function of ε.



Variable Bandwidth Diffusion Kernels 5

Given data xi ∼ q(x),

KS
ε (xi , xj) = exp

{
−||xi − xj ||2

4ερ(xi )ρ(xj)

}
qS
ε (xi ) =

N∑
j=1

Kε(xi , xj)

ρ(xi )d

KS
ε,α(xi , xj) =

KS
ε (xi , xj)

qS
ε (xi )αqS

ε (xj)α
qS
ε,α(xi ) =

N∑
j=1

KS
ε,α(xi , xj)

K̂S
ε,α(xi , xj) =

KS
ε,α(xi , xj)

qS
ε,α(xi )

LS
ε,α(xi , xj) =

K̂S
ε,α(xi , xj)− δij
ερ(xi )2

,

We proved that for each x ,

LS
ε,αf (x)→ ∆f (x) + 2(1− α)∇f (x) · ∇q(x)

q(x)
+ (d + 2)∇f (x) · ∇ρ(x)

ρ(x)

in probability.

5Berry and H, Appl. Comput. Harmon. Anal. 2016



Variable Bandwidth Diffusion Kernels 6

Choosing ρ = qβ +O(ε), we have at each xi ,

LS
ε,αf (xi ) = ∆f (xi ) + c1∇f (xi ) ·

∇q(xi )

q(xi )

+O

(
ε,

q(xi )
(1−dβ)/2

√
Nε2+d/4

,
||∇f (xi )||q(xi )

−c2

√
Nε1/2+d/4

)
,

with c1 = 2−2α+ dβ+ 2β and c2 = 1/2−2α+ 2dα+ dβ/2 +β.

Remarks: A natural choice for β = −1/2.

I For gradient flow, we want c1 = 1 and α = −d/4. In this
case, c2 = d/2(1/2− d) < 0 for d > 0.

I In contrast, the fixed bandwidth with β = 0, we have α = 1/2
and c2 = d − 1/2 > 0 for d > 0.

6Berry and H, Appl. Comput. Harmon. Anal. 2016



Automatic estimation of ε and d

Note that

S(ε) ≡ 1

N2

∑
i ,j

Kε(xi , xj) ≈
1

Vol(M)

∫
M

∫
Txi
M

Kε(xi , y) dy dV (x)

≈
∫
M

(4πε)d/2

Vol(M)
dV (x) = (4πε)d/2

such that,

dlogS

dlogε
= d/2 (1)

Remark: As ε→ 0, S → 1
N and as ε→∞, S → 1 and in these

extreme cases, the slopes of log S are zero. Our strategy is to
determine ε and d that maximize (1).



Example: Estimation of ∆ on S2 ∈ R3 with N = 3000.
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Other automatic estimation of ε and d

Let X = [X1, . . . ,XN ] and xi ∈M ⊆ Rm, where

Xj = D(x)−1/2 exp
(
−
‖xj − x‖2

4ε

)
(xj − x)

D(x) =
N∑
i=1

exp
(
− ‖xi − x‖2

2ε

)
We showed7 that

lim
N→0

1

ε
XX> = I(x)>I(x) +O(ε),

where I : Rm → TxM is a projection onto the tangent space.

Remarks: This means that for ν ∈ TxM,

lim
N→0

ν>XX>ν = ε‖ν‖2 +O(ε2),

7Berry & H, Appl. Comput. Harmon. Anal., 2018



Other automatic estimation of ε and d

This means that, for ν ∈ TxM, the singular value of X

σν := lim
N→∞

√
ν>XX>ν

‖ν‖
=
√
ε+O(ε).

and if ν ∈ TxM⊥, then σν = O(ε).

Thus, one can estimate the dimension using

d ≈ 1

ε
Trace(XX>),

or even using,

(
det(XX>)

)
=

d∏
j=1

σj ≈ εd ⇔ d ≈
d
(

det(XX>)
)

dε



Example: 2D torus embedded in R30.
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Figure : Dimension measures d1 (blue) and d2 (red) as functions of the
bandwidth ε corresponding to the data set sampled from the torus
embedded in 30-dim (left) and with 30-dim Gaussian noisy torus (right).
The metric of agreement, M(ε), is shown as the dotted black curve. The
solid black dot represents the bandwidth that minimizes the metric along
with the average dimension at the optimal ε.



Discussion:

For junior participants:

I Convince yourself that the differential operator
L = q−1div(q∇ ) that is being estimated is symmetric
negative definite with respect to an appropriate Hilbert space.

I In the construction of matrix Lε,α, notice that this N × N
matrix is not symmetric. Can you find a similarity
transformation to a symmetric matrix since we have a more
stable algorithm for spd matrix.

I When N is large, you can store the matrix Lε,α and the entries
of the matrix is mostly zero since the kernel is local with
bandwidth ε. How do you get around of the storing and avoid
computing zero entries.



Discussion:

A general research problem:

I Solving eigenvalue problem of such large system is very
expensive. The amount of required data of any
non-parametric method grows exponentially as a function of
intrinsic dimension. Now, are there any computationally
cheaper alternatives to get basis of the range of Lε,α?

I I had explored one with QR decomposition8 which is cheap
but the problem is that QR basis does not reveal rank.
Eigenbasis has a special properties since its corresponding
eigenvalues 0 = λ0 ≥ λ1 ≥ . . ., and they satisfy

−λk = arg min
f ∈H2(M,q)∩H⊥k−1

‖∇f ‖q

where Hk−1 = span{ϕ0, . . . , ϕj−1}.

8H & Yang, J. Nonlinear Science, 2018.
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